51
|
Jeong YC, Lee HE, Shin A, Kim DG, Lee KJ, Kim D. Progress in Brain-Compatible Interfaces with Soft Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907522. [PMID: 32297395 DOI: 10.1002/adma.201907522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
Neural interfaces facilitating communication between the brain and machines must be compatible with the soft, curvilinear, and elastic tissues of the brain and yet yield enough power to read and write information across a wide range of brain areas through high-throughput recordings or optogenetics. Biocompatible-material engineering has facilitated the development of brain-compatible neural interfaces to support built-in modulation of neural circuits and neurological disorders. Recent developments in brain-compatible neural interfaces that use soft nanomaterials more suitable for complex neural circuit analysis and modulation are reviewed. Preclinical tests of the compatibility and specificity of these interfaces in animal models are also discussed.
Collapse
Affiliation(s)
- Yong-Cheol Jeong
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Anna Shin
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dae-Gun Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
52
|
Jung YH, Hong SK, Wang HS, Han JH, Pham TX, Park H, Kim J, Kang S, Yoo CD, Lee KJ. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904020. [PMID: 31617274 DOI: 10.1002/adma.201904020] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/28/2019] [Indexed: 05/22/2023]
Abstract
Flexible piezoelectric acoustic sensors have been developed to generate multiple sound signals with high sensitivity, shifting the paradigm of future voice technologies. Speech recognition based on advanced acoustic sensors and optimized machine learning software will play an innovative interface for artificial intelligence (AI) services. Collaboration and novel approaches between both smart sensors and speech algorithms should be attempted to realize a hyperconnected society, which can offer personalized services such as biometric authentication, AI secretaries, and home appliances. Here, representative developments in speech recognition are reviewed in terms of flexible piezoelectric materials, self-powered sensors, machine learning algorithms, and speaker recognition.
Collapse
Affiliation(s)
- Young Hoon Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seong Kwang Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee Seung Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Hyun Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Trung Xuan Pham
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunsin Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junyeong Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sunghun Kang
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chang D Yoo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
53
|
Zhao J, Ghannam R, Htet KO, Liu Y, Law M, Roy VAL, Michel B, Imran MA, Heidari H. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review. Adv Healthc Mater 2020; 9:e2000779. [PMID: 32729228 DOI: 10.1002/adhm.202000779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Implantable technologies are becoming more widespread for biomedical applications that include physical identification, health diagnosis, monitoring, recording, and treatment of human physiological traits. However, energy harvesting and power generation beneath the human tissue are still a major challenge. In this regard, self-powered implantable devices that scavenge energy from the human body are attractive for long-term monitoring of human physiological traits. Thanks to advancements in material science and nanotechnology, energy harvesting techniques that rely on piezoelectricity, thermoelectricity, biofuel, and radio frequency power transfer are emerging. However, all these techniques suffer from limitations that include low power output, bulky size, or low efficiency. Photovoltaic (PV) energy conversion is one of the most promising candidates for implantable applications due to their higher-power conversion efficiencies and small footprint. Herein, the latest implantable energy harvesting technologies are surveyed. A comparison between the different state-of-the-art power harvesting methods is also provided. Finally, recommendations are provided regarding the feasibility of PV cells as an in vivo energy harvester, with an emphasis on skin penetration, fabrication, encapsulation, durability, biocompatibility, and power management.
Collapse
Affiliation(s)
- Jinwei Zhao
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Rami Ghannam
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Kaung Oo Htet
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Yuchi Liu
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Man‐kay Law
- State Key Laboratory of Analog and Mixed‐Signal VLSI AMSV University of Macao Macao China
| | | | - Bruno Michel
- Smart System Integration IBM Research GmbH Rueschlikon CH‐8803 Switzerland
| | - Muhammad Ali Imran
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| | - Hadi Heidari
- James Watts school of Engineering University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
54
|
Zhang Y, Kim H, Wang Q, Jo W, Kingon AI, Kim SH, Jeong CK. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. NANOSCALE ADVANCES 2020; 2:3131-3149. [PMID: 36134257 PMCID: PMC9418676 DOI: 10.1039/c9na00809h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/29/2020] [Indexed: 05/25/2023]
Abstract
Current piezoelectric device systems need a significant reduction in size and weight so that electronic modules of increasing capacity and functionality can be incorporated into a great range of applications, particularly in energy device platforms. The key question for most applications is whether they can compete in the race of down-scaling and an easy integration with highly adaptable properties into various system technologies such as nano-electro-mechanical systems (NEMS). Piezoelectric NEMS have potential to offer access to a parameter space for sensing, actuating, and powering, which is inflential and intriguing. Fortunately, recent advances in modelling, synthesis, and characterization techniques are spurring unprecedented developments in a new field of piezoelectric nano-materials and devices. While the need for looking more closely at the piezoelectric nano-materials is driven by the relentless drive of miniaturization, there is an additional motivation: the piezoelectric materials, which are showing the largest electromechanical responses, are currently toxic lead (Pb)-based perovskite materials (such as the ubiquitous Pb(Zr,Ti)O3, PZT). This is important, as there is strong legislative and moral push to remove toxic lead compounds from commercial products. By far, the lack of viable alternatives has led to continuing exemptions to allow their temporary use in piezoelectric applications. However, the present exemption will expire soon, and the concurrent improvement of lead-free piezoelectric materials has led to the possibility that no new exemption will be granted. In this paper, the universal approaches and recent progresses in the field of lead-free piezoelectric nano-materials, initially focusing on hybrid composite materials as well as individual nanoparticles, and related energy harvesting devices are systematically elaborated. The paper begins with a short introduction to the properties of interest in various piezoelectric nanomaterials and a brief description of the current state-of-the-art for lead-free piezoelectric nanostructured materials. We then describe several key methodologies for the synthesis of nanostructure materials including nanoparticles, followed by the discussion on the critical current and emerging applications in detail.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Silicate Materials for Architectures, Center for Smart Materials and Device Integration, School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 117575 Singapore
| | - Hyunseung Kim
- Hydrogen and Fuel Cell Research Center, Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802 USA
| | - Wook Jo
- School of Materials Science and Engineering, Jülich-UNIST Joint Leading Institute for Advanced Energy Research (JULIA), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Angus I Kingon
- School of Engineering, Brown University Providence RI 02912 USA
| | - Seung-Hyun Kim
- School of Engineering, Brown University Providence RI 02912 USA
| | - Chang Kyu Jeong
- Hydrogen and Fuel Cell Research Center, Department of Energy Storage/Conversion Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University Jeonju Jeonbuk 54896 Republic of Korea
| |
Collapse
|
55
|
Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM. Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. BIOSENSORS-BASEL 2020; 10:bios10070079. [PMID: 32708103 PMCID: PMC7400150 DOI: 10.3390/bios10070079] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/21/2022]
Abstract
Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body’s biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.
Collapse
Affiliation(s)
- Daniela Rodrigues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Ana I. Barbosa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rita Rebelo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Il Keun Kwon
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Vitor M. Correlo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; (D.R.); (A.I.B.); (R.R.); (I.K.K.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
56
|
Abstract
Recent advances in soft materials and mechanics activate development of many new types of electrical medical implants. Electronic implants that provide exceptional functions, however, usually require more electrical power, resulting in shorter period of usages although many approaches have been suggested to harvest electrical power in human bodies by resolving the issues related to power density, biocompatibility, tissue damage, and others. Here, we report an active photonic power transfer approach at the level of a full system to secure sustainable electrical power in human bodies. The active photonic power transfer system consists of a pair of the skin-attachable photon source patch and the photovoltaic device array integrated in a flexible medical implant. The skin-attachable patch actively emits photons that can penetrate through live tissues to be captured by the photovoltaic devices in a medical implant. The wireless power transfer system is very simple, e.g., active power transfer in direct current (DC) to DC without extra circuits, and can be used for implantable medical electronics regardless of weather, covering by clothes, in indoor or outdoor at day and night. We demonstrate feasibility of the approach by presenting thermal and mechanical compatibility with soft live tissues while generating enough electrical power in live bodies through in vivo animal experiments. We expect that the results enable long-term use of currently available implants in addition to accelerating emerging types of electrical implants that require higher power to provide diverse convenient diagnostic and therapeutic functions in human bodies.
Collapse
|
57
|
Shehata N, Hassanin AH, Elnabawy E, Nair R, Bhat SA, Kandas I. Acoustic Energy Harvesting and Sensing via Electrospun PVDF Nanofiber Membrane. SENSORS 2020; 20:s20113111. [PMID: 32486397 PMCID: PMC7308867 DOI: 10.3390/s20113111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
This paper introduces a new usage of piezoelectric poly (vinylidene fluoride) (PVDF) electrospun nanofiber (NF) membrane as a sensing unit for acoustic signals. In this work, an NF mat has been used as a transducer to convert acoustic signals into electric voltage outcomes. The detected voltage has been analyzed as a function of both frequency and amplitude of the excitation acoustic signal. Additionally, the detected AC signal can be retraced as a function of both frequency and amplitude with some wave distortion at relatively higher amplitudes and within a certain acoustic spectrum region. Meanwhile, the NFs have been characterized through piezoelectric responses, beta sheet calculations and surface morphology. This work is promising as a low-cost and innovative solution to harvest acoustic signals coming from wide resources of sound and noise.
Collapse
Affiliation(s)
- Nader Shehata
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
- Faculty of Science, Utah State University, Logan, UT 84341, USA
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +20-1091-165-300
| | - Ahmed H. Hassanin
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
- Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
| | - Eman Elnabawy
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
| | - Remya Nair
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
| | - Sameer A. Bhat
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
| | - Ishac Kandas
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt; (R.N.); (S.A.B.); (I.K.)
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt; (A.H.H.); (E.E.)
| |
Collapse
|
58
|
Affiliation(s)
- Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yongzhong Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bick
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
59
|
Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902670. [PMID: 31403227 DOI: 10.1002/adma.201902670] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Smart systems are those that display autonomous or collaborative functionalities, and include the ability to sense multiple inputs, to respond with appropriate operations, and to control a given situation. In certain circumstances, it is also of great interest to retain flexible, stretchable, portable, wearable, and/or implantable attributes in smart electronic systems. Among the promising candidate smart materials, carbon nanotubes (CNTs) exhibit excellent electrical and mechanical properties, and structurally fabricated CNT-based fibers and yarns with coil and twist further introduce flexible and stretchable properties. A number of notable studies have demonstrated various functions of CNT yarns, including sensors, actuators, and energy storage. In particular, CNT yarns can operate as flexible electronic sensors and electrodes to monitor strain, temperature, ionic concentration, and the concentration of target biomolecules. Moreover, a twisted CNT yarn enables strong torsional actuation, and coiled CNT yarns generate large tensile strokes as an artificial muscle. Furthermore, the reversible actuation of CNT yarns can be used as an energy harvester and, when combined with a CNT supercapacitor, has promoted the next-generation of energy storage systems. Here, progressive advances of CNT yarns in electrical sensing, actuation, and energy storage are reported, and the future challenges in smart electronic systems considered.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sung Min Kim
- Department of Physical Education, Department of Active Aging Industry, Hanyang University, Seoul, 04763, South Korea
| | - Geoffrey M Spinks
- Australian Institute for Innovative Materials, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
60
|
Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices. NANOMATERIALS 2020; 10:nano10010093. [PMID: 31906516 PMCID: PMC7022932 DOI: 10.3390/nano10010093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Recently, biocompatible energy harvesting devices have received a great deal of attention for biomedical applications. Among various biomaterials, viruses are expected to be very promising biomaterials for the fabrication of functional devices due to their unique characteristics. While other natural biomaterials have limitations in mass-production, low piezoelectric properties, and surface modification, M13 bacteriophages (phages), which is one type of virus, are likely to overcome these issues with their mass-amplification, self-assembled structure, and genetic modification. Based on these advantages, many researchers have started to develop virus-based energy harvesting devices exhibiting superior properties to previous biomaterial-based devices. To enhance the power of these devices, researchers have tried to modify the surface properties of M13 phages, form biomimetic hierarchical structures, control the dipole alignments, and more. These methods for fabricating virus-based energy harvesting devices can form a powerful strategy to develop high-performance biocompatible energy devices for a wide range of practical applications in the future. In this review, we discuss all these issues in detail.
Collapse
|
61
|
Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8710686. [PMID: 32259107 PMCID: PMC7085499 DOI: 10.34133/2020/8710686] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Wearable and implantable electronics (WIEs) are more and more important and attractive to the public, and they have had positive influences on all aspects of our lives. As a bridge between wearable electronics and their surrounding environment and users, sensors are core components of WIEs and determine the implementation of their many functions. Although the existing sensor technology has evolved to a very advanced level with the rapid progress of advanced materials and nanotechnology, most of them still need external power supply, like batteries, which could cause problems that are difficult to track, recycle, and miniaturize, as well as possible environmental pollution and health hazards. In the past decades, based upon piezoelectric, pyroelectric, and triboelectric effect, various kinds of nanogenerators (NGs) were proposed which are capable of responding to a variety of mechanical movements, such as breeze, body drive, muscle stretch, sound/ultrasound, noise, mechanical vibration, and blood flow, and they had been widely used as self-powered sensors and micro-nanoenergy and blue energy harvesters. This review focuses on the applications of self-powered generators as implantable and wearable sensors in health monitoring, biosensor, human-computer interaction, and other fields. The existing problems and future prospects are also discussed.
Collapse
Affiliation(s)
- Zhe Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zheng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- School of Material Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
62
|
Azimi B, Milazzo M, Lazzeri A, Berrettini S, Uddin MJ, Qin Z, Buehler MJ, Danti S. Electrospinning Piezoelectric Fibers for Biocompatible Devices. Adv Healthc Mater 2020; 9:e1901287. [PMID: 31701671 PMCID: PMC6949425 DOI: 10.1002/adhm.201901287] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/14/2022]
Abstract
The field of nanotechnology has been gaining great success due to its potential in developing new generations of nanoscale materials with unprecedented properties and enhanced biological responses. This is particularly exciting using nanofibers, as their mechanical and topographic characteristics can approach those found in naturally occurring biological materials. Electrospinning is a key technique to manufacture ultrafine fibers and fiber meshes with multifunctional features, such as piezoelectricity, to be available on a smaller length scale, thus comparable to subcellular scale, which makes their use increasingly appealing for biomedical applications. These include biocompatible fiber-based devices as smart scaffolds, biosensors, energy harvesters, and nanogenerators for the human body. This paper provides a comprehensive review of current studies focused on the fabrication of ultrafine polymeric and ceramic piezoelectric fibers specifically designed for, or with the potential to be translated toward, biomedical applications. It provides an applicative and technical overview of the biocompatible piezoelectric fibers, with actual and potential applications, an understanding of the electrospinning process, and the properties of nanostructured fibrous materials, including the available modeling approaches. Ultimately, this review aims at enabling a future vision on the impact of these nanomaterials as stimuli-responsive devices in the human body.
Collapse
Affiliation(s)
- Bahareh Azimi
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Mario Milazzo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| | - Stefano Berrettini
- Department of Surgical, Medical Molecular Pathology and Emergency Care, University of Pisa, Pisa, 56124, Italy
| | - Mohammed Jasim Uddin
- Department of Chemistry, Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Serena Danti
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
63
|
Liu Z, Wen B, Cao L, Zhang S, Lei Y, Zhao G, Chen L, Wang J, Shi Y, Xu J, Pan X, Yu L. Photoelectric Cardiac Pacing by Flexible and Degradable Amorphous Si Radial Junction Stimulators. Adv Healthc Mater 2020; 9:e1901342. [PMID: 31794161 DOI: 10.1002/adhm.201901342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/02/2019] [Indexed: 01/13/2023]
Abstract
Implanted pacemakers are usually bulky and rigid electronics that are constraint by limited battery lifetimes, and need to be installed and repaired via surgeries that risk secondary infection and injury. In this work, a flexible self-powered photoelectric cardiac stimulator is demonstrated based on hydrogenated amorphous Si (a-Si:H) radial p-i-n junctions (RJs), constructed upon standing Si nanowires grown directly on aluminum thin foils. The flexible RJ stimulators, with an open-circuit voltage of 0.67 V and short-circuit current density of 12.7 mA cm-2 under standard AM1.5G illumination, can be conformally attached to the uneven tissue surface to pace heart-beating under modulated 650 nm laser illumination. In vivo pacing evaluations on porcine hearts show that the heart rate can be effectively controlled by the external photoelectric stimulations, to increase from the normal rate of 101-128 beating min-1 . Importantly, the a-Si:H RJ units are highly biofriendly and biodegradable, with tunable lifetimes in phosphate-buffered saline environment controlled by surface coating and passivation, catering to the needs of short term or lasting cardiac pacing applications. This implantable a-Si:H RJ photoelectric stimulation strategy has the potential to establish eventually a self-powered, biocompatible, and conformable cardiac pacing technology for clinical therapy.
Collapse
Affiliation(s)
- Zongguang Liu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Bin Wen
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Luyao Cao
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Shaobo Zhang
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Yakui Lei
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Guangzhi Zhao
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Long Chen
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Junzhuan Wang
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Yi Shi
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Jun Xu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Xiangbin Pan
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Linwei Yu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
64
|
Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu JM. Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35169-35176. [PMID: 31482709 DOI: 10.1021/acsami.9b14095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Perovskite oxide films are widely used in various commercial industries. However, they are usually prepared at high temperature and in oxygen ambience, detrimental to most transparent and flexible substrates and bottom conductive electrodes such as indium tin oxide (ITO). It remains challenging to integrate perovskite oxides into transparent and flexible electronics. Here, the 1.2 wt % Ag-doped ITO (Ag-ITO) grown on a mica substrate is employed as the bottom electrode, which can withstand high temperature and repeated bending, and then we achieve the transparent, flexible, fatigue-free, and optical-read ferroelectric nonvolatile memories based on the mica/Ag-ITO/Bi3.25La0.75Ti3O12/ITO structures. The as-prepared memories show ∼80% transmittance for visible lights and fatigue-free performance after more than 108 writing/erasing cycles. These performances are stable after repeated bending down to 3 mm in a curvature radius. More importantly, the "1/0" state of the memory can be read out by the photovoltaic current rather than destructive polarization switching, an emergent functionality for many applications. This work substantially promotes the applications of perovskite oxide films in transparent and flexible electronics, including wearable devices.
Collapse
Affiliation(s)
- Huan Gao
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yuxi Yang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Yaojin Wang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | | | - Junling Wang
- School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore
| | - Guoliang Yuan
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructure, Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Institute for Advanced Materials , South China Normal University , Guangzhou 510006 , China
| |
Collapse
|
65
|
Li T, Feng ZQ, Qu M, Yan K, Yuan T, Gao B, Wang T, Dong W, Zheng J. Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS NANO 2019; 13:10062-10073. [PMID: 31469542 DOI: 10.1021/acsnano.9b02483] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Implantable pressure biosensors show great potential for assessment and diagnostics of pressure-related diseases. Here, we present a structural design strategy to fabricate core/shell polyvinylidene difluoride (PVDF)/hydroxylamine hydrochloride (HHE) organic piezoelectric nanofibers (OPNs) with well-controlled and self-orientated nanocrystals in the spatial uniaxial orientation (SUO) of β-phase-rich fibers, which significantly enhance piezoelectric performance, fatigue resistance, stability, and biocompatibility. Then PVDF/HHE OPNs soft sensors are developed and used to monitor subtle pressure changes in vivo. Upon implanting into pig, PVDF/HHE OPNs sensors demonstrate their ultrahigh detecting sensitivity and accuracy to capture micropressure changes at the outside of cardiovascular walls, and output piezoelectric signals can real-time and synchronously reflect and distinguish changes of cardiovascular elasticity and occurrence of atrioventricular heart-block and formation of thrombus. Such biological information can provide a diagnostic basis for early assessment and diagnosis of thrombosis and atherosclerosis, especially for postoperative recrudescence of thrombus deep within the human body.
Collapse
Affiliation(s)
- Tong Li
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zhang-Qi Feng
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Minghe Qu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Ke Yan
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Tao Yuan
- Department of Orthopedic , Nanjing Jinling Hospital , Nanjing 210002 , China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Ting Wang
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Wei Dong
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
66
|
Wang J, Qian S, Yu J, Zhang Q, Yuan Z, Sang S, Zhou X, Sun L. Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1304. [PMID: 31547316 PMCID: PMC6781082 DOI: 10.3390/nano9091304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022]
Abstract
Flexible electronics devices with tactile perception can sense the mechanical property data of the environment and the human body, and they present a huge potential in the human health system. In particular, the introduction of ultra-flexible and self-powered characteristics to tactile sensors can effectively reduce the problems caused by rigid batteries. Herein, we report a triboelectric nanogenerator (TENG), mainly consisting of an ultra-flexible polydimethylsiloxane (PDMS) film with micro-pyramid-structure and sputtered aluminum electrodes, which achieves highly conformal contact with skin and the self-powered detection of human body motions. The flexible polyethylene terephthalate (PET) film was selected as spacer layer, which made the sensor work in the contact-separation mode and endowed the perfect coupling of triboelectrification and electrostatic induction. Moreover, the controllable and uniform micro-structure PDMS film was fabricated by using the micro-electro-mechanical system (MEMS) manufacturing process, bringing a good sensitivity and high output performance to the device. The developed TENG can directly convert mechanical energy into electric energy and light up 110 green Light-Emitting Diodes (LEDs). Furthermore, the TENG-based sensor displays good sensitivity (2.54 V/kPa), excellent linearity (R2 = 0.99522) and good stability (over 30,000 cycles). By virtue of the compact size, great electrical properties, and great mechanical properties, the developed sensor can be conformally attached to human skin to monitor joint movements, presenting a promising application in wearable tactile devices. We believe that the ultra-flexible and self-powered tactile TENG-based sensor could have tremendous application in wearable electrons.
Collapse
Affiliation(s)
- Jie Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
- Research Institute of Advanced Manufacturing Technology, Soochow University, Suzhou 215006, China.
| | - Shuo Qian
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Junbin Yu
- School of Instrument and Electronics, North University of China, Taiyuan 030051, China
| | - Qiang Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhongyun Yuan
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shengbo Sang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Zhou
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Lining Sun
- Research Institute of Advanced Manufacturing Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
67
|
Mariotti G, Vannozzi L. Fabrication, Characterization, and Properties of Poly (Ethylene-Co-Vinyl Acetate) Composite Thin Films Doped with Piezoelectric Nanofillers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1182. [PMID: 31434204 PMCID: PMC6724128 DOI: 10.3390/nano9081182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 11/24/2022]
Abstract
Ethylene vinyl acetate (EVA) is a copolymer comprehending the semi-crystalline polyethylene and amorphous vinyl acetate phases, which potentially allow the fabrication of tunable materials. This paper aims at describing the fabrication and characterization of nanocomposite thin films made of polyethylene vinyl acetate, at different polymer concentration and vinyl acetate content, doped with piezoelectric nanomaterials, namely zinc oxide and barium titanate. These membranes are prepared by solvent casting, achieving a thickness in the order of 100-200 µm. The nanocomposites are characterized in terms of morphological, mechanical, and chemical properties. Analysis of the nanocomposites shows the nanofillers to be homogeneously dispersed in EVA matrix at different vinyl acetate content. Their influence is also noted in the mechanical behavior of thin films, which elastic modulus ranged from about 2 to 25 MPa, while keeping an elongation break from 600% to 1500% and tensile strength from 2 up to 13 MPa. At the same time, doped nanocomposite materials increase their crystallinity degree than the bare ones. The radiopacity provided by the addition of the dopant agents is proven. Finally, the direct piezoelectricity of nanocomposites membranes is demonstrated, showing higher voltage outputs (up to 2.5 V) for stiffer doped matrices. These results show the potentialities provided by the addition of piezoelectric nanomaterials towards mechanical reinforcement of EVA-based matrices while introducing radiopaque properties and responsiveness to mechanical stimuli.
Collapse
Affiliation(s)
- Giulia Mariotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera (PI), Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera (PI), Italy.
| |
Collapse
|
68
|
Lee BY, Kim DH, Park J, Park KI, Lee KJ, Jeong CK. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:758-773. [PMID: 31447955 PMCID: PMC6691791 DOI: 10.1080/14686996.2019.1631716] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 05/03/2023]
Abstract
Mechanical energy harvesting technology converting mechanical energy wasted in our surroundings to electrical energy has been regarded as one of the critical technologies for self-powered sensor network and Internet of Things (IoT). Although triboelectric energy harvesters based on contact electrification have attracted considerable attention due to their various advantages compared to other technologies, a further improvement of the output performance is still required for practical applications in next-generation IoT devices. In recent years, numerous studies have been carried out to enhance the output power of triboelectric energy harvesters. The previous research approaches for enhancing the triboelectric charges can be classified into three categories: i) materials type, ii) device structure, and iii) surface modification. In this review article, we focus on various mechanisms and methods through the surface modification beyond the limitations of structural parameters and materials, such as surficial texturing/patterning, functionalization, dielectric engineering, surface charge doping and 2D material processing. This perspective study is a cornerstone for establishing next-generation energy applications consisting of triboelectric energy harvesters from portable devices to power industries.
Collapse
Affiliation(s)
- Bo-Yeon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Nature-Inspired Nano-convergence System, Korea Institute of Machinery and Materials (KIMM), Daejeon, Republic of Korea
| | - Dong Hyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiseul Park
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - Kwi-Il Park
- School of Materials Science and Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang Kyu Jeong
- Division of Advanced Materials Engineering, Chonbuk National University, Jeonju, Republic of Korea
- Hydrogen and Fuel Cell Research Center, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
69
|
Zhang Y, Lü C, Lu B, Feng X, Wang J. Effects of Orientations on Efficiency of Energy Harvesting from Heart Motion Using Ultrathin Flexible Piezoelectric Devices. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yangyang Zhang
- Faculty of Mechanical Engineering and MechanicsNingbo University Ningbo 315211 P. R. China
- Engineering Research Center of Nano‐Geo Materials of Ministry of EducationChina University of Geosciences Wuhan 430074 P. R. China
| | - Chaofeng Lü
- College of Civil Engineering and ArchitectureZhejiang University Hangzhou 310058 P. R. China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang ProvinceZhejiang University Hangzhou 310027 P. R. China
- Soft Matter Research CenterZhejiang University Hangzhou 310027 P. R. China
| | - Bingwei Lu
- Department of Engineering MechanicsTsinghua University Beijing 100084 P. R. China
| | - Xue Feng
- Department of Engineering MechanicsTsinghua University Beijing 100084 P. R. China
| | - Ji Wang
- Faculty of Mechanical Engineering and MechanicsNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
70
|
Energy Harvesting Technologies and Equivalent Electronic Structural Models - Review. ELECTRONICS 2019. [DOI: 10.3390/electronics8050486] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As worldwide awareness about global climate change spreads, green electronics are becoming increasingly popular as an alternative to diminish pollution. Thus, nowadays energy efficiency is a paramount characteristic in electronics systems to obtain such a goal. Harvesting wasted energy from human activities and world physical phenomena is an alternative to deal with the aforementioned problem. Energy harvesters constitute a feasible solution to harvesting part of the energy being spared. The present research work provides the tools for characterizing, designing and implementing such devices in electronic systems through their equivalent structural models.
Collapse
|
71
|
Li N, Yi Z, Ma Y, Xie F, Huang Y, Tian Y, Dong X, Liu Y, Shao X, Li Y, Jin L, Liu J, Xu Z, Yang B, Zhang H. Direct Powering a Real Cardiac Pacemaker by Natural Energy of a Heartbeat. ACS NANO 2019; 13:2822-2830. [PMID: 30784259 DOI: 10.1021/acsnano.8b08567] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Implantable medical devices are widely used for monitoring and treatment of severe diseases. In particular, an implantable cardiac pacemaker is the most effective therapeutic device for treating bradyrhythmia, however its surgical replacement is inevitable every 5-12 years due to the limited life of the built-in battery. Although several approaches of energy harvesting have been explored in this decade for powering cardiac pacemakers, the modern, commercial, and full-function pacemaker has never been powered effectively yet. Here, we report an integrated strategy for directly powering a modern and full-function cardiac pacemaker, which can pace the porcine heart in vivo by harvesting the natural energy of a heartbeat, without using any external energy storage element. The generator includes an elastic skeleton and two piezoelectric composites, which could generate a high-output current of 15 μA in vivo over state-of-the-art performance. This study makes an impressive step toward fabricating a self-powered cardiac pacemaker and resolving the power issue of implantable medical devices by piezoelectric harvesting technology.
Collapse
Affiliation(s)
- Ning Li
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Zhiran Yi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Ye Ma
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Feng Xie
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Yue Huang
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Yingwei Tian
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaoxue Dong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yang Liu
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Xin Shao
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Yang Li
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Lei Jin
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hao Zhang
- Institute of Cardiothoracic Surgery at Changhai Hospital , Second Military Medical University , Shanghai 200433 , China
| |
Collapse
|
72
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
73
|
Jiang L, Yang Y, Chen R, Lu G, Li R, Li D, Humayun MS, Shung KK, Zhu J, Chen Y, Zhou Q. Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator. NANO ENERGY 2019; 56:216-224. [PMID: 31475091 PMCID: PMC6717511 DOI: 10.1016/j.nanoen.2018.11.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ultrasonic driven wireless charging technology has recently attracted much attention in the next generation bio-implantable systems; however, most developed ultrasonic energy harvesters are bulky and rigid and cannot be applied to general complex surfaces. Here, a flexible piezoelectric ultrasonic energy harvester (PUEH) array was designed and fabricated by integrating a large number of piezoelectric active elements with multilayered flexible electrodes in an elastomer membrane. The developed flexible PUEH device can be driven by the ultrasonic wave to produce continuous voltage and current outputs on both planar and curved surfaces, reaching output signals of more than 2 Vpp and 4 μA, respectively. Potential applications of using the flexible PUEH to charge energy-storage devices and power commercial electronics were demonstrated. Its low attenuation performance was also evaluated using the in vitro test of transmitting power through pork tissue, demonstrating its potential use in the next generation of wirelessly powered bio-implantable micro-devices.
Collapse
Affiliation(s)
- Laiming Jiang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yang Yang
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Ruimin Chen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Gengxi Lu
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Runze Li
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Di Li
- School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Mark S. Humayun
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Jianguo Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yong Chen
- Epstein Department of Industrial and Systems Engineering, Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Qifa Zhou
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
74
|
Electrical extraction of piezoelectric constants. Heliyon 2018; 4:e00910. [PMID: 30450438 PMCID: PMC6226591 DOI: 10.1016/j.heliyon.2018.e00910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
The piezoelectric materials are incorporated in smart structure to exhibit specific functionality. The activity of piezoelectric material dimension and electrical properties can be changed with an applied stress. These variations are translated to a change in the capacitance of the structure. This work takes a close outlook on the use of the capacitance-voltage measurements for the extraction of double piezoelectric thin film material deposited at the two faces of a flexible steel sheet. The piezoelectric thin film materials have been deposited using RF sputtering techniques. Gamry analyzer references 3000 was used to collect the capacitance-voltage measurements from both layers. The developed algorithm extracts directly the piezoelectric coefficients knowing the film thickness, the applied voltage, and the capacitance ratio. The capacitance ratio is the ratio between the capacitances of the film when the applied field in antiparallel and parallel to the polling field direction, respectively. The method has been calibrated using a piezoelectric bulk ceramic and validated by comparing the result with the reported values in the literature. The extracted values using the current approach match well the values extracted by other existing methods.
Collapse
|
75
|
Malakooti MH, Julé F, Sodano HA. Printed Nanocomposite Energy Harvesters with Controlled Alignment of Barium Titanate Nanowires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38359-38367. [PMID: 30360049 DOI: 10.1021/acsami.8b13643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Piezoelectric nanocomposites are commonly used in the development of self-powered miniaturized electronic devices and sensors. Although the incorporation of one-dimensional (1D) piezoelectric nanomaterials (i.e., nanowires, nanorods, and nanofibers) in a polymer matrix has led to the development of devices with promising energy harvesting and sensing performance, they have not yet reached their ultimate performance due to the challenges in fabrication. Here, a direct-write additive manufacturing technique is utilized to facilitate the fabrication of spatially tailored piezoelectric nanocomposites. High aspect ratio barium titanate (BaTiO3) nanowires (NWs) are dispersed in a polylactic acid (PLA) solution to produce a printable piezoelectric solution. The BaTiO3 NWs are arranged in PLA along three different axes of alignment via shear-induced alignment during a controlled printing process. The result of electromechanical characterizations shows that the nanowire alignment significantly affects the energy harvesting performance of the nanocomposites. The optimal power output can be enhanced by as much as eight times for printed nanocomposites with a tailored architecture of the embedded nanostructures. This power generation capacity is 273% higher compared to conventional cast nanocomposites with randomly oriented NWs. The findings of this study suggest that 3D printing of nanowire-based nanocomposites is a feasible, scalable, and rapid methodology to produce high-performance piezoelectric transducers with tailored micro- and nanostructures. This study offers the first demonstration of nanocomposite energy harvesters with spatially controlled filler orientation realized directly from a digital design.
Collapse
|
76
|
Shi B, Li Z, Fan Y. Implantable Energy-Harvesting Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801511. [PMID: 30043422 DOI: 10.1002/adma.201801511] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Indexed: 05/27/2023]
Abstract
The sustainable operation of implanted medical devices is essential for healthcare applications. However, limited battery capacity is a key challenge for most implantable medical electronics (IMEs). The human body abounds with mechanical and chemical energy, such as the heartbeat, breathing, blood circulation, and the oxidation-reduction of glucose. Harvesting energy from the human body is a possible approach for powering IMEs. Many new methods for developing in vivo energy harvesters (IVEHs) have been proposed for powering IMEs. In this context energy harvesters based on the piezoelectric effect, triboelectric effect, automatic wristwatch devices, biofuel cells, endocochlear potential, and light, with an emphasis on fabrication, energy output, power management, durability, animal experiments, evaluation criteria, and typical applications are discussed. Importantly, the IVEHs that are discussed, are actually implanted into living things. Future challenges and perspectives are also highlighted.
Collapse
Affiliation(s)
- Bojing Shi
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, 100083, China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
77
|
Li L, Lou Z, Chen D, Jiang K, Han W, Shen G. Recent Advances in Flexible/Stretchable Supercapacitors for Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1702829. [PMID: 29164773 DOI: 10.1002/smll.201702829] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/04/2017] [Indexed: 05/26/2023]
Abstract
The popularization of personalized wearable devices has accelerated the development of flexible/stretchable supercapacitors (SCs) that possess remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system, and realize the functions of comfortable, noninvasive and continuous health monitoring, motion records, and information acquisition, etc. This Review presents a brief phylogeny of flexible/stretchable SCs, represented by planar micro-supercapacitors (MSCs) and 1D fibrous SCs. The latest progress and advantages of different flexible/stretchable/self-healing substrate, solid-state electrolyte and electrode materials for the fabrication of wearable SCs devices are summarized. The various configurations used in planar MSCs and 1D fibrous SCs aiming at the improvement of performance are also discussed. In addition, from the viewpoint of practical value and large-scale production, a survey of integrated systems, from different types of SC powered wearable sensing (gas, pressure, tactile…) systems, wearable all-in-one systems (including energy harvest, storage, and functional groups), to device packaging is presented. Finally, the challenges and future perspectives of wearable SCs are also considered.
Collapse
Affiliation(s)
- La Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, 130012, P. R. China
| | - Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Di Chen
- College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Han
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun, 130012, P. R. China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
78
|
Liu Y, Zhu Y, Liu J, Zhang Y, Liu J, Zhai J. Design of Bionic Cochlear Basilar Membrane Acoustic Sensor for Frequency Selectivity Based on Film Triboelectric Nanogenerator. NANOSCALE RESEARCH LETTERS 2018; 13:191. [PMID: 29971697 PMCID: PMC6029990 DOI: 10.1186/s11671-018-2593-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 05/07/2023]
Abstract
Sensorineural hearing loss tops the list of most suffering disease for the sake of its chronic, spirit pressing, and handicapped features, which can happen to all age groups, from newborns to old folks. Laggard technical design as well as external power dependence of conventional cochlear implant cumbers agonized patients and restrict its wider practical application, driving researchers to seek for fundamental improvement. In this paper, we successfully proposed a novel bionic cochlear basilar membrane acoustic sensor in conjugation with triboelectric nanogenerator. By trapezoidally distributing nine silver electrodes on both two polytetrafluoroethylene membranes, a highly frequency-selective function was fulfilled in this gadget, ranging from 20 to 3000 Hz. It is believed to be more discernable with the increment of electrode numbers, referring to the actual basilar membrane in the cochlear. Besides, the as-made device can be somewhat self-powered via absorption of vibration energy carried by sound, which tremendously facilitates its potential users. As a consequence, the elaborate bionic system provides an innovative perspective tackling the problem of sensorineural hearing loss.
Collapse
Affiliation(s)
- Yudong Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yaxing Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jingyu Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083 China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004 China
| |
Collapse
|
79
|
Su L, Lu X, Chen L, Wang Y, Yuan G, Liu JM. Flexible, Fatigue-Free, and Large-Scale Bi 3.25La 0.75Ti 3O 12 Ferroelectric Memories. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21428-21433. [PMID: 29863844 DOI: 10.1021/acsami.8b04781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flexible, fatigue-free, large-scale, and nonvolatile memory is an emerging technological goal in a variety of fields, including electronic skins, wearable devices, and other flexible electronics. Perovskite oxide films deposited on rigid substrates (e.g., Si and SrTiO3) at 500-700 °C and >1.0 Pa oxygen ambience have been widely used in electronic industries. However, their applications in flexible electronics are challenging, if not impossible. Here, the Bi3.25La0.75Ti3O12 ferroelectric films with SrRuO3 or Pt electrodes were prepared on the two-dimensional mica substrates, and then the flexible Pt/SrRuO3/Bi3.25La0.75Ti3O12/Pt memories have been achieved through reducing the mica to ∼10 μm thickness. These memories show the saturated polarization of Ps ∼ 20 μC/cm2, and either the <1% bending strain or a normal light illumination hardly overcomes the potential barrier among different polarizations which originate from the noncentral symmetry of the atomic structure. As a result, they can undergo 109 write/erase cycles and/or 10000 times bending with 1.4 mm in radius without any fatigue or damage. Furthermore, they can withstand the operation at 20-200 °C or under light illumination. In short, these flexible oxide memories provide comprehensive performance for industrial applications.
Collapse
Affiliation(s)
- Liushuai Su
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xubing Lu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, and Key Laboratory of Quantum Engineering and Quantum Materials , South China Normal University , Guangzhou 510006 , China
| | - Lang Chen
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yaojin Wang
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Guoliang Yuan
- School of Materials Science and Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - J-M Liu
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, and Key Laboratory of Quantum Engineering and Quantum Materials , South China Normal University , Guangzhou 510006 , China
- National Laboratory of Solid State Microstructures and Innovative Center for Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
80
|
Jang SM, Yang SC. Highly piezoelectric BaTiO 3 nanorod bundle arrays using epitaxially grown TiO 2 nanomaterials. NANOTECHNOLOGY 2018; 29:235602. [PMID: 29582775 DOI: 10.1088/1361-6528/aab9cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.
Collapse
Affiliation(s)
- Seon-Min Jang
- Department of Chemical Engineering, Dong-A University, Republic of Korea
| | | |
Collapse
|
81
|
Zhang C, Fan Y, Li H, Li Y, Zhang L, Cao S, Kuang S, Zhao Y, Chen A, Zhu G, Wang ZL. Fully Rollable Lead-Free Poly(vinylidene fluoride)-Niobate-Based Nanogenerator with Ultra-Flexible Nano-Network Electrodes. ACS NANO 2018; 12:4803-4811. [PMID: 29701953 DOI: 10.1021/acsnano.8b01534] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A fully rollable nanocomposite-based nanogenerator (NCG) is developed by integrating a lead-free piezoelectric hybrid layer with a type of nanofiber-supported silver nanowire (AgNW) network as electrodes. The thin-film nanocomposite is composed of electroactive polyvinylidene fluoride (PVDF) polymer matrix and compositionally modified potassium sodium niobate-based nanoparticles (NPs) with a high piezoelectric coefficient ( d33) of 53 pm/V, which is revealed by the piezoresponse force microscopy measurements. Under periodical agitation at a compressive force of 50 N and 1 Hz, the NCG can steadily render high electric output up to an open-circuit voltage of 18 V and a short-circuit current of 2.6 μA. Of particular importance is the decent rollability of the NCG, as indicated by the negligible decay in the electric output after it being repeatedly rolled around a gel pen for 200 cycles. Besides, the biocompatible NCG can potentially be used to scavenge biomechanical energy from low-frequency human motions, as demonstrated by the scenarios of walking and elbow joint movement. These results rationally expand the feasibility of the developed NCG toward applications in lightweight, diminutive, and multifunctional rollable or wearable electronic devices.
Collapse
Affiliation(s)
- Chen Zhang
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
| | - Youjun Fan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Huayang Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yayuan Li
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Lei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Shubo Cao
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
| | - Shuangyang Kuang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Yongbin Zhao
- Shandong Oubo New Material Co. Ltd , Dongying , Shandong 257088 , China
| | - Aihua Chen
- School of Materials Science and Engineering , Beihang University , Beijing 100191 , China
- Beijing Advanced Innovation Centre for Biomedical Engineering , Beihang University , Beijing 100191 , China
| | - Guang Zhu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- Department of Mechanical, Materials and Manufacturing Engineering , The University of Nottingham Ningbo China , Ningbo 315100 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor , Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100048 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
82
|
Feng H, Zhao C, Tan P, Liu R, Chen X, Li Z. Nanogenerator for Biomedical Applications. Adv Healthc Mater 2018; 7:e1701298. [PMID: 29388350 DOI: 10.1002/adhm.201701298] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/09/2017] [Indexed: 01/25/2023]
Abstract
In the past 10 years, the development of nanogenerators (NG) has enabled different systems to operate without external power supply. NG have the ability to harvest the mechanical energies in different forms. Human body motions and activities can also serve as the energy source to drive NG and enable self-powered healthcare system. In this review, a summary of several major actual applications of NG in the biomedical fields is made including the circulatory system, the neural system, cell modulation, microbe disinfection, and biodegradable electronics. Nevertheless, there are still many challenges for NG to be actually adopted in clinical applications, including the miniaturization, duration, encapsulation, and output performance. It is also very important to further combine the NG development more precisely with the medical principles. In future, NG can serve as highly promising complementary or even alternative power suppliers to traditional batteries for the healthcare electronics.
Collapse
Affiliation(s)
- Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Chaochao Zhao
- Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Puchuan Tan
- Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ruping Liu
- Beijing Institute of Graphic Communication; Beijing 102600 P. R. China
| | - Xin Chen
- Beijing Institute of Graphic Communication; Beijing 102600 P. R. China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
83
|
Lou Z, Li L, Wang L, Shen G. Recent Progress of Self-Powered Sensing Systems for Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 29076297 DOI: 10.1002/smll.201701791] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/01/2017] [Indexed: 05/15/2023]
Abstract
Wearable/flexible electronic sensing systems are considered to be one of the key technologies in the next generation of smart personal electronics. To realize personal portable devices with mobile electronics application, i.e., wearable electronic sensors that can work sustainably and continuously without an external power supply are highly desired. The recent progress and advantages of wearable self-powered electronic sensing systems for mobile or personal attachable health monitoring applications are presented. An overview of various types of wearable electronic sensors, including flexible tactile sensors, wearable image sensor array, biological and chemical sensor, temperature sensors, and multifunctional integrated sensing systems is provided. Self-powered sensing systems with integrated energy units are then discussed, separated as energy harvesting self-powered sensing systems, energy storage integrated sensing systems, and all-in-on integrated sensing systems. Finally, the future perspectives of self-powered sensing systems for wearable electronics are discussed.
Collapse
Affiliation(s)
- Zheng Lou
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - La Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Lili Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
84
|
Current State and Future Perspectives of Energy Sources for Totally Implantable Cardiac Devices. ASAIO J 2017; 62:639-645. [PMID: 27442857 DOI: 10.1097/mat.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
There is a large population of patients with end-stage congestive heart failure who cannot be treated by means of conventional cardiac surgery, cardiac transplantation, or chronic catecholamine infusions. Implantable cardiac devices, many designated as destination therapy, have revolutionized patient care and outcomes, although infection and complications related to external power sources or routine battery exchange remain a substantial risk. Complications from repeat battery replacement, power failure, and infections ultimately endanger the original objectives of implantable biomedical device therapy - eliminating the intended patient autonomy, affecting patient quality of life and survival. We sought to review the limitations of current cardiac biomedical device energy sources and discuss the current state and trends of future potential energy sources in pursuit of a lifelong fully implantable biomedical device.
Collapse
|
85
|
Lee YH, Jang M, Lee MY, Kweon OY, Oh JH. Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem 2017. [DOI: 10.1016/j.chempr.2017.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
86
|
Jang J, Jang JH, Choi H. Biomimetic Artificial Basilar Membranes for Next-Generation Cochlear Implants. Adv Healthc Mater 2017; 6. [PMID: 28892270 DOI: 10.1002/adhm.201700674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/13/2017] [Indexed: 01/27/2023]
Abstract
Patients with sensorineural hearing loss can recover their hearing using a cochlear implant (CI). However, there is a need to develop next-generation CIs to overcome the limitations of conventional CIs caused by extracorporeal devices. Recently, artificial basilar membranes (ABMs) are actively studied for next-generation CIs. The ABM is an acoustic transducer that mimics the mechanical frequency selectivity of the BM and acoustic-to-electrical energy conversion of hair cells. This paper presents recent progress in biomimetic ABMs. First, the characteristics of frequency selectivity of the ABMs by the trapezoidal membrane and beam array are addressed. Second, to reflect the latest research of energy conversion technologies, ABMs using various piezoelectric materials and triboelectric-based ABMs are discussed. Third, in vivo evaluations of the ABMs in animal models are discussed according to the target position for implantation. Finally, future perspectives of ABM studies for the development of practical hearing devices are discussed.
Collapse
Affiliation(s)
- Jongmoon Jang
- Department of Robotics Engineering; DGIST-ETH Microrobot Research Center; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 333, Techno jungang-daero, Hyeonpung-Myeon Dalseong-Gun Daegu 42988 Republic of Korea
| | - Jeong Hun Jang
- Department of Otorhinolaryngology-Head and Neck Surgery; Ajou University College of Medicine; 164, World cup-ro Yeongtong-gu Suwon 16499 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering; DGIST-ETH Microrobot Research Center; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 333, Techno jungang-daero, Hyeonpung-Myeon Dalseong-Gun Daegu 42988 Republic of Korea
| |
Collapse
|
87
|
Hassani FA, Peh WYX, Gammad GGL, Mogan RP, Ng TK, Kuo TLC, Ng LG, Luu P, Yen S, Lee C. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700143. [PMID: 29201606 PMCID: PMC5700638 DOI: 10.1002/advs.201700143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/09/2017] [Indexed: 05/08/2023]
Abstract
Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.
Collapse
Affiliation(s)
- Faezeh Arab Hassani
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART)Yong Loo Lin School of MedicineNational University of Singapore14 Medical Drive #14‐01Singapore117599Singapore
| | - Wendy Yen Xian Peh
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Gil Gerald Lasam Gammad
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Roshini Priya Mogan
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Tze Kiat Ng
- Raffles Hospital585 North Bridge RoadSingapore188770Singapore
| | | | - Lay Guat Ng
- Singapore General HospitalOutram RoadSingapore169608Singapore
| | - Percy Luu
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
| | - Shih‐Cheng Yen
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer EngineeringFaculty of EngineeringNational University of Singapore4 Engineering Drive 3, #05‐45Singapore117583Singapore
- Singapore Institute for NeurotechnologyNational University of Singapore28 Medical Dr. #05‐CORSingapore117456Singapore
- Center for Intelligent Sensors and MEMSNational University of Singapore4 Engineering Drive 3Singapore117576Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART)Yong Loo Lin School of MedicineNational University of Singapore14 Medical Drive #14‐01Singapore117599Singapore
| |
Collapse
|
88
|
Fu H, Nan K, Froeter P, Huang W, Liu Y, Wang Y, Wang J, Yan Z, Luan H, Guo X, Zhang Y, Jiang C, Li L, Dunn AC, Li X, Huang Y, Zhang Y, Rogers JA. Mechanically-Guided Deterministic Assembly of 3D Mesostructures Assisted by Residual Stresses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700151. [PMID: 28489315 PMCID: PMC5559729 DOI: 10.1002/smll.201700151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Indexed: 06/07/2023]
Abstract
Formation of 3D mesostructures in advanced functional materials is of growing interest due to the widespread envisioned applications of devices that exploit 3D architectures. Mechanically guided assembly based on compressive buckling of 2D precursors represents a promising method, with applicability to a diverse set of geometries and materials, including inorganic semiconductors, metals, polymers, and their heterogeneous combinations. This paper introduces ideas that extend the levels of control and the range of 3D layouts that are achievable in this manner. Here, thin, patterned layers with well-defined residual stresses influence the process of 2D to 3D geometric transformation. Systematic studies through combined analytical modeling, numerical simulations, and experimental observations demonstrate the effectiveness of the proposed strategy through ≈20 example cases with a broad range of complex 3D topologies. The results elucidate the ability of these stressed layers to alter the energy landscape associated with the transformation process and, specifically, the energy barriers that separate different stable modes in the final 3D configurations. A demonstration in a mechanically tunable microbalance illustrates the utility of these ideas in a simple structure designed for mass measurement.
Collapse
Affiliation(s)
| | | | - Paul Froeter
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Wen Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Yuan Liu
- Center for Mechanics and Materials, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (P.R. China)
| | - Yiqi Wang
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Juntong Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Zheng Yan
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Haiwen Luan
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (USA)
| | - Xiaogang Guo
- Center for Mechanics and Materials, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (P.R. China)
| | - Yijie Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Changqing Jiang
- Man-machine-Environment Engineering Institute, Department of Aeronautics & Astronautics Engineering, Tsinghua University, Beijing 100084 (P.R. China)
| | - Luming Li
- Man-machine-Environment Engineering Institute, Department of Aeronautics & Astronautics Engineering, Tsinghua University, Beijing 100084 (P.R. China)
| | - Alison C. Dunn
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Xiuling Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (USA)
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (USA)
| | | | | |
Collapse
|
89
|
Marino A, Genchi GG, Sinibaldi E, Ciofani G. Piezoelectric Effects of Materials on Bio-Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17663-17680. [PMID: 28485910 DOI: 10.1021/acsami.7b04323] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrical stimulation of cells and tissues is an important approach of interaction with living matter, which has been traditionally exploited in the clinical practice for a wide range of pathological conditions, in particular, related to excitable tissues. Standard methods of stimulation are, however, often invasive, being based on electrodes and wires used to carry current to the intended site. The possibility to achieve an indirect electrical stimulation, by means of piezoelectric materials, is therefore of outstanding interest for all the biomedical research, and it emerged in the latest decade as a most promising tool in many bioapplications. In this paper, we summarize the most recent achievements obtained by our group and by others in the exploitation of piezoelectric nanoparticles and nanocomposites for cell stimulation, describing the important implications that these studies present in nanomedicine and tissue engineering. A particular attention will be also dedicated to the physical modeling, which can be extremely useful in the description of the complex mechanisms involved in the mechanical/electrical transduction, yet also to gain new insights at the base of the observed phenomena.
Collapse
Affiliation(s)
| | | | | | - Gianni Ciofani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino , Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
90
|
Li X, Liang R, Tao J, Peng Z, Xu Q, Han X, Wang X, Wang C, Zhu J, Pan C, Wang ZL. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting. ACS NANO 2017; 11:3883-3889. [PMID: 28362480 DOI: 10.1021/acsnano.7b00272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.
Collapse
Affiliation(s)
- Xiaoyi Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | | | - Juan Tao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Zhengchun Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Qiming Xu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Xun Han
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Xiandi Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Chunfeng Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | | | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for Nanoscience and Technology , Beijing 100083, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
91
|
Gupta RK, Shi Q, Dhakar L, Wang T, Heng CH, Lee C. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism. Sci Rep 2017; 7:41396. [PMID: 28120924 PMCID: PMC5264648 DOI: 10.1038/srep41396] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/19/2016] [Indexed: 11/17/2022] Open
Abstract
Over the years, several approaches have been devised to widen the operating bandwidth, but most of them can only be triggered at high accelerations. In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g–2.0 g). In order to achieve broadband behavior, a polymer based spring exhibiting multimodal energy harvesting is used. Besides, non-linear stiffening effect is introduced by using mechanical stoppers. At low accelerations (<0.5 g), the nearby mode frequencies of polymer spring contribute to broadening characteristics, while proof mass engages with mechanical stoppers to introduce broadening by non-linear stiffening at higher accelerations. The electromagnetic mechanism is employed in this design to enhance its output at low accelerations when triboelectric output is negligible. Our device displays bandwidth of 40 Hz even at low acceleration of 0.1 g and it is increased up to 68 Hz at 2 g. When non-linear stiffening is used along with multimodal energy-harvesting, the obtained bandwidth increases from 23 Hz to 68 Hz with percentage increment of 295% at 1.8 g. Further, we have demonstrated the triboelectric output measured as acceleration sensing signals in terms of voltage and current sensitivity of 4.7 Vg−1 and 19.7 nAg−1, respectively.
Collapse
Affiliation(s)
- Rahul Kumar Gupta
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore.,NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore.,NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Lokesh Dhakar
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore.,NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Tao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore.,NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Chun Huat Heng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore.,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore.,NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, P. R. China.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, 117456, Singapore
| |
Collapse
|
92
|
Roji M AM, G J, Raj T AB. A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Adv 2017. [DOI: 10.1039/c7ra05256a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper gives a detailed report of the evolution and potential applications of piezoelectric nanogenerators (PENGs).
Collapse
Affiliation(s)
- Ani Melfa Roji M
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| | - Jiji G
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| | - Ajith Bosco Raj T
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| |
Collapse
|
93
|
Yu A, Chen X, Cui H, Chen L, Luo J, Tang W, Peng M, Zhang Y, Zhai J, Wang ZL. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface. ACS NANO 2016; 10:11434-11441. [PMID: 27935271 DOI: 10.1021/acsnano.6b07030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.
Collapse
Affiliation(s)
- Aifang Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Haotian Cui
- College of Information Engineering, Northwest A&F University , Yangling 712100, China
| | - Libo Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Jianjun Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Mingzeng Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Yang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Junyi Zhai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST) , Beijing 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
94
|
Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, Liu Z, Jin Y, Zou Y, An Z, Zhang W, Wang X, Jiang W, Xu Z, Wang ZL, Li Z, Zhang H. Self-Powered, One-Stop, and Multifunctional Implantable Triboelectric Active Sensor for Real-Time Biomedical Monitoring. NANO LETTERS 2016; 16:6042-6051. [PMID: 27607151 DOI: 10.1021/acs.nanolett.6b01968] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Operation time of implantable electronic devices is largely constrained by the lifetime of batteries, which have to be replaced periodically by surgical procedures once exhausted, causing physical and mental suffering to patients and increasing healthcare costs. Besides the efficient scavenging of the mechanical energy of internal organs, this study proposes a self-powered, flexible, and one-stop implantable triboelectric active sensor (iTEAS) that can provide continuous monitoring of multiple physiological and pathological signs. As demonstrated in human-scale animals, the device can monitor heart rates, reaching an accuracy of ∼99%. Cardiac arrhythmias such as atrial fibrillation and ventricular premature contraction can be detected in real-time. Furthermore, a novel method of monitoring respiratory rates and phases is established by analyzing variations of the output peaks of the iTEAS. Blood pressure can be independently estimated and the velocity of blood flow calculated with the aid of a separate arterial pressure catheter. With the core-shell packaging strategy, monitoring functionality remains excellent during 72 h after closure of the chest. The in vivo biocompatibility of the device is examined after 2 weeks of implantation, proving suitability for practical use. As a multifunctional biomedical monitor that is exempt from needing an external power supply, the proposed iTEAS holds great potential in the future of the healthcare industry.
Collapse
Affiliation(s)
- Ye Ma
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Qiang Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Yang Liu
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Bojin Shi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Xiang Xue
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Weiping Ji
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Zhuo Liu
- School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, PR China
| | - Yiming Jin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Yang Zou
- School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, PR China
| | - Zhao An
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Wei Zhang
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Xinxin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Wen Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Zhiyun Xu
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Science , Beijing 100083, PR China
| | - Hao Zhang
- Institute of Cardiothoracic Surgery at Changhai Hospital, Second Military Medical University , Shanghai 200433, PR China
| |
Collapse
|
95
|
Jang J, Lee J, Jang JH, Choi H. A Triboelectric-Based Artificial Basilar Membrane to Mimic Cochlear Tonotopy. Adv Healthc Mater 2016; 5:2481-2487. [PMID: 27276094 DOI: 10.1002/adhm.201600232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/17/2016] [Indexed: 11/05/2022]
Abstract
A triboelectric-based artificial basilar membrane (TEABM) can mimic cochlear tonotopy by triboelectrification between Kapton film and aluminum foil. The two films are stacked and clamped to form a beam structure. The TEABM tonotopy is tested using an animal model to verify the feasibility of a self-powered acoustic sensor for a prototype cochlear implant.
Collapse
Affiliation(s)
- Jongmoon Jang
- Department of Robotics Engineering; DGIST-ETH Microrobot Research Center; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 333, Techno jungang-daero, Hyeonpung-Myeon Dalseong-Gun Daegu 711-873 Republic of Korea
| | - JangWoo Lee
- Department of Robotics Engineering; DGIST-ETH Microrobot Research Center; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 333, Techno jungang-daero, Hyeonpung-Myeon Dalseong-Gun Daegu 711-873 Republic of Korea
| | - Jeong Hun Jang
- Department of Otorhinolaryngology-Head and Neck Surgery; Kyungpook National University School of Medicine; 680, Gukchaebosang-ro Jung-gu Daegu 700-721 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering; DGIST-ETH Microrobot Research Center; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 333, Techno jungang-daero, Hyeonpung-Myeon Dalseong-Gun Daegu 711-873 Republic of Korea
| |
Collapse
|
96
|
Park SH, Lee HB, Yeon SM, Park J, Lee NK. Flexible and Stretchable Piezoelectric Sensor with Thickness-Tunable Configuration of Electrospun Nanofiber Mat and Elastomeric Substrates. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24773-81. [PMID: 27571166 DOI: 10.1021/acsami.6b07833] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Here, we developed highly sensitive piezoelectric sensors in which flexible membrane components were harmoniously integrated. An electrospun nanofiber mat of poly(vinylidenefluoride-co-trifluoroethylene) was sandwiched between two elastomer sheets with sputtered electrodes as an active layer for piezoelectricity. The developed sensory system was ultrasensitive in response to various microscale mechanical stimuli and able to perceive the corresponding deformation at a resolution of 1 μm. Owing to the highly flexible and resilient properties of the components, the durability of the device was sufficiently stable so that the measuring performance could still be effective under harsh conditions of repetitive stretching and folding. When employing spin-coated thin elastomer films, the thickness of the entire sandwich architecture could be less than 100 μm, thereby achieving sufficient compliance of mechanical deformation to accommodate artery-skin motion of the heart pulse. These skin-attachable film- or sheet-type mechanical sensors with high flexibility are expected to enable various applications in the field of wearable devices, medical monitoring systems, and electronic skin.
Collapse
Affiliation(s)
- Suk-Hee Park
- Micro/Nano Scale Manufacturing R&D Group, Korea Institute of Industrial Technology , Ansan-si, Gyeonggi-do 426-910, Korea
| | - Han Bit Lee
- Micro/Nano Scale Manufacturing R&D Group, Korea Institute of Industrial Technology , Ansan-si, Gyeonggi-do 426-910, Korea
- Department of Mechanical Engineering, Hanyang University , Ansan-si, Gyeonggi-do 426-791, Korea
| | - Si Mo Yeon
- Micro/Nano Scale Manufacturing R&D Group, Korea Institute of Industrial Technology , Ansan-si, Gyeonggi-do 426-910, Korea
| | - Jeanho Park
- Micro/Nano Scale Manufacturing R&D Group, Korea Institute of Industrial Technology , Ansan-si, Gyeonggi-do 426-910, Korea
| | - Nak Kyu Lee
- Micro/Nano Scale Manufacturing R&D Group, Korea Institute of Industrial Technology , Ansan-si, Gyeonggi-do 426-910, Korea
| |
Collapse
|
97
|
Genchi GG, Ceseracciu L, Marino A, Labardi M, Marras S, Pignatelli F, Bruschini L, Mattoli V, Ciofani G. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells. Adv Healthc Mater 2016; 5:1808-20. [PMID: 27283784 DOI: 10.1002/adhm.201600245] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/28/2016] [Indexed: 12/15/2022]
Abstract
Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect.
Collapse
Affiliation(s)
- Giada Graziana Genchi
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Luca Ceseracciu
- Istituto Italiano di Tecnologia Smart Materials Nanophysics Department Via Morego 30 16163 Genova Italy
| | - Attilio Marino
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Scuola Superiore Sant'Anna The BioRobotics Institute Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | | | - Sergio Marras
- Istituto Italiano di Tecnologia Nanochemistry Department Via Morego 30 16163 Genova Italy
| | - Francesca Pignatelli
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Luca Bruschini
- University Hospital of Pisa ENT Audiology and Phoniatry Unit Via Paradisa 3 56124 Pisa Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia Center for Micro‐BioRobotics @SSSA Viale Rinaldo Piaggio 34 56025 Pontedera (Pisa) Italy
- Politecnico di Torino Department of Mechanical and Aerospace Engineering Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
98
|
Fan FR, Tang W, Wang ZL. Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:4283-305. [PMID: 26748684 DOI: 10.1002/adma.201504299] [Citation(s) in RCA: 491] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Indexed: 05/21/2023]
Abstract
Flexible nanogenerators that efficiently convert mechanical energy into electrical energy have been extensively studied because of their great potential for driving low-power personal electronics and self-powered sensors. Integration of flexibility and stretchability to nanogenerator has important research significance that enables applications in flexible/stretchable electronics, organic optoelectronics, and wearable electronics. Progress in nanogenerators for mechanical energy harvesting is reviewed, mainly including two key technologies: flexible piezoelectric nanogenerators (PENGs) and flexible triboelectric nanogenerators (TENGs). By means of material classification, various approaches of PENGs based on ZnO nanowires, lead zirconate titanate (PZT), poly(vinylidene fluoride) (PVDF), 2D materials, and composite materials are introduced. For flexible TENG, its structural designs and factors determining its output performance are discussed, as well as its integration, fabrication and applications. The latest representative achievements regarding the hybrid nanogenerator are also summarized. Finally, some perspectives and challenges in this field are discussed.
Collapse
Affiliation(s)
- Feng Ru Fan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Wei Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
99
|
Liu X, Zhao H, Lu Y, Li S, Lin L, Du Y, Wang X. In vitro cardiomyocyte-driven biogenerator based on aligned piezoelectric nanofibers. NANOSCALE 2016; 8:7278-7286. [PMID: 26976074 DOI: 10.1039/c5nr08430j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Capturing the body's mechanical energy from the heart, lungs, and diaphragm can probably meet the requirements for in vivo applications of implantable biomedical devices. In this work, we present a novel contractile cardiomyocyte (CM)-driven biogenerator based on piezoelectric nanofibers (NFs) uniaxially aligned on a PDMS thin film. Flexible nanostructures interact with the CMs, as a physical cue to guide the CMs to align in a specific way, and create mechanical interfaces of contractile CMs and piezoelectric NFs. As such, the cellular construct features specific alignment and synchronous contraction, which realizes the maximal resultant force to drive the NFs to bend periodically. Studies on contraction mapping show that neonatal rat CMs self-assemble into a functional bio-bot film with well-defined axes of force generation. Consequently, the biogenerator produces an average voltage of 200 mV and current of 45 nA at the cell concentration of 1.0 million per ml, offering a biocompatible and scalable platform for biological energy conversion.
Collapse
Affiliation(s)
- Xia Liu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, PR China. and Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, PR China
| | - Hui Zhao
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Tsinghua University, Beijing 100084, PR China
| | - Yingxian Lu
- Institute of Microelectronics, Tsinghua University, Beijing 100084, PR China. and Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, PR China
| | - Song Li
- Department of Bioengineering, University of California, Berkeley 94720, USA
| | - Liwei Lin
- Department of Mechanical Engineering, University of California, Berkeley 94720, USA
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Tsinghua University, Beijing 100084, PR China
| | - Xiaohong Wang
- Institute of Microelectronics, Tsinghua University, Beijing 100084, PR China. and Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
100
|
Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. ACTUATORS 2016. [DOI: 10.3390/act5010005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|