51
|
Wong HS, Jaumouillé V, Heit B, Doodnauth SA, Patel S, Huang YW, Grinstein S, Robinson LA. Cytoskeletal confinement of CX3CL1 limits its susceptibility to proteolytic cleavage by ADAM10. Mol Biol Cell 2014; 25:3884-99. [PMID: 25253723 PMCID: PMC4244198 DOI: 10.1091/mbc.e13-11-0633] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CX3CL1 diffuses within confined regions of the plasma membrane. CX3CL1 is confined by the cortical actin cytoskeleton, not lipid rafts. Actin confinement regions protect CX3CL1 from proteolysis by limiting its interactions with ADAM10. CX3CL1 is a unique chemokine that acts both as a transmembrane endothelial adhesion molecule and, upon proteolytic cleavage, a soluble chemoattractant for circulating leukocytes. The constitutive release of soluble CX3CL1 requires the interaction of its transmembrane species with the integral membrane metalloprotease ADAM10, yet the mechanisms governing this process remain elusive. Using single-particle tracking and subdiffraction imaging, we studied how ADAM10 interacts with CX3CL1. We observed that the majority of cell surface CX3CL1 diffused within restricted confinement regions structured by the cortical actin cytoskeleton. These confinement regions sequestered CX3CL1 from ADAM10, precluding their association. Disruption of the actin cytoskeleton reduced CX3CL1 confinement and increased CX3CL1–ADAM10 interactions, promoting the release of soluble chemokine. Our results demonstrate a novel role for the cytoskeleton in limiting membrane protein proteolysis, thereby regulating both cell surface levels and the release of soluble ligand.
Collapse
Affiliation(s)
- Harikesh S Wong
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sasha A Doodnauth
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Paediatrics, University of Toronto, Toronto, ON M5S 2J7, Canada
| |
Collapse
|
52
|
Isozaki T, Amin MA, Ruth JH, Campbell PL, Tsou PS, Ha CM, Stinson WA, Domino SE, Koch AE. Fucosyltransferase 1 mediates angiogenesis in rheumatoid arthritis. Arthritis Rheumatol 2014; 66:2047-58. [PMID: 24692243 PMCID: PMC4426876 DOI: 10.1002/art.38648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/25/2014] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To determine the role of α(1,2)-linked fucosylation of proteins by fucosyltransferase 1 (FUT1) in rheumatoid arthritis (RA) angiogenesis. METHODS Analysis of α(1,2)-linked fucosylated proteins in synovial tissue (ST) samples was performed by immunohistologic staining. Expression of α(1,2)-linked fucosylated angiogenic chemokine in synovial fluid (SF) was determined by immunoprecipitation and lectin blotting. To determine the angiogenic role of α(1,2)-linked fucosylated proteins in RA, we performed human dermal microvascular endothelial cell (HMVEC) chemotaxis and Matrigel assays using sham-depleted and α(1,2)-linked fucosylated protein-depleted RA SF samples. To examine the production of proangiogenic chemokines by FUT1 in HMVECs, cells were transfected with FUT1 sense or antisense oligonucleotides, and enzyme-linked immunosorbent assay was performed. We then studied mouse lung endothelial cell (EC) chemotaxis using wild-type and FUT1 gene-deficient mouse lung ECs. RESULTS RA ST endothelial cells showed high expression of α(1,2)-linked fucosylated proteins compared to normal ST. The expression of α(1,2)-linked fucosylated monocyte chemoattractant protein 1 (MCP-1)/CCL2 was significantly elevated in RA SF compared with osteoarthritis SF. Depletion of α(1,2)-linked fucosylated proteins in RA SF induced less HMVEC migration and tube formation than occurred in sham-depleted RA SF. We found that blocking FUT1 expression in ECs resulted in decreased MCP-1/CCL2 and RANTES/CCL5 production. Finally, we showed that FUT1 regulates EC migration in response to vascular endothelial cell growth factor. CONCLUSION Our findings indicate that α(1,2)-linked fucosylation by FUT1 may be an important new target for angiogenic diseases such as RA.
Collapse
Affiliation(s)
- Takeo Isozaki
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Mohammad A. Amin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jeffrey H. Ruth
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Pei-Suen Tsou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Christine M. Ha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - W. Alex Stinson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
| | - Alisa E. Koch
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- VA Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI
| |
Collapse
|
53
|
Ebert T, Hindricks J, Kralisch S, Lossner U, Jessnitzer B, Richter J, Blüher M, Stumvoll M, Fasshauer M. Serum levels of fractalkine are associated with markers of insulin resistance in gestational diabetes. Diabet Med 2014; 31:1014-7. [PMID: 24673545 DOI: 10.1111/dme.12451] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/22/2013] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
AIMS Fractalkine has recently been introduced as an adipokine that improves glucose tolerance. Regulation of fractalkine in gestational diabetes, as well as its association with markers of obesity, glucose and lipid metabolism, inflammation and renal function, has not been elucidated. METHODS Circulating fractalkine was quantified by enzyme-linked immunosorbent assay in 74 women with gestational diabetes and 74 healthy, pregnant control subjects matched for age, BMI, and gestational age. RESULTS Median (interquartile range) levels of fractalkine were not significantly different between the two groups [gestational diabetes: 2.24 (2.16) μg/l; control: 2.45 (1.38) μg/l] (P = 0.461). In multivariate linear regression analysis, fractalkine remained independently associated with homeostasis model assessment of insulin resistance (β = -0.253, P = 0.002) and the proinflammatory adipokine progranulin (β = 0.218, P = 0.007). CONCLUSIONS Circulating fractalkine is not different between women with gestational diabetes and control subjects, but the adipokine is independently associated with markers of insulin resistance and proinflammatory progranulin in pregnancy.
Collapse
Affiliation(s)
- T Ebert
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany; IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine 2014; 70:185-93. [PMID: 25066335 DOI: 10.1016/j.cyto.2014.06.019] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/27/2014] [Indexed: 02/09/2023]
Abstract
Osteoarthritis is a chronic and painful disease of synovial joints. Chondrocytes, synovial cells and other cells in the joint can express and respond to cytokines and chemokines, and all of these molecules can also be detected in synovial fluid of patients with osteoarthritis. The presence of inflammatory cytokines in the osteoarthritic joint raises the question whether they may directly participate in pain generation by acting on innervating joint nociceptors. Here, we first provide a systematic discussion of the known proalgesic effects of cytokines and chemokines that have been detected in osteoarthritic joints, including TNF-α, IL-1, IL-6, IL-15, IL-10, and the chemokines, MCP-1 and fractalkine. Subsequently, we discuss what is known about their contribution to joint pain based on studies in animal models. Finally, we briefly discuss limited data available from clinical studies in human osteoarthritis.
Collapse
Affiliation(s)
- Rachel E Miller
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, United States
| | - Anne-Marie Malfait
- Departments of Internal Medicine (Division of Rheumatology) and Biochemistry, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
55
|
Pancreatic stellate cells and CX3CR1: occurrence in normal pancreas and acute and chronic pancreatitis and effect of their activation by a CX3CR1 agonist. Pancreas 2014; 43:708-19. [PMID: 24681877 PMCID: PMC4315317 DOI: 10.1097/mpa.0000000000000109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Numerous studies suggest important roles of the chemokine, fractalkine (CX3CL1), in acute/chronic pancreatitis; however, the possible mechanisms of the effects are unclear. Pancreatic stellate cells (PSCs) can play important roles in pancreatitis, secreting inflammatory cytokines/chemokines, as well as proliferation. Therefore, we investigated CX3CL1 receptor (CX3CR1) occurrence in normal pancreas and pancreatitis (acute/chronic) tissues and the effects of CX3CL1 on activated PSCs. METHODS CX3CR1 expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues was evaluated with immunohistochemical analysis. CX3CR1 expression and effects of CX3CL1 on activated PSCs were examined with real-time polymerase chain reaction, BrdU (5-bromo-2-deoxyuridine) assays, and Western blotting. RESULTS In normal pancreas, acinar cells expressed CX3CR1 within granule-like formations in the cytoplasm, whereas in acute/chronic pancreatitis, acinar, ductal, and activated PSCs expressed CX3CR1 on cell membranes. With activation of normal PSCs, CX3CR1 is increased. CX3CL1 activated multiple signaling cascades in PSCs. CX3CL1 did not induce inflammatory genes expression in activated PSCs, but induced proliferation. CONCLUSIONS CX3CR1s are expressed in normal pancreas. Expression is increased in acute/chronic pancreatitis, and the CX3CR1s are activated. CX3CL1 induces proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest that CX3CR1 activation of PSCs could be important in their effects in pancreatitis, especially to PSC proliferation in pancreatitis where CX3CL1 levels are elevated.
Collapse
|
56
|
Han KH, Ryu JW, Lim KE, Lee SH, Kim Y, Hwang CS, Choi JY, Han KO. Vascular expression of the chemokine CX3CL1 promotes osteoclast recruitment and exacerbates bone resorption in an irradiated murine model. Bone 2014; 61:91-101. [PMID: 24401612 DOI: 10.1016/j.bone.2013.12.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/28/2013] [Accepted: 12/27/2013] [Indexed: 12/11/2022]
Abstract
Circulating osteoclast precursor cells highly express CX3C chemokine receptor 1 (CX3CR1), which is the only receptor for the unique CX3C membrane-anchored chemokine, fractalkine (CX3CL1). An irradiated murine model was used to evaluate the role of the CX3CL1-CX3CR1 axis in osteoclast recruitment and osteoclastogenesis. Ionizing radiation (IR) promoted the migration of circulating CD11b+ cells to irradiated bones and dose-dependently increased the number of differentiated osteoclasts in irradiated bones. Notably, CX3CL1 was dramatically upregulated in the vascular endothelium after IR. IR-induced production of CX3CL1 by skeletal vascular endothelium promoted chemoattraction of circulating CX3CR1+/CD11b+ cells and triggered homing of these osteoclast precursor cells toward the bone remodeling surface, a specific site for osteoclast differentiation. CX3CL1 also increased the endothelium-derived expression of other chemokines including stromal cell-derived factor-1 (CXCL12) and macrophage inflammatory protein-2 (CXCL2) by activating the hypoxia-inducible factor-1 α pathway. These effects may further enhance osteoclastogenesis. A series of in vivo experiments confirmed that knockout of CX3CR1 in bone marrow-derived cells and functional inhibition of CX3CL1 using a specific neutralizing antibody significantly ameliorated osteoclastogenesis and prevented bone loss after IR. These results demonstrate that the de novo CX3CL1-CX3CR1 axis plays a pivotal role in osteoclast recruitment and subsequent bone resorption, and verify its therapeutic potential as a new target for anti-resorptive treatment.
Collapse
Affiliation(s)
- Ki Hoon Han
- Department of Cardiology, School of Medicine, University of Ulsan, Asan Medical Center, Seoul 138-736, Republic of Korea.
| | - Jae Won Ryu
- Department of Cardiology, School of Medicine, University of Ulsan, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Kyung-Eun Lim
- Department of Biochemistry and Cell Biology, School of Medicine, WCU Program, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Soo-Han Lee
- Department of Cardiology and Pharmacology, School of Medicine, University of Ulsan, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Yuna Kim
- Department of Cardiology and Pharmacology, School of Medicine, University of Ulsan, Asan Medical Center, Seoul 138-736, Republic of Korea
| | - Chang Sun Hwang
- Department of Endocrinology and Metabolism, School of Medicine, Kwandong University, Seoul 100-380, Republic of Korea
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, School of Medicine, WCU Program, Skeletal Diseases Genome Research Center, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Ki Ok Han
- Department of Endocrinology and Metabolism, School of Medicine, Kwandong University, Seoul 100-380, Republic of Korea; Department of Endocrinology and Metabolism, G-SAM Medical Center, Gunpo-si 435-010, Republic of Korea.
| |
Collapse
|
57
|
Role of fractalkine/CX3CL1 and its receptor in the pathogenesis of inflammatory and malignant diseases with emphasis on B cell malignancies. Mediators Inflamm 2014; 2014:480941. [PMID: 24799766 PMCID: PMC3985314 DOI: 10.1155/2014/480941] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 12/16/2022] Open
Abstract
Fractalkine/CX3CL1, the only member of the CX3C chemokine family, exists as a membrane-anchored molecule as well as in soluble form, each mediating different biological activities. It is constitutively expressed in many hematopoietic and nonhematopoietic tissues such as endothelial and epithelial cells, lymphocytes, neurons, microglial osteoblasts. The biological activities of CX3CL1 are mediated by CX3CR1, that is expressed on different cell types such as NK cells, CD14+ monocytes, cytotoxic effector T cells, B cells, neurons, microglia, smooth muscle cells, and tumor cells. The CX3CL1/CX3CR1 axis is involved in the pathogenesis of several inflammatory cancer including various B cell malignancies. In tumors the interaction between cancer cells and cellular microenvironment creates a context that may promote tumor growth, increase tumor survival, and facilitate metastasis. Therefore the role of the CX3CL1/CX3CR1 has attracted interest as to the development of potential therapeutic approaches. Here we review the different effects of the CX3CL1/CX3CR1 axis in several inflammatory and neurodegenerative diseases and in cancer, with emphasis on human B cell lymphomas.
Collapse
|
58
|
Wojdasiewicz P, Poniatowski LA, Kotela A, Deszczyński J, Kotela I, Szukiewicz D. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: occurrence and potential role in osteoarthritis. Arch Immunol Ther Exp (Warsz) 2014; 62:395-403. [PMID: 24556958 PMCID: PMC4164853 DOI: 10.1007/s00005-014-0275-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023]
Abstract
Chemokines are molecules able to induce chemotaxis of monocytes, neutrophils, eosinophils, lymphocytes and fibroblasts. The complex chemokine acts in many physiological and pathological phenomena, including those occurring in the articular cartilage. To date, chemokine CX3CL1 (fractalkine) is the only member of the CX3C class of chemokines with well-documented roles in endothelial cells. CX3CL1 is a unique chemokine that combines properties of chemoattractant and adhesion molecule. The main roles of CX3CL1 include promotion of leukocyte binding and adhesion as well as activation of the target cells. The soluble chemokine domain of CX3CL1 is chemotactic for T cells and monocytes. CX3CL1 acts via its receptor, CX3CR1, which belongs to a family of G protein-coupled receptors. Stimulation of CX3CR1 activates both CX3CL1-dependent and integrin-dependent migrations of cells with synergistically augmented adhesion. Genetic polymorphisms of CX3CR1 may significantly modify the biological roles of CX3CL1, especially in pathologic conditions. Osteoarthritis (OA) is the most common joint disease, affecting approximately 7–8 % of the general population. Development of OA is largely driven by low-grade local background inflammation involving chemokines. The importance of CX3CL1/CX3CR1 signalling in the pathophysiology of OA is still under investigation. This paper, based on a review of the literature, updates and summarises the current knowledge about CX3CL1/CX3CR1 in OA and indicates possible interactions with a potential for therapeutic targeting.
Collapse
Affiliation(s)
- Piotr Wojdasiewicz
- Department of General and Experimental Pathology, Second Faculty of Medicine, Medical University of Warsaw, Pawinskiego 3c, 02-106, Warsaw, Poland,
| | | | | | | | | | | |
Collapse
|
59
|
Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, Manduteanu I. Subendothelial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. Int J Biochem Cell Biol 2014; 50:29-37. [PMID: 24508784 DOI: 10.1016/j.biocel.2014.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
Abstract
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need to be clarified. Our recent data showed that resistin activated smooth muscle cells (SMC) by up-regulating FKN and MCP-1 expression and monocyte chemotaxis by activating toll-like receptor 4 (TLR4) and Gi/o proteins. Since in the vessel wall both endothelial cells (EC) and SMC respond to cytokines and promote atherosclerosis, we questioned whether subendothelial resistin (sR) has a role in vascular cells cross-talk leading to enhanced monocyte transmigration and we investigated the mechanisms involved. To this purpose we used an in vitro system of co-cultured SMC and EC activated by sR and we analyzed monocyte transmigration. Our results indicated that: (1) sR enhanced monocyte transmigration in EC/SMC system compared to EC cultured alone; (2) sR activated TLR4 and Gi/o signaling in EC/SMC system and induced the secretion of more FKN and MCP-1 compared to EC cultured alone and used both chemokines to specifically recruit monocytes by CX3CR1 and CCR2 receptors. Moreover, FKN produced by resistin in EC/SMC system, by acting on CX3CR1 on EC/SMC specifically contributes to MCP-1 secretion in the system and to the enhanced monocyte transmigration. Our study indicates new possible targets for therapy to reduce resistin-dependent enhanced macrophage infiltration in the atherosclerotic arterial wall.
Collapse
Affiliation(s)
| | - Ana Maria Gan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Daniela Stan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
60
|
Isozaki T, Ruth JH, Amin MA, Campbell PL, Tsou PS, Ha CM, Haines GK, Edhayan G, Koch AE. Fucosyltransferase 1 mediates angiogenesis, cell adhesion and rheumatoid arthritis synovial tissue fibroblast proliferation. Arthritis Res Ther 2014; 16:R28. [PMID: 24467809 PMCID: PMC3978694 DOI: 10.1186/ar4456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/13/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION We previously reported that sialyl Lewis(y), synthesized by fucosyltransferases, is involved in angiogenesis. Fucosyltransferase 1 (fut1) is an α(1,2)-fucosyltransferase responsible for synthesis of the H blood group and Lewis(y) antigens. However, the angiogenic involvement of fut 1 in the pathogenesis of rheumatoid arthritis synovial tissue (RA ST) has not been clearly defined. METHODS Assay of α(1,2)-linked fucosylated proteins in RA was performed by enzyme-linked lectin assay. Fut1 expression was determined in RA ST samples by immunohistological staining. We performed angiogenic Matrigel assays using a co-culture system of human dermal microvascular endothelial cells (HMVECs) and fut1 small interfering RNA (siRNA) transfected RA synovial fibroblasts. To determine if fut1 played a role in leukocyte retention and cell proliferation in the RA synovium, myeloid THP-1 cell adhesion assays and fut1 siRNA transfected RA synovial fibroblast proliferation assays were performed. RESULTS Total α(1,2)-linked fucosylated proteins in RA ST were significantly higher compared to normal (NL) ST. Fut1 expression on RA ST lining cells positively correlated with ST inflammation. HMVECs from a co-culture system with fut1 siRNA transfected RA synovial fibroblasts exhibited decreased endothelial cell tube formation compared to control siRNA transfected RA synovial fibroblasts. Fut1 siRNA also inhibited myeloid THP-1 adhesion to RA synovial fibroblasts and RA synovial fibroblast proliferation. CONCLUSIONS These data show that α(1,2)-linked fucosylated proteins are upregulated in RA ST compared to NL ST. We also show that fut1 in RA synovial fibroblasts is important in angiogenesis, leukocyte-synovial fibroblast adhesion, and synovial fibroblast proliferation, all key processes in the pathogenesis of RA.
Collapse
Affiliation(s)
- Takeo Isozaki
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Currently Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Jeffrey H Ruth
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mohammad A Amin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Phillip L Campbell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Christine M Ha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Gautam Edhayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alisa E Koch
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- VA Medical Service, Department of Veterans Affairs Medical Center, Ann Arbor, MI 48108, USA
| |
Collapse
|
61
|
Umehara H, Tanaka M, Sawaki T, Jin ZX, Huang CR, Dong L, Kawanami T, Karasawa H, Masaki Y, Fukushima T, Hirose Y, Okazaki T. Fractalkine in rheumatoid arthritis and allied conditions. Mod Rheumatol 2014. [DOI: 10.3109/s10165-006-0471-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
62
|
Jones BA, Riegsecker S, Rahman A, Beamer M, Aboualaiwi W, Khuder SA, Ahmed S. Role of ADAM-17, p38 MAPK, cathepsins, and the proteasome pathway in the synthesis and shedding of fractalkine/CX₃ CL1 in rheumatoid arthritis. ACTA ACUST UNITED AC 2014; 65:2814-25. [PMID: 23897050 DOI: 10.1002/art.38095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate the mechanism of fractalkine (FKN)/CX3 CL1 synthesis and shedding in rheumatoid arthritis synovial fibroblasts (RASFs) and in rat adjuvant-induced arthritis (AIA). METHODS The effect of tumor necrosis factor α (TNFα) and/or interferon-γ (IFNγ) on FKN synthesis and shedding in human RASFs was determined over time by immunostaining, quantitative reverse transcription-polymerase chain reaction, and Western blotting. The role of protease enzymes and signaling pathways was evaluated using chemical inhibitors and small interfering RNA (siRNA). The activity of 20S proteasome in the lysates and the DNA binding of NF-κB/p65 in the nuclear fractions were evaluated. The in vivo relevance of these findings was examined in rat AIA. RESULTS In RASFs, stimulation with the combination of TNFα and IFNγ induced cellular expression of FKN within 24 hours. Activation of ADAM-17, but not ADAM-10, partly mediated the proteolytic shedding and release of soluble FKN (sFKN) following TNFα/IFNγ stimulation for 24-72 hours. Compared with control siRNA, ADAM-17 siRNA markedly inhibited TNFα/IFNγ-induced sFKN production (by ∼33%). TNFα/IFNγ-induced sFKN release was markedly suppressed by inhibitors of ADAM-17, p38 MAPK, proteasome, or cathepsin inhibitor but not by inhibitors of caspase 3 or calpain. TNFα/IFNγ-induced proteasome activity also correlated with rapid degradation of IκBα and p38 MAPK phosphorylation. In vivo findings showed increased FKN expression in the joints of rats with AIA, which correlated with increased expression of ADAM-17 and phospho-p38 MAPK. CONCLUSION Our results provide new understanding of the role of ADAM-17, p38 MAPK, cathepsins, and the proteasome pathway in FKN expression and shedding. Regulating these pathways may suppress FKN-mediated inflammation and tissue destruction.
Collapse
|
63
|
Zheng J, Yang M, Shao J, Miao Y, Han J, Du J. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer 2013; 12:141. [PMID: 24245985 PMCID: PMC4176124 DOI: 10.1186/1476-4598-12-141] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/11/2013] [Indexed: 11/16/2022] Open
Abstract
Background Macrophages, the key component of the tumor microenvironment, are differentiated mononuclear phagocyte lineage cells that are characterized by specific phenotypic characteristics that have been implicated in tumor growth, angiogenesis, and invasion. CX3CR1, the chemoattractant cytokine CX3CL1 receptor, plays an important role in modulating inflammatory responses, including monocyte homeostasis and macrophage phenotype and function. However, the role of CX3CR1 in the regulation of the tumor inflammatory microenvironment is not fully understood. Methods Using in vivo hepatic metastasis model, human colon carcinoma specimens, immunohistochemical staining, TUNEL staining, flow cytometry analysis, Western blotting assay and co-culture in three-dimensional peptide gel, we determined the effects of CX3CR1 on angiogenic macrophage survival and tumor metastasis. Results In this study, we found that CX3CR1 was expressed in human colon carcinomas in a histologic grade- and stage-dependent manner, and CX3CR1 upregulation in TAMs was correlated with poor prognosis. Furthermore, we showed that in a microenvironment lacking CX3CR1, the liver metastasis of colon cancer cells was significantly inhibited. The underlying mechanism is associated with decrease accumulation of angiogenic macrophages that can be partly attributed to increased apoptosis in the tumor microenvironment, thus leading to impaired tumor angiogenesis in the liver and suppressed tumor metastasis. Conclusions Our results suggest a role of CX3CR1 in angiogenic macrophage survival in the tumor microenvironment contributing to tumor metastasis.
Collapse
Affiliation(s)
- Jiao Zheng
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | | | |
Collapse
|
64
|
Isozaki T, Arbab AS, Haas CS, Amin MA, Arendt MD, Koch AE, Ruth JH. Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis : studies in mice with K/BxN serum-induced arthritis. ACTA ACUST UNITED AC 2013; 65:1736-46. [PMID: 23633118 DOI: 10.1002/art.37981] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/11/2013] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To examine the possibility that CXCL16 recruits endothelial cells (ECs) to developing neovasculature in rheumatoid arthritis (RA) synovium. METHODS We utilized the RA synovial tissue SCID mouse chimera system to examine human microvascular EC (HMVEC) and human endothelial progenitor cell (EPC) recruitment into engrafted human synovium that was injected intragraft with CXCL16-immunodepleted RA synovial fluid (SF). CXCR6-deficient and wild-type (WT) C57BL/6 mice were primed to develop K/BxN serum-induced arthritis and evaluated for angiogenesis. HMVECs and EPCs from human cord blood were also examined for CXCR6 expression, by immunofluorescence and assessment of CXCL16 signaling activity. RESULTS CXCR6 was prominently expressed on human EPCs and HMVECs, and its expression on HMVECs could be up-regulated by interleukin-1β. SCID mice injected with CXCL16-depleted RA SF exhibited a significant reduction in EPC recruitment. In experiments using the K/BxN serum-induced inflammatory arthritis model, CXCR6(-/-) mice showed profound reductions in hemoglobin levels, which correlated with reductions in monocyte and T cell recruitment to arthritic joint tissue compared to that observed in WT mice. Additionally, HMVECs and EPCs responded to CXCL16 stimulation, but exhibited unique signal transduction pathways and homing properties. CONCLUSION These results indicate that CXCL16 and its receptor CXCR6 may be a central ligand/receptor pair that is closely associated with EPC recruitment and blood vessel formation in the RA joint.
Collapse
Affiliation(s)
- Takeo Isozaki
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Zou Y, Li Y, Lu L, Lin Y, Liang W, Su Z, Wang X, Yang H, Wang J, Yu C, Huo L, Ye Y. Correlation of fractalkine concentrations in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Ann Clin Biochem 2013; 50:571-5. [PMID: 23869024 DOI: 10.1177/0004563213480494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Fractalkine has been detected in synovial fluid (SF) from osteoarthritis (OA) patients. This study aims to examine the relation of fractalkine concentrations in serum and SF with the radiographic severity of OA. METHODS Fractalkine concentrations of serum and SF were measured using an enzyme-linked immunosorbent assay method in 223 patients with knee OA and 165 healthy controls. The progression of OA was classified according to the Kellgren-Lawrence grading system. RESULTS Elevated concentrations of fractalkine in serum were found in knee OA patients compared with healthy controls [all results median (interquartile range) 226.25 (183.19-259.91) vs. 127.42 (99.54-154.98) pg/mL, P < 0.001]. The case group included 71 knee OA patients with grade 2, 98 with grade 3, and 54 with grade 4. Knee OA patients with KL grade 4 had significantly higher fractalkine concentrations in serum and SF compared with those with KL grade 2 and 3 [serum: 247.68 (215.05-278.64) vs. 212.45 (169.19-247.96) pg/mL, P < 0.001, and 247.68 (215.05-278.64) vs. 222.00 (179.80-254.98) pg/mL, P = 0.005, respectively; SF: 94.95 (76.46-106.68) vs. 74.31 (63.64-84.79) pg/mL, P < 0.001, and 94.95 (76.46-106.68) vs. 80.34 (68.84-96.39) pg/mL, P = 0.001, respectively]. Knee OA patients with KL grade 3 showed significantly elevated concentrations of fractalkine in SF compared with those with KL grade 2 [80.34 (68.84-96.39) vs. 74.31 (63.64-84.79) pg/mL, P = 0.004]. Fractalkine concentrations in serum and SF of knee OA patients were both significantly associated with the disease severity evaluated by KL grading criteria (r = 0.261, P < 0.001 and r = 0.366, P < 0.001, respectively). CONCLUSION The fractalkine concentrations in serum and SF may serve as an effective biomarker for the severity of OA.
Collapse
Affiliation(s)
- Yucong Zou
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Wang L, Sun Z, Liu L, Peng B. Expression of CX3CL1 and its receptor, CX3CR1, in the development of periapical lesions. Int Endod J 2013; 47:271-9. [PMID: 23829599 DOI: 10.1111/iej.12143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 05/26/2013] [Indexed: 01/09/2023]
Affiliation(s)
- L. Wang
- Department of Operative Dentistry and Endodontics; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Z. Sun
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - L. Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - B. Peng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
67
|
Maruotti N, Annese T, Cantatore FP, Ribatti D. Macrophages and angiogenesis in rheumatic diseases. Vasc Cell 2013; 5:11. [PMID: 23725043 PMCID: PMC3680215 DOI: 10.1186/2045-824x-5-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/26/2013] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis plays a key role in several rheumatic diseases, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic sclerosis, systemic lupus erythematosus, and vasculitides. An imbalance between angiogenic inducers and inhibitors seems to be a critical factor in pathogenesis of these diseases. Macrophages promote angiogenesis during rheumatoid arthritis. In addition, macrophages can produce a variety of pro-angiogenic factors that have been associated with the angiogenic response occurring during other rheumatic diseases. Lastly, macrophages could be a target in the treatment of rheumatoid arthritis and other rheumatic diseases. Nevertheless, further studies are needed to better elucidate the exact role of macrophage in angiogenesis in these diseases.
Collapse
Affiliation(s)
- Nicola Maruotti
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School- Ospedale “ D’Avanzo”, Foggia, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124, Bari, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia Medical School- Ospedale “ D’Avanzo”, Foggia, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Piazza Giulio Cesare, 11, Policlinico, 70124, Bari, Italy
| |
Collapse
|
68
|
Zaza G, Granata S, Rascio F, Pontrelli P, Dell'Oglio MP, Cox SN, Pertosa G, Grandaliano G, Lupo A. A specific immune transcriptomic profile discriminates chronic kidney disease patients in predialysis from hemodialyzed patients. BMC Med Genomics 2013; 6:17. [PMID: 23663527 PMCID: PMC3655909 DOI: 10.1186/1755-8794-6-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 05/07/2013] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) patients present a complex interaction between the innate and adaptive immune systems, in which immune activation (hypercytokinemia and acute-phase response) and immune suppression (impairment of response to infections and poor development of adaptive immunity) coexist. In this setting, circulating uremic toxins and microinflammation play a critical role. This condition, already present in the last stages of renal damage, seems to be enhanced by the contact of blood with bioincompatible extracorporeal hemodialysis (HD) devices. However, although largely described, the cellular machinery associated to the CKD- and HD-related immune-dysfunction is still poorly defined. Understanding the mechanisms behind this important complication may generate a perspective for improving patients outcome. METHODS To better recognize the biological bases of the CKD-related immune dysfunction and to identify differences between CKD patients in conservative (CKD) from those in HD treatment, we used an high-throughput strategy (microarray) combined with classical bio-molecular approaches. RESULTS Immune transcriptomic screening of peripheral blood mononuclear cells (1030 gene probe sets selected by Gene-Ontology) showed that 275 gene probe sets (corresponding to 213 genes) discriminated 9 CKD patients stage III-IV (mean±SD of eGFR: 32.27+/-14.7 ml/min) from 17 HD patients (p<0.0001, FDR=5%). Seventy-one genes were up- and 142 down-regulated in HD patients. Functional analysis revealed, then, close biological links among the selected genes with a pivotal role of PTX3, IL-15 (up-regulated in HD) and HLA-G (down-regulated in HD). ELISA, performed on an independent testing-group [11 CKD stage III-IV (mean±SD of eGFR: 30.26±14.89 ml/min) and 13 HD] confirmed that HLA-G, a protein with inhibition effects on several immunological cell lines including natural killers (NK), was down-expressed in HD (p=0.04). Additionally, in the testing-group, protein levels of CX3CR1, an highly selective chemokine receptor and surface marker for cytotoxic effector lymphocytes, resulted higher expressed in HD compared to CKD (p<0.01). CONCLUSION Taken together our results show, for the first time, that HD patients present a different immune-pattern compared to the un-dialyzed CKD patients. Among the selected genes, some of them encode for important biological elements involved in proliferation/activation of cytotoxic effector lymphocytes and in the immune-inflammatory cellular machinery. Additionally, this study reveals new potential diagnostic bio-markers and therapeutic targets.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A, Stefani 1, Verona 37126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
In vivo regulation of chemokine activity by post-translational modification. Immunol Cell Biol 2013; 91:402-7. [PMID: 23628804 DOI: 10.1038/icb.2013.16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/18/2023]
Abstract
Cytokines and chemokines represent two important groups of proteins that control the immune system. Dysregulation of the network in which these immunomodulators function can result in uncontrolled inflammation leading to various diseases, including rheumatoid arthritis, characterized by chronic inflammation and bone erosion. Chemokine activity is regulated at multiple levels, such as post-translational modification (PTM) of chemokines and their receptors by specific enzymes including proteases and peptidylarginine deiminases. Many in vitro experiments underscore the importance of post-translational processing of human chemokines. PTMs may enhance or reduce chemokine activity or may alter the receptor specificity of chemokine ligands. However, identification of chemokine isoforms in physiological in vivo settings forms the ultimate proof that PTM of chemokines is relevant in regulating the biological activity of these molecules. This review summarizes current knowledge on the in vivo role for PTMs in the regulation of chemokine activity.
Collapse
|
70
|
Isozaki T, Rabquer BJ, Ruth JH, Haines GK, Koch AE. ADAM-10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. ACTA ACUST UNITED AC 2013; 65:98-108. [PMID: 23124962 DOI: 10.1002/art.37755] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 10/11/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To examine the expression of ADAM-10 in rheumatoid arthritis (RA) synovial tissue (ST) and the role it plays in angiogenesis. METHODS ADAM-10 expression was determined using immunohistology, Western blotting, and quantitative polymerase chain reaction. In order to examine the role of ADAM-10 in angiogenesis, we performed in vitro Matrigel tube formation and chemotaxis assays using human microvascular endothelial cells (HMVECs) transfected with control or ADAM-10 small interfering RNA (siRNA). To determine whether ADAM-10 plays a role in angiogenesis in the context of RA, we performed Matrigel assays using a coculture system of HMVECs and RA synovial fibroblasts. RESULTS Endothelial cells and lining cells within RA ST expressed high levels of ADAM-10 compared with cells within osteoarthritis ST and normal ST. ADAM-10 expression was significantly elevated at the protein and messenger RNA levels in HMVECs and RA synovial fibroblasts stimulated with proinflammatory mediators compared with unstimulated cells. ADAM-10 siRNA-treated HMVECs had decreased endothelial cell tube formation and migration compared with control siRNA-treated HMVECs. In addition, ADAM-10 siRNA-treated HMVECs from the RA synovial fibroblast coculture system had decreased endothelial cell tube formation compared with control siRNA-treated HMVECs. CONCLUSION These data show that ADAM-10 is overexpressed in RA and suggest that ADAM-10 may play a role in RA angiogenesis. ADAM-10 may be a potential therapeutic target in inflammatory angiogenic diseases such as RA.
Collapse
Affiliation(s)
- Takeo Isozaki
- University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
71
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S. Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 63:2884-93. [PMID: 21647866 DOI: 10.1002/art.30493] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterize the expression of interleukin-7 (IL-7) and IL-7 receptor (IL-7R) in rheumatoid arthritis (RA) synovial tissue and to examine their regulation and pathogenic role in macrophages, endothelial cells, and synovial tissue fibroblasts in RA. METHODS Expression of IL-7 and IL-7R in RA and normal synovial tissue was demonstrated by immunohistochemistry. Expression and regulation of IL-7 and IL-7R in RA peripheral blood in vitro-differentiated macrophages, RA synovial tissue fibroblasts, and human microvascular endothelial cells (HMVECs) were determined by real-time reverse transcription-polymerase chain reaction and/or flow cytometry. Enzyme-linked immunosorbent assay was used to examine production of proangiogenic factors by IL-7-activated macrophages, RA fibroblasts, and endothelial cells. RESULTS IL-7 and IL-7R were coexpressed on RA synovial tissue lining and sublining macrophages and endothelial cells. Expression of IL-7 and its receptor was significantly elevated in RA synovial fluid and peripheral blood macrophages as well as RA fibroblasts, compared to normal cells. Toll-like receptor 4 ligation (with lipopolysaccharide) and tumor necrosis factor α (TNFα) stimulation modulated expression of IL-7 and IL-7R on RA macrophages and HMVECs. However, in RA fibroblasts, lipopolysaccharide and TNFα activation increased expression of IL-7R only. IL-7 also mediated RA pathogenesis by inducing production of potent proangiogenic factors from macrophages and endothelial cells. CONCLUSION We have identified, for the first time, regulators of IL-7 and IL-7R expression in RA fibroblasts, RA peripheral blood in vitro-differentiated macrophages, and endothelial cells. Our results document a novel role of IL-7 in RA angiogenesis.
Collapse
Affiliation(s)
- Sarah R Pickens
- University of Illinois at Chicago, Department of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Uchida M, Ito T, Nakamura T, Igarashi H, Oono T, Fujimori N, Kawabe K, Suzuki K, Jensen RT, Takayanagi R. ERK pathway and sheddases play an essential role in ethanol-induced CX3CL1 release in pancreatic stellate cells. J Transl Med 2013; 93:41-53. [PMID: 23147224 DOI: 10.1038/labinvest.2012.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The clinical course of chronic pancreatitis (CP) worsens with drinking, and pancreatic stellate cells (PSCs) have an important role in the pathogenesis of alcoholic CP. Chemokines recruit inflammatory cells, resulting in chronic pancreatic inflammation. Although serum levels of fractalkine (CX3CL1) are significantly elevated in patients with alcoholic CP, the mechanism of this elevation remains unclear. This study aims to determine the effects of cytokines, pathogen-associated molecular patterns (PAMPs), and ethanol and its metabolites on CX3CL1 secretion by PSCs. Male Wistar/Bonn Kobori (WBN/Kob) rats aged 15 to 20 weeks were used as rodent models of CP in vivo. PSCs were isolated from 6-week-old male Wistar rats. The effects of cytokines, PAMPs, and ethanol and its metabolites on chemokine production and activation of signaling pathways in PSCs in vitro were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and enzyme-linked immunosorbent assay. Expression of CX3CL1 and matrix metalloprotease (MMP)-2 was increased in the pancreas of WBN/Kob rats. The rat PSCs expressed CX3CL1, MMP-2, and a disintegrin and metalloprotease domain (ADAM) 17. Cytokines and PAMPs induced CX3CL1 release and activated extracellular signal-regulated kinase (ERK), MMP-9, and ADAM17. CX3CL1 release was suppressed by specific inhibitors of ERK, MMP, and ADAM, and ERK was associated with CX3CL1 transcription. Ethanol and phorbol myristate acetate synergistically increased CX3CL1 release. Real-time PCR and western blotting confirmed the synergistic activation of ERK and ADAM17. Ethanol synergistically increased CX3CL1 release via ERK and ADAM17 activation in PSCs. In conclusion, we demonstrated for the first time that ethanol synergistically increased CX3CL1 release from PSCs at least in part through activation of ERK mitogen-activated protein kinase and ADAM17. This might be one of the mechanisms of serum CX3CL1 elevation and disease progression in patients with alcoholic CP.
Collapse
Affiliation(s)
- Masahiko Uchida
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Lee HW, Choi HJ, Ha SJ, Lee KT, Kwon YG. Recruitment of monocytes/macrophages in different tumor microenvironments. Biochim Biophys Acta Rev Cancer 2012; 1835:170-9. [PMID: 23287570 DOI: 10.1016/j.bbcan.2012.12.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/21/2023]
Abstract
After emigration from the bone marrow into the peripheral blood, monocytes enter tissues and differentiate into macrophages. Monocytes/macrophages have many roles in immune regulation, angiogenesis, and tumor metastasis and invasion. In addition, studies have revealed that these cells are essential to tumor progression. Recently, an accumulation of evidence has indicated that macrophages in distinct regions of tumor masses have distinct origins. For instance, classical monocytes appear to be a major source of macrophages in tumor epithelial, perivascular, and hypoxic regions. In contrast, non-classical monocytes are an important source of macrophages in the tumor perivascular region. During the past century, it has been demonstrated that several chemoattractants can regulate the recruitment of monocytes/macrophages to tumor sites. Despite the importance of monocytes/macrophages in tumor progression, there had been, until recently, no efforts to summarize receptor-ligand pairs between tumor-derived chemokines and corresponding receptors in monocytes in different microenvironments. In this review, we present a cohesive view of the distinct expression patterns of chemokine receptors in two different monocyte subsets (classical and non-classical monocytes) and describe their roles in monocyte/macrophage recruitment into distinct tumor microenvironments. This review provides insight into the behavior of monocytes/macrophages in different tumor microenvironments.
Collapse
Affiliation(s)
- Heon-Woo Lee
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
74
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Talarico NE, Mandelin AM, Shahrara S. Role of the CCL21 and CCR7 pathways in rheumatoid arthritis angiogenesis. ACTA ACUST UNITED AC 2012; 64:2471-81. [PMID: 22392503 DOI: 10.1002/art.34452] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To determine the role of CCL21 and its receptor CCR7 in the pathogenesis of rheumatoid arthritis (RA). METHODS Histologic studies were performed to compare the expression of CCR7 and CCL21 in RA synovial tissue. Next, the role of CCL21 and/or CCR7 in angiogenesis was examined using in vitro chemotaxis, tube formation, and in vivo Matrigel plug assays. Finally, the mechanism by which CCL21 mediates angiogenesis was determined by Western blot analysis and endothelial cell chemotaxis and tube formation assays. RESULTS CCL21, but not CCL19, at concentrations present in the RA joint, induced human microvascular endothelial cell (HMVEC) migration that was mediated through CCR7 ligation. Suppression of the phosphatidylinositol 3-kinase pathway markedly reduced CCL21-induced HMVEC chemotaxis and tube formation; however, suppression of the ERK and JNK pathways had no effect on these processes. Neutralization of either CCL21 in RA synovial fluid or CCR7 in HMVECs significantly reduced the induction of HMVEC migration and/or tube formation by RA synovial fluid. We further demonstrated that CCL21 is angiogenic, by showing its ability to promote blood vessel growth in Matrigel plugs in vivo at concentrations that are present in RA joints. CONCLUSION Angiogenesis is dependent on endothelial cell activation, migration, and proliferation, and inhibition of angiogenesis may provide a novel therapeutic approach in RA. This study identified a novel function of CCL21 as a mediator of RA angiogenesis, supporting CCL21/CCR7 as a therapeutic target in RA.
Collapse
|
75
|
Denoyer A, Godefroy D, Célérier I, Frugier J, Riancho L, Baudouin F, Rostène W, Baudouin C. CX3CL1 expression in the conjunctiva is involved in immune cell trafficking during toxic ocular surface inflammation. Mucosal Immunol 2012; 5:702-11. [PMID: 22692452 DOI: 10.1038/mi.2012.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inappropriate expression of the chemokine CX3CL1 is reportedly known to act on inflammatory conditions in extraocular immune diseases. We studied the expression and effects of CX3CL1 in human patients, cultured human conjunctival cells, and transgenic mice exposed to benzalkonium chloride (BAC), a commonly used preservative in ophthalmic medications despite its proinflammatory properties, to determine whether CX3CL1 is involved in conjunctival inflammation. We report that CX3CL1 expression is increased in the conjunctiva of patients receiving BAC-containing medication, and correlates with clinical inflammation. BAC enhances the production of CX3CL1 in a conjunctival epithelial cell line, through the tumor-necrosis factor-α pathway, which attracts specific leukocyte subsets. In vivo, BAC-induced macrophage infiltration and subsequent inflammation of the conjunctiva is decreased in CX3CR1-deficient mice as compared with CX3CR1(+/+) controls. This translational study opens new avenue to investigate ocular surface disorders by focusing on chemokine-related inflammation and immune cell trafficking in the ocular conjunctival mucosa.
Collapse
Affiliation(s)
- A Denoyer
- UPMC University Paris 6, Institut de la Vision, UMRS968, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Arai M, Ikawa Y, Chujo S, Hamaguchi Y, Ishida W, Shirasaki F, Hasegawa M, Mukaida N, Fujimoto M, Takehara K. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J Dermatol Sci 2012; 69:250-8. [PMID: 23142052 DOI: 10.1016/j.jdermsci.2012.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/02/2012] [Accepted: 10/17/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin fibrotic disorders such as systemic sclerosis (SSc) are characterized by an excessive accumulation of extracellular matrix (ECM), and develop under the influence of certain cytokines. We previously established a mouse model of skin fibrosis induced by exogenous application of cytokines. We have revealed that both the number of macrophages and the levels of macrophage chemoattractant protein-1 (MCP-1) mRNA positively correlate with the extent of skin fibrosis. Macrophages can be divided into two subsets, the first expressing CCR2, and the second expressing CX3CR1. OBJECTIVE To elucidate the role of skin infiltrating macrophages based on CCR2 and CX3CR1 in this cytokine-induced murine fibrosis model. METHODS We examined the amounts of collagen deposited in granulation tissues, the numbers of macrophages and the levels of several mRNA in wild type (WT) mice, CCR2(-/-) mice, and CX3CR1(-/-) mice during injections of transforming growth factor-β (TGF-β) followed by injections of connective tissue growth factor (CTGF). RESULTS TGF-β injection increased the expressions of MCP-1, fractalkine, CCR2 and CX3CR1 mRNA in WT mice. The overproduction of collagen induced by TGF-β was significantly reduced by CCR2 deficiency, while collagen contents induced by CTGF were restored to wild-type levels. In contrast, overproduction of collagen in CX3CR1-deficient mice decreased nearly 50% by both TGF-β and CTGF stimulations. CONCLUSION The involvement of CCR2/MCP-1 interaction (CCR2-dependent loop) was during the TGF-β phase. In contrast, the fractalkine/CX3CR1 interaction contributes to the initiation of fibrosis by TGF-β and its maintenance by CTGF. Collectively, two subsets of macrophages both cooperatively and independently play important roles in the development of fibrosis.
Collapse
Affiliation(s)
- Minako Arai
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhang J, Yang W, Luo B, Hu B, Maheshwari A, Fallon MB. The role of CX₃CL1/CX₃CR1 in pulmonary angiogenesis and intravascular monocyte accumulation in rat experimental hepatopulmonary syndrome. J Hepatol 2012; 57:752-8. [PMID: 22659346 PMCID: PMC3667409 DOI: 10.1016/j.jhep.2012.05.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatopulmonary syndrome (HPS), classically attributed to intrapulmonary vascular dilatation, occurs in 15-30% of cirrhotics and causes hypoxemia and increases mortality. In experimental HPS after common bile duct ligation (CBDL), monocytes adhere in the lung vasculature and produce vascular endothelial growth factor (VEGF)-A and angiogenesis ensues and contribute to abnormal gas exchange. However, the mechanisms for these events are unknown. The chemokine fractalkine (CX(3)CL1) can directly mediate monocyte adhesion and activate VEGF-A and angiogenesis via its receptor CX(3)CR1 on monocytes and endothelium during inflammatory angiogenesis. We explored whether pulmonary CX(3)CL1/CX(3)CR1 alterations occur after CBDL and influence pulmonary angiogenesis and HPS. METHODS Pulmonary CX(3)CL1/CX(3)CR1 expression and localization, CX(3)CL1 signaling pathway activation, monocyte accumulation, and development of angiogenesis and HPS were assessed in 2- and 4-week CBDL animals. The effects of a neutralizing antibody to CX(3)CR1 (anti-CX(3)CR1 Ab) on HPS after CBDL were evaluated. RESULTS Circulating CX(3)CL1 levels and lung expression of CX(3)CL1 and CX(3)CR1 in intravascular monocytes and microvascular endothelium increased in 2- and 4-week CBDL animals as HPS developed. These events were accompanied by pulmonary angiogenesis, monocyte accumulation, activation of CX(3)CL1 mediated signaling pathways (Akt, ERK) and increased VEGF-A expression and signaling. Anti-CX(3)CR1 Ab treatment reduced monocyte accumulation, decreased lung angiogenesis and improved HPS. These events were accompanied by inhibition of CX(3)CL1 signaling pathways and a reduction in VEGF-A expression and signaling. CONCLUSIONS Circulating CX(3)CL1 levels and pulmonary CX(3)CL1/CX(3)CR1 expression and signaling increase after CBDL and contribute to pulmonary intravascular monocyte accumulation, angiogenesis and development of experimental HPS.
Collapse
Affiliation(s)
- Junlan Zhang
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston
| | - Wenli Yang
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston
| | - Bao Luo
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston
| | - Bingqian Hu
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston
| | | | - Michael B. Fallon
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston
| |
Collapse
|
78
|
Tarrant TK, Liu P, Rampersad RR, Esserman D, Rothlein LR, Timoshchenko RG, McGinnis MW, Fitzhugh DJ, Patel DD, Fong AM. Decreased Th17 and antigen-specific humoral responses in CX₃ CR1-deficient mice in the collagen-induced arthritis model. ACTA ACUST UNITED AC 2012; 64:1379-87. [PMID: 22144035 DOI: 10.1002/art.34320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE CX(3) CR1 is a chemokine receptor that uniquely binds to its ligand fractalkine (CX(3) CL1) and has been shown to be important in inflammatory arthritis responses, largely due to its effects on cellular migration. This study was undertaken to test the hypothesis that genetic deficiency of CX(3) CR1 is protective in the chronic inflammatory arthritis model collagen-induced arthritis (CIA). Because CX(3) CR1 is expressed on T cells and antigen-presenting cells, we also examined adaptive immune functions in this model. METHODS Autoantibody formation, clinical, histologic, T cell proliferative, and cytokine responses were evaluated in wild-type and CX(3) CR1-deficient DBA/1J mice after immunization with heterologous type II collagen (CII). RESULTS CX(3) CR1(-/-) mice had an ∼30% reduction in arthritis severity compared to wild-type mice, as determined by 2 independent measures, paw swelling (P < 0.01) and clinical disease score (P < 0.0001). Additionally, compared to wild-type mice, CX(3) CR1(-/-) mice had an ∼50% decrease in anti-CII autoantibody formation (P < 0.05), decreased Th17 intraarticular cytokine expression (P < 0.01 for interleukin-17 [IL-17] and P < 0.001 for IL-23), and decreased total numbers of Th17 cells in inflamed joints (P < 0.05). CONCLUSION Our findings indicate that CX(3) CR1 deficiency is protective in inflammatory arthritis and may have effects that extend beyond migration that involve adaptive immune responses in autoimmune disease.
Collapse
Affiliation(s)
- Teresa K Tarrant
- Department of Medicine, University of North Carolina at Chapel Hill, CB 7280, 3300 Manning Drive, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Venkatesha SH, Astry B, Nanjundaiah SM, Yu H, Moudgil KD. Suppression of autoimmune arthritis by Celastrus-derived Celastrol through modulation of pro-inflammatory chemokines. Bioorg Med Chem 2012; 20:5229-34. [PMID: 22854193 DOI: 10.1016/j.bmc.2012.06.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/21/2012] [Accepted: 06/28/2012] [Indexed: 12/28/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the synovial joints, deformities, and disability. The prolonged use of conventional anti-inflammatory drugs is associated with severe adverse effects. Therefore, there is an urgent need for safer and less expensive therapeutic products. Celastrol is a bioactive component of Celastrus, a traditional Chinese medicine, and it possesses anti-arthritic activity. However, the mechanism of action of Celastrol remains to be fully defined. In this study based on the rat adjuvant-induced arthritis (AA) model of RA, we examined the effect of Celastrol on two of the key mediators of arthritic inflammation, namely chemokines and their receptors, and related pro-inflammatory cytokines. We treated arthritic Lewis rats with Celastrol (200μg/rat) or its vehicle by daily intraperitoneal (ip) injection beginning at the onset of AA. At the peak phase of AA, the sera, the draining lymph node cells, spleen adherent cells, and synovial-infiltrating cells of these rats were harvested and tested. Celastrol-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC) as well as cytokines (TNF-α and IL-1β) that induce them, compared to the vehicle-treated rats. However, Celastrol did not have much effect on cellular expression of chemokine receptors except for an increase in CCR1. Further, Celastrol inhibited the migration of spleen adherent cells in vitro. Thus, Celastrol-induced suppression of various chemokines that mediate cellular infiltration into the joints might contribute to its anti-arthritic activity. Our results suggest that Celastrol might offer a promising alternative/adjunct treatment for RA.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite-380, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
80
|
Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, Mandelin AM, Shahrara S. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. THE JOURNAL OF IMMUNOLOGY 2012; 189:475-83. [PMID: 22661088 DOI: 10.4049/jimmunol.1102977] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The innate immune system plays an important role in rheumatoid arthritis (RA) pathogenesis. Previous studies support the role of TLR2 and 4 in RA and experimental arthritis models; however, the regulation and pathogenic effect of TLR5 is undefined in RA. In this study, we show that TLR5 is elevated in RA and osteoarthritis ST lining and sublining macrophages and endothelial cells compared with normal individuals. Furthermore, expression of TLR5 is elevated in RA synovial fluid macrophages and RA peripheral blood monocytes compared with RA and normal peripheral blood in vitro-differentiated macrophages. We also found that TLR5 on RA monocytes is an important modulator of TNF-α in RA synovial fluid and that TLR5 expression on these cells strongly correlates with RA disease activity and TNF-α levels. Interestingly, TNF-α has a feedback regulation with TLR5 expression in RA monocytes, whereas expression of this receptor is regulated by IL-17 and IL-8 in RA macrophages and fibroblasts. We show that RA monocytes and macrophages are more responsive to TLR5 ligation compared with fibroblasts despite the proinflammatory response being mediated through the same signaling pathways in macrophages and fibroblasts. In conclusion, we document the potential role of TLR5 ligation in modulating transcription of TNF-α from RA synovial fluid and the strong correlation of TLR5 and TNF-α with each other and with disease activity score in RA monocytes. Our results suggest that expression of TLR5 may be a predictor for RA disease progression and that targeting TLR5 may suppress RA.
Collapse
Affiliation(s)
- Nathan D Chamberlain
- Division of Rheumatology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Correlation of serum CX3CL1 level with disease activity in adult-onset Still's disease and significant involvement in hemophagocytic syndrome. Clin Rheumatol 2012; 31:853-60. [DOI: 10.1007/s10067-012-1952-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/03/2011] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
|
82
|
Jones B, Koch AE, Ahmed S. Pathological role of fractalkine/CX3CL1 in rheumatic diseases: a unique chemokine with multiple functions. Front Immunol 2012; 2:82. [PMID: 22566871 PMCID: PMC3341950 DOI: 10.3389/fimmu.2011.00082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/06/2011] [Indexed: 12/27/2022] Open
Abstract
Understanding rheumatic diseases from the perspective of chemokine biology has shaped and will continue to shape our approach for targeted drug design. Among different kinds of chemokines, fractalkine/CX3CL1 has been found to play an important role in inflammation, portraying unique functional, and structural characteristics. This review summarizes the emerging role of fractalkine/CX3CL1 from a functional and clinical perspective and provides evidence to validate it as a potential therapeutic target in rheumatic diseases such as rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, scleroderma, as well as diseases related to vascular inflammation. From this, recent studies investigating potential therapeutic agents against fractalkine/CX3CL1's role in pathology have shown promise.
Collapse
Affiliation(s)
- Brian Jones
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Toledo, OH, USA
| | | | | |
Collapse
|
83
|
Resistin and High Glucose Concentrations-Activation of Human Smooth Muscle Cells Induces Enhanced Monocyte Chemotaxis. ROMANIAN JOURNAL OF DIABETES NUTRITION AND METABOLIC DISEASES 2012. [DOI: 10.2478/v10255-012-0003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resistin and High Glucose Concentrations-Activation of Human Smooth Muscle Cells Induces Enhanced Monocyte ChemotaxisObjectives. Recent data indicate that upon activation by resistin and high glucose concentrations (HG) vascular smooth muscle cells (SMC) acquire pro-inflammatory properties. We questioned whether resistin and HG-activated SMC generate an enhanced monocytes chemotaxis and if the chemokine fractalkine (Fk) is involved in the process. Material and Methods: SMC were incubated with resistin or/and HG and the conditioned medium was used for monocytes chemotaxis assays. The role of Fk was assessed by blocking the Fk receptor, CX3CR1, on monocytes (U937 cell lines) prior to the chemotaxis assay. The quantification of migrated monocytes was assayed under an inverted microscope and statistically analyzed. Results: (i) conditioned medium (CM) collected from SMC incubated with resistin in the presence or absence of HG triggered a significant increase (25 - 100 %) of monocytes chemotaxis as compared to controls; (ii) blocking the CX3CR1 receptor significantly decreased the monocyte chemotaxis towards resistin-treated SMC. Conclusions: Resistin±HG increases the expression of chemotaxis inductors in human SMC and the ensuing monocytes chemotaxis by a mechanism in which Fk plays a major role.
Collapse
|
84
|
Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. ACTA ACUST UNITED AC 2011; 64:2038-47. [PMID: 22213084 DOI: 10.1002/art.34351] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The induction of rheumatoid arthritis (RA) by active and passive immunization of mice results in the development of pain at the same time as the swelling and inflammation, with both peripheral and central sensitization contributing to joint pain. The purpose of this study was to examine the development of pain in the rat model of collagen-induced arthritis (CIA) and to evaluate the contribution of neuroimmune interactions to established arthritis pain. METHODS Mechanical hypersensitivity was assessed in female Lewis rats before and up to 18 days after induction of CIA by immunization with type II collagen. The effect of selective inhibitors of microglia were then evaluated by prolonged intrathecal delivery of a cathepsin S (CatS) inhibitor and a fractalkine (FKN) neutralizing antibody, from day 11 to day 18 following immunization. RESULTS Rats with CIA developed significant mechanical hypersensitivity, which started on day 9, before the onset of clinical signs of arthritis. Mechanical hypersensitivity peaked with the severity of the disease, when significant microglial and astrocytic responses, alongside T cell infiltration, were observed in the spinal cord. Intrathecal delivery of microglial inhibitors, a CatS inhibitor, or an FKN neutralizing antibody attenuated mechanical hypersensitivity and spinal microglial response in rats with CIA. CONCLUSION The inhibition of microglial targets by centrally penetrant CatS inhibitors and CX(3) CR1 receptor antagonists represents a potential therapeutic avenue for the treatment of pain in RA.
Collapse
|
85
|
Pickens SR, Chamberlain ND, Volin MV, Mandelin AM, Agrawal H, Matsui M, Yoshimoto T, Shahrara S. Local expression of interleukin-27 ameliorates collagen-induced arthritis. ACTA ACUST UNITED AC 2011; 63:2289-98. [PMID: 21384333 DOI: 10.1002/art.30324] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To determine the mechanism of action of interleukin-27 (IL-27) against rheumatoid arthritis (RA). METHODS Adenovirus containing IL-27 transcript was constructed and was locally delivered into the ankles of mice with collagen-induced arthritis (CIA). Progression of arthritis was determined in treated and untreated mice by measuring ankle circumference and through histologic analysis. IL-17 and its downstream targets as well as cytokines promoting Th17 cell differentiation were quantified by enzyme-linked immunosorbent assay in CIA mouse ankles locally expressing adenoviral IL-27 as well as in control-treated mouse ankles. Ankles from both treatment groups were immunostained for neutrophil and monocyte migration (macrophages in the tissue). Finally, vascularization was quantified by histology and by determining ankle hemoglobin levels. RESULTS Ectopic expression of IL-27 in CIA mice ameliorated inflammation, lining hypertrophy, and bone erosion as compared with control-treated CIA mice. Serum and joint levels of IL-17 were significantly reduced in the IL-27-treated group compared with the control-treated group. Two of the main cytokines that induce Th17 cell differentiation and IL-17 downstream target molecules were greatly down-regulated in CIA mouse ankles receiving forced expression of IL-27. The control mice had higher levels of vascularization and monocyte trafficking than did mice ectopically expressing IL-27. CONCLUSION Our results suggest that increased levels of IL-27 relieve arthritis in CIA mouse ankles. This amelioration of arthritis involves a reduction in CIA mouse serum and joint levels of IL-17 and results in decreased IL-17-mediated monocyte recruitment and angiogenesis. Hence, the use of IL-27 may be a strategy for treatment of patients with RA.
Collapse
Affiliation(s)
- Sarah R Pickens
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Anti-CXCL5 therapy ameliorates IL-17-induced arthritis by decreasing joint vascularization. Angiogenesis 2011; 14:443-55. [PMID: 21779896 DOI: 10.1007/s10456-011-9227-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
IL-17-induced joint inflammation is associated with increased angiogenesis. However, the mechanism by which IL-17 mediates angiogenesis is undefined. Therefore, the pathologic role of CXCL1 and CXCL5 was investigated in arthritis mediated by local expression of IL-17, employing a neutralizing antibody to each chemokine. Next, endothelial chemotaxis was utilized to examine whether endothelial migration was differentially mediated by CXCL1 and CXCL5. Our results demonstrate that IL-17-mediated disease activity was not affected by anti-CXCL1 treatment alone. In contrast, mice receiving anti-CXCL5 demonstrated significantly reduced clinical signs of arthritis, compared to the mice treated with IgG control. Consistently, while inflammation, synovial lining thickness, bone erosion and vascularization were markedly reduced in both the anti-CXCL5 and combination anti-CXCL1 and 5 treatment groups, mice receiving anti-CXCL1 antibody had clinical scores similar to the control group. In contrast to joint FGF2 and VEGF levels, TNF-α was significantly reduced in mice receiving anti-CXCL5 or combination of anti-CXCL1 and 5 therapies compared to the control group. We found that, like IL-17, CXCL1-induced endothelial migration is mediated through activation of PI3K. In contrast, activation of NF-κB pathway was essential for endothelial chemotaxis induced by CXCL5. Although CXCL1 and CXCL5 can differentially mediate endothelial trafficking, blockade of CXCR2 can inhibit endothelial chemotaxis mediated by either of these chemokines. These results suggest that blockade of CXCL5 can modulate IL-17-induced inflammation in part by reducing joint blood vessel formation through a non-overlapping IL-17 mechanism.
Collapse
|
87
|
Leonov A, Trofimov S, Ermakov S, Livshits G. Quantitative genetic study of amphiregulin and fractalkine circulating levels--potential markers of arthropathies. Osteoarthritis Cartilage 2011; 19:737-42. [PMID: 21356322 DOI: 10.1016/j.joca.2011.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Amphiregulin (AREG) and Fractalkine (FRACT), are involved in a variety of normal and pathological processes, and are both suggested to be relevant to joint degeneration. The aims of the present study included (1) testing association between circulating levels of these biomarkers and joint pathologies, (2) evaluation of the putative genetic and familial factors' effect on AREG and FRACT variability. DESIGN The study was conducted in the family-based sample of 923 Caucasian individuals. Variance component analysis was used to assess contribution of genetic and environmental factors to variability of AREG and FRACT concentration. RESULTS The mean levels of FRACT were significantly higher in the affected group with arthropathies (synovial joints osteoarthritis (OA) and disc degenerative disease, DDD) then in the control group (P<0.0004). Circulating AREG levels were higher in DDD (P=0.0272). Genetic factors constituted the main source of the interindividual differences of the AREG and FRACT levels in our sample, and explained 29.68% and 41.68% of the total variation, respectively. The phenotypic correlation between AREG and FRACT was substantial (r=0.55, P=0.0001) and was associated with both common genetic and environmental factors. Specifically, 30% of the phenotypic correlation between AREG and FRACT was due to common genetic effects. CONCLUSIONS Further studies are required to assess relevancy of FRACT to clinical diagnosis and prognosis of arthropathies, to investigate the mechanisms behind the observed phenotypic and genetic covariation among the studied biomarkers, and to explore specific genetic polymorphisms affecting AREG and FRACT variation.
Collapse
Affiliation(s)
- A Leonov
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
88
|
Pickens SR, Chamberlain ND, Volin MV, Pope RM, Mandelin AM, Shahrara S. Characterization of CCL19 and CCL21 in rheumatoid arthritis. ACTA ACUST UNITED AC 2011; 63:914-22. [PMID: 21225692 DOI: 10.1002/art.30232] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To characterize the expression of CCL19 and CCL21 in rheumatoid arthritis (RA) synovial tissue (ST) and to examine their regulation and pathogenetic role in macrophages and RA ST fibroblasts. METHODS Expression of CCL19 and CCL21 in RA and normal ST was demonstrated by immunohistochemistry analysis. CCL19 and CCL21 levels in synovial fluid (SF) from patients with osteoarthritis (OA), juvenile idiopathic arthritis, psoriatic arthritis (PsA), and RA were quantified by enzyme-linked immunosorbent assay (ELISA). Regulation of CCL19 and CCL21 expression in in vitro-differentiated RA peripheral blood macrophages as well as RA ST fibroblasts was determined by real-time reverse transcription-polymerase chain reaction. Proangiogenic factor production in CCL19- and CCL21-activated in vitro-differentiated peripheral blood macrophages and RA ST fibroblasts was examined by ELISA. RESULTS CCL19 and CCL21 were elevated in RA ST compared to tissue from normal controls. Levels of CCL19 and CCL21 were greatly increased in RA and PsA SF versus OA SF. In RA macrophages and fibroblasts, expression of CCL19 was increased by stimulation with lipopolysaccharide, tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β). However, CCL21 expression was modulated only by IL-1β in RA fibroblasts, and by TNFα and RA SF in RA macrophages. CCL19 and CCL21 activation induced vascular endothelial growth factor and angiotensin I (Ang I) production in RA ST fibroblasts and secretion of IL-8 and Ang I from macrophages. CONCLUSION The findings of the present study identify, for the first time, regulators of CCL19 and CCL21 in RA fibroblasts and in vitro-differentiated RA peripheral blood macrophages and demonstrate a novel role of CCL19/CCL21 in angiogenesis in RA.
Collapse
Affiliation(s)
- Sarah R Pickens
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
89
|
Acree SC, Pullarkat ST, Quismorio FP, Mian SR, Brynes RK. Adult Leukemic Synovitis Is Associated With Leukemia of Monocytic Differentiation. J Clin Rheumatol 2011; 17:130-4. [DOI: 10.1097/rhu.0b013e318214befe] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Park H, Cox D. Syk regulates multiple signaling pathways leading to CX3CL1 chemotaxis in macrophages. J Biol Chem 2011; 286:14762-9. [PMID: 21388954 DOI: 10.1074/jbc.m110.185181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have clearly established the importance of the interaction between macrophages and CX3CL1 in the progression of disease. A previous study demonstrated that Syk was required for CX3CL1-mediated actin polymerization and chemotaxis. Here, we delineated the signaling cascade of Syk-mediated cell migration in response to CX3CL1. Inhibition of Syk in bone marrow-derived macrophages or reduction of Syk expression using siRNA in RAW/LR5 cells indicated that Syk was required for the activation of PI3K, Cdc42, and Rac1. Also, reduction in WASP or WAVE2 levels, common downstream effectors of Cdc42 or Rac1, resulted in impaired cell migration to CX3CL1. Syk indirectly regulated WASP tyrosine phosphorylation through Cdc42 activation. Altogether, our data identify that Syk mediated chemotaxis toward CX3CL1 by regulating both Rac1/WAVE2 and Cdc42/WASP pathways, whereas Src family kinases were required for proper WASP tyrosine phosphorylation.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA.
| | | |
Collapse
|
91
|
Jones BA, Beamer M, Ahmed S. Fractalkine/CX3CL1: a potential new target for inflammatory diseases. Mol Interv 2011; 10:263-70. [PMID: 21045240 DOI: 10.1124/mi.10.5.3] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Brian A Jones
- Department of Pharmacology, College of Pharmacy, University of Toledo, OH, USA
| | | | | |
Collapse
|
92
|
Sato M, Ohtsuka K, Takahashi R, Wakabayashi K, Odai T, Isozaki T, Yajima N, Miwa Y, Kasama T. Involvement of CX3CL1/CX3CR1 axis in etanercept therapy for patients with active rheumatoid arthritis. Open Access Rheumatol 2011; 3:1-7. [PMID: 27789999 PMCID: PMC5074777 DOI: 10.2147/oarrr.s16210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective To examine the relationship between serum chemokine levels and patient responsiveness in rheumatoid arthritis (RA) patients to etanercept (ETN) and the influence of ETN administration on serum chemokine levels. Methods Serum levels of the chemokines CX3CL1, CXCL8, CXCL10, and CCL3 were quantified prior to (at baseline) and after 14 weeks of treatment with ETN in 20 patients using enzyme-linked immunosorbent assay. Disease status was assessed using the Disease Activity Score (DAS28). The response to ETN was classified according to the European League Against Rheumatism (EULAR) response criteria. Results By 14 weeks, ETN produced a significant overall reduction in DAS28 among the 20 patients with RA; eight patients achieved a good response, and 10 patients achieved a moderate response based on EULAR response criteria. A significant reduction in CX3CL1 was observed in the responsive group, although ETN treatment had no significant effect on the serum levels of the other three chemokines. In addition, the messenger ribonucleic acid expression of CX3CR1 in peripheral blood mononuclear cells and the cell-surface expression of CX3CR1 protein in peripheral blood CD8+CD3+ T cells were both decreased after ETN treatment. Conclusions Our results suggest that the CX3CL1 and CX3CR1 in patients with active RA may be sensitive to antitumor necrosis factor-α therapy and confirm that CX3CL1/CX3CR1 axis plays a crucial role in the pathogenesis of RA.
Collapse
Affiliation(s)
- Michihito Sato
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Ohtsuka
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryo Takahashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kuninobu Wakabayashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Odai
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takeo Isozaki
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyuki Yajima
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yusuke Miwa
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
93
|
Abstract
Chemokines are a large group of small cytokines known for their chemotactic ability to regulate the recruitment of leukocytes to sites of inflammation. This occurs through the binding of chemokines to their receptors located on the leukocyte that results in cellular changes such as actin rearrangement and cell shape, which allow for the migration of the leukocyte. In addition to regulating leukocyte function, it is now becoming apparent that other nonhematopoetic cells, such as smooth muscle cells and endothelial cells, can also be regulated by chemokines. Studies within the past 10 years has demonstrated the presence of various chemokine receptors on endothelial cells as well as the ability of chemokines to activate these receptors resulting in various cellular responses including migration, proliferation, and cellular activation. The purpose of this review is to highlight the research that has been done to date demonstrating the important role for chemokines in regulating endothelial function during various inflammatory conditions associated with angiogenesis, homeostasis, and leukocyte transmigration. This review will focus specifically on the role of the endothelium in mediating chemokine effects associated with wound healing, atherosclerosis, and autoimmune diseases, conditions where leukocyte recruitment and angiogenesis play a major role. Recent progress in the development and implementation of therapeutics agents against these small molecules, or their receptors, will also be addressed.
Collapse
Affiliation(s)
- Cecilia L Speyer
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | | |
Collapse
|
94
|
Nakayama T, Watanabe Y, Oiso N, Higuchi T, Shigeta A, Mizuguchi N, Katou F, Hashimoto K, Kawada A, Yoshie O. Eotaxin-3/CC chemokine ligand 26 is a functional ligand for CX3CR1. THE JOURNAL OF IMMUNOLOGY 2010; 185:6472-9. [PMID: 20974991 DOI: 10.4049/jimmunol.0904126] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.
Collapse
Affiliation(s)
- Takashi Nakayama
- Department of Microbiology, Faculty of Medicine and xLife Science Research Institute, Kinki University, Osaka-Sayama, Osaka, Japna
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ruth JH, Arendt MD, Amin MA, Ahmed S, Marotte H, Rabquer BJ, Lesch C, Lee S, Koch AE. Expression and function of CXCL16 in a novel model of gout. ACTA ACUST UNITED AC 2010; 62:2536-44. [PMID: 20506383 DOI: 10.1002/art.27518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To better define the activity of soluble CXCL16 in the recruitment of polymorphonuclear neutrophils (PMNs) in vivo, utilizing a novel animal model of gout involving engraftment of SCID mice with normal human synovial tissue (ST) injected intragraft with gouty human synovial fluid (SF). METHODS For in vitro studies, a modified Boyden chemotaxis system was used to identify CXCL16 as an active recruitment factor for PMNs in gouty SF. Migration of PMNs could be reduced by neutralization of CXCL16 activity in gouty SF. For in vivo analyses, fluorescent dye-tagged PMNs were injected intravenously into SCID mice while, simultaneously, diluted gouty SF containing CXCL16, or depleted of CXCL16 by antibody blocking, was administered intragraft. In addition, the receptor for CXCL16, CXCR6, was inhibited by incubating PMNs with a neutralizing anti-CXCR6 antibody prior to injection into the mouse chimeras. Recruitment of PMNs to the gouty SF-injected normal human ST was then examined in this SCID mouse chimera system. RESULTS CXCL16 concentrations were highly elevated in gouty SF, and PMNs were observed to migrate in response to CXCL16 in vitro. Normal human ST-SCID mouse chimeras injected intragraft with gouty SF that had been depleted of CXCL16 during PMN transfer showed a significant reduction of 50% in PMN recruitment to engrafted tissue as compared with that after administration of sham-depleted gouty SF. Similar findings were achieved when PMNs were incubated with a neutralizing anti-CXCR6 antibody before injection into chimeras. CONCLUSION Overall, the results of this study outline the effectiveness of the human-SCID mouse chimera system as a viable animal model of gout, serving to identify the primary function of CXCL16 as a significant mediator of in vivo recruitment of PMNs to gouty SF.
Collapse
Affiliation(s)
- Jeffrey H Ruth
- University of Michigan Medical School, Division of Rheumatology, 109 Zina Pitcher Place, 4023 BSRB Box 2200, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Rabquer BJ, Tan GJ, Shaheen PJ, Haines GK, Urquhart AG, Koch AE. Synovial inflammation in patients with osteonecrosis of the femoral head. Clin Transl Sci 2010; 2:273-8. [PMID: 20443906 DOI: 10.1111/j.1752-8062.2009.00133.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Much of the work aimed at elucidating the pathogenesis of osteonecrosis (ON) of the femoral head has focused on bone blood supply, with little attention to the surrounding synovial tissue (ST). We hypothesized that patients with ON exhibit synovial inflammation. Using immunohistological techniques, we found that a large population of patients with ON had synovial inflammation. Moreover, a population of ON patients had inflamed ST without having an inflammatory disease co-morbidity. The inflammatory infiltrate in these patients comprised primarily CD4(+) T cells and CD68(+) macrophages, the latter of which expressed increased levels of cellular adhesion molecules. Our results suggest the presence of a previously unrecognized population of ON patients without a diagnosed inflammatory co-morbidity and a highly inflammed synovium consisting primarily of a macrophage and CD4(+) T-cell infiltrate.
Collapse
Affiliation(s)
- Bradley J Rabquer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
97
|
Ruth JH, Park CC, Amin MA, Lesch C, Marotte H, Shahrara S, Koch AE. Interleukin-18 as an in vivo mediator of monocyte recruitment in rodent models of rheumatoid arthritis. Arthritis Res Ther 2010; 12:R118. [PMID: 20565717 PMCID: PMC2911912 DOI: 10.1186/ar3055] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 05/27/2010] [Accepted: 06/16/2010] [Indexed: 01/01/2023] Open
Abstract
Introduction The function of interleukin-18 (IL-18) was investigated in pertinent animal models of rodent rheumatoid arthritis (RA) to determine its proinflammatory and monocyte recruitment properties. Methods We used a modified Boyden chemotaxis system to examine monocyte recruitment to recombinant human (rhu) IL-18 in vitro. Monocyte recruitment to rhuIL-18 was then tested in vivo by using an RA synovial tissue (ST) severe combined immunodeficient (SCID) mouse chimera. We defined monocyte-specific signal-transduction pathways induced by rhuIL-18 with Western blotting analysis and linked this to in vitro monocyte chemotactic activity. Finally, the ability of IL-18 to induce a cytokine cascade during acute joint inflammatory responses was examined by inducing wild-type (Wt) and IL-18 gene-knockout mice with zymosan-induced arthritis (ZIA). Results We found that intragraft injected rhuIL-18 was a robust monocyte recruitment factor to both human ST and regional (inguinal) murine lymph node (LN) tissue. IL-18 gene-knockout mice also showed pronounced reductions in joint inflammation during ZIA compared with Wt mice. Many proinflammatory cytokines were reduced in IL-18 gene-knockout mouse joint homogenates during ZIA, including macrophage inflammatory protein-3α (MIP-3α/CCL20), vascular endothelial cell growth factor (VEGF), and IL-17. Signal-transduction experiments revealed that IL-18 signals through p38 and ERK½ in monocytes, and that IL-18-mediated in vitro monocyte chemotaxis can be significantly inhibited by disruption of this pathway. Conclusions Our data suggest that IL-18 may be produced in acute inflammatory responses and support the notion that IL-18 may serve a hierarchic position for initiating joint inflammatory responses.
Collapse
Affiliation(s)
- Jeffrey H Ruth
- Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
98
|
Marotte H, Ahmed S, Ruth JH, Koch AE. Blocking ERK-1/2 reduces tumor necrosis factor alpha-induced interleukin-18 bioactivity in rheumatoid arthritis synovial fibroblasts by induction of interleukin-18 binding protein A. ACTA ACUST UNITED AC 2010; 62:722-31. [PMID: 20131228 DOI: 10.1002/art.27269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To examine the mechanism of regulation of interleukin-18 (IL-18) bioactivity by IL-18 binding protein (IL-18BP) induction. METHODS Levels of IL-18 and IL-18BPa in synovial fluid samples from patients with osteoarthritis (OA) or rheumatoid arthritis (RA) were determined by enzyme-linked immunosorbent assays (ELISAs), followed by calculation of free IL-18. IL-18 and IL-18BPa synthesis in RA synovial fibroblasts that had been treated with proinflammatory and antiinflammatory cytokines were assessed by quantitative real-time polymerase chain reaction and ELISA, respectively, followed by IL-18 bioactivity determination using KG-1 cells. Chemical signaling inhibitors were used for determination of the signal transduction pathways involved in IL-18BPa/IL-18 regulation. Tumor necrosis factor alpha (TNFalpha)-induced caspase 1 activity was determined by a colorimetric assay. RESULTS IL-18BPa was lower in RA synovial fluid than in OA synovial fluid (P < 0.05; n = 8), and free IL-18 was higher in RA synovial fluid than in OA synovial fluid. TNFalpha induced RA synovial fibroblast IL-18BPa and IL-18 in a time-dependent manner (P < 0.05). Evaluation of signaling pathways suggested that TNFalpha induced IL-18 production through the ERK-1/2, protein kinase Cdelta (PKCdelta), and Src pathways, whereas IL-18BPa synthesis was mediated through the NFkappaB, PKC, Src, and JNK pathways. Furthermore, addition of exogenous IL-18BPa-Fc reduced the RA synovial fibroblast phosphorylation of ERK-1/2 induced by TNFalpha. CONCLUSION These results suggest that IL-18BPa reduces IL-18 bioactivity induced by TNFalpha, by regulating the ERK-1/2 pathway in RA synovial fibroblasts. Targeting IL-18 bioactivity by induction or addition of IL-18BPa may provide another therapeutic option in the management of RA.
Collapse
|
99
|
Shahrara S, Pickens SR, Mandelin AM, Karpus WJ, Huang Q, Kolls JK, Pope RM. IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. THE JOURNAL OF IMMUNOLOGY 2010; 184:4479-87. [PMID: 20228199 DOI: 10.4049/jimmunol.0901942] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that is mediated, in part, by proinflammatory factors produced by RA synovial tissue (ST) fibroblasts and macrophages, resulting in monocyte migration from the blood to the ST. To characterize the potential role of IL-17 in monocyte migration, RA synovial fibroblasts and macrophages were activated with IL-17 and examined for the expression of monocyte chemokines. The two potentially important monocyte chemoattractants identified were CCL20/MIP-3alpha and CCL2/MCP-1, which were significantly induced in RA synovial fibroblasts and macrophages. However, in vivo, only CCL2/MCP-1 was detectable following adenovirus IL-17 injection. We found that IL-17 induction of CCL2/MCP-1 was mediated by the PI3K, ERK, and JNK pathways in RA ST fibroblasts and by the PI3K and ERK pathways in macrophages. Further, we show that neutralization of CCL2/MCP-1 significantly reduced IL-17-mediated monocyte recruitment into the peritoneal cavity. We demonstrate that local expression of IL-17 in ankle joints was associated with significantly increased monocyte migration and CCL2/MCP-1 levels. Interestingly, we show that RA synovial fluids immunoneutralized for IL-17 and CCL2/MCP-1 have similar monocyte chemotaxis activity as those immunoneutralized for each factor alone. In short, CCL2/MCP-1 produced from cell types present in the RA joint, as well as in experimental arthritis, may be responsible, in part, for IL-17-induced monocyte migration; hence, these results suggest that CCL2/MCP-1 is a downstream target of IL-17 that may be important in RA.
Collapse
Affiliation(s)
- Shiva Shahrara
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
100
|
Kolomin TA, Shadrina MI, Agniullin YV, Shram SI, Slominskii PA, Limborska SA, Myasoedov NF. Transcriptomic response of rat hippocampus and spleen cells to single and chronic administration of the peptide selank. DOKL BIOCHEM BIOPHYS 2010; 430:5-6. [DOI: 10.1134/s1607672910010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|