51
|
Fu X, Wu J, Xu H, Wan P, Fu H, Mei Q. Luminescence Nanoprobe in the Near-Infrared-II Window for Ultrasensitive Detection of Hypochlorite. Anal Chem 2021; 93:15696-15702. [PMID: 34784176 DOI: 10.1021/acs.analchem.1c03582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sensitive and selective detection of hypochlorite is in great demand for food safety, especially in fresh cold chain products. However, the detection limit of traditional visible emission-based strategies cannot satisfy the requirement of ultrasensitive analysis in practical applications. In this work, we explored a novel luminescent nanoprobe in the near-infrared-II (NIR-II) window to greatly improve the hypochlorite detection limit for analysis of real milk samples, which was based on the fluorescence resonance energy-transfer process between the hypochlorite-responsive dye (FD1080) and the lanthanide-doped downconverted nanoparticles. Specifically, the NIR-II luminescence from Yb ions was first suppressed by FD1080 due to the energy-transfer mechanism. In the presence of hypochlorite, FD1080 was bleached to recover the luminescence. As a proof-of-concept, the optimal nanoprobe exhibited a linear luminescence recovery in the range of 0.1-1 nM with the detection limit of 0.0295 nM for hypochlorite. Real milk sample detection experiments showed that the probe had good accuracy and precision.
Collapse
Affiliation(s)
- Xiao Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jinmei Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Huajian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Pingping Wan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Huimin Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Qingsong Mei
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
52
|
Zhang X, He S, Ding B, Qu C, Chen H, Sun Y, Zhang R, Lan X, Cheng Z. Synergistic strategy of rare-earth doped nanoparticles for NIR-II biomedical imaging. J Mater Chem B 2021; 9:9116-9122. [PMID: 34617547 DOI: 10.1039/d1tb01640g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Featuring simultaneous multicolor imaging for multiple targets, a synergistic strategy has become promising for fluorescence imaging applications. Visible and first near infrared (NIR-I, 700-900 nm) fluorophores have been explored for multicolor imaging to achieve good multi-target capacity, but they are largely hampered by the narrow imaging bands available (400-900 nm, bandwidth 500 nm), the broad emission spectra of many fluorophores, shallow tissue penetration and scattering loss. With attractive characteristic emission peaks in the second NIR window (NIR-II, 1000-1700 nm), a narrow emission spectrum, and deeper tissue penetration capability, rare-earth doped nanoparticles (RENPs) have been considered by us to be outstanding candidates for multicolor bioimaging. Herein, two RENPs, NaYF4:Yb20Er2@NaYF4 and NaYF4:Nd5@NaYF4, were prepared and modified with polyethylene glycol (PEG) to explore simultaneous imaging in the NIR-IIb (1530 nm, under 980 nm laser excitation) and the NIR-II (1060 nm, under 808 nm laser excitation) windows. The PEGylated-RENPs (RENPs@PEG) were able to simultaneously visualize the circulatory system, trace the lymphatic system, and evaluate the skeletal system. Our study demonstrates that RENPs have high synergistic imaging capability in multifunctional biomedical applications using their NIR-II fluorescence. Importantly, the two RENPs@PEG are complementary to each other for higher temporal resolution in NaYF4:Nd5@NaYF4@PEG and higher spatial resolution in NaYF4:Yb20Er2@NaYF4@PEG, which may provide more comprehensive and accurate imaging diagnosis. In conclusion, RENPs are highly promising nanomaterials for multicolor imaging in the NIR-II window.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Shuqing He
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Bingbing Ding
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Chunrong Qu
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Hao Chen
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yu Sun
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
| | - Ruiping Zhang
- Radiology Department, The Bethune Hospital, The Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province 030032, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, California 94305-5344, USA.
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
53
|
Zhou WL, Chen Y, Lin W, Liu Y. Luminescent lanthanide-macrocycle supramolecular assembly. Chem Commun (Camb) 2021; 57:11443-11456. [PMID: 34647938 DOI: 10.1039/d1cc04672a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of macrocyclic compounds, including crown ether, cyclodextrin, cucurbituril and pillararene, bound to various specific organic/inorganic/biological guest molecules and ions through various non-covalent interactions, can not only make a single system multifunctional but also endow the system with intelligence, especially for luminescent materials. Due to their excellent luminescence properties, such as long-lived excited states, sharp linear emission bands and large Stokes shift, lanthanides have shown great advantages in luminescence, and have been more and more applied in the design of advanced functional luminescent materials. Based on reported research, we summarize the progress of lanthanide luminescent materials based on different macrocyclic compounds from ion or molecule recognition to functional nano-supramolecular assembly of the lanthanide-macrocycle supramolecular system including photo-reaction mediated switch of lanthanide luminescent molecules, multicolor luminescence, ion detection and cell imaging of rare-earth up-conversion of macrocyclic supramolecular assembly. Finally, we put forward the prospects of future development of lanthanide luminescent macrocyclic supramolecular materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
54
|
Pham NNT, Han SH, Park JS, Lee SG. Optical and Electronic Properties of Organic NIR-II Fluorophores by Time-Dependent Density Functional Theory and Many-Body Perturbation Theory: GW-BSE Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2293. [PMID: 34578610 PMCID: PMC8466807 DOI: 10.3390/nano11092293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Organic-molecule fluorophores with emission wavelengths in the second near-infrared window (NIR-II, 1000-1700 nm) have attracted substantial attention in the life sciences and in biomedical applications because of their excellent resolution and sensitivity. However, adequate theoretical levels to provide efficient and accurate estimations of the optical and electronic properties of organic NIR-II fluorophores are lacking. The standard approach for these calculations has been time-dependent density functional theory (TDDFT). However, the size and large excitonic energies of these compounds pose challenges with respect to computational cost and time. In this study, we used the GW approximation combined with the Bethe-Salpeter equation (GW-BSE) implemented in many-body perturbation theory approaches based on density functional theory. This method was used to perform calculations of the excited states of two NIR molecular fluorophores (BTC980 and BTC1070), going beyond TDDFT. In this study, the optical absorption spectra and frontier molecular orbitals of these compounds were compared using TDDFT and GW-BSE calculations. The GW-BSE estimates showed excellent agreement with previously reported experimental results.
Collapse
Affiliation(s)
- Nguyet N. T. Pham
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Seong Hun Han
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
55
|
Zhang X, Ji A, Wang Z, Lou H, Li J, Zheng L, Zhou Y, Qu C, Liu X, Chen H, Cheng Z. Azide-Dye Unexpected Bone Targeting for Near-Infrared Window II Osteoporosis Imaging. J Med Chem 2021; 64:11543-11553. [PMID: 34342432 DOI: 10.1021/acs.jmedchem.1c00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Azide is an important chemical functional group and has been widely used in chemical biology. However, the impact of azide on the in vivo behaviors of compounds has been rarely studied. Herein, azide was introduced into a fluorescent dye for the near-infrared window two (NIR-II) bone imaging. Specifically, we designed and synthesized the small-molecule NIR-II dyes, N3-FEP-4T capped with azide and FEP-4T without azide capping. In vitro assays revealed that N3-FEP-4T showed 5- and 5.6- times higher hydroxyapatite accumulation and macrophage uptake than those of FEP-4T, respectively. Moreover, N3-FEP-4T displayed higher bone uptakes and much better bone NIR-II imaging quality, demonstrating the specific bone-targeting ability of the azide-containing probe. N3-FEP-4T was then further successfully used for osteoporosis NIR-II imaging. Overall, our study provides insights into the impact of azide on the in vivo behavior of azide-containing compounds and opens a new window for biological application of azide.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Aiyan Ji
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiming Wang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyue Lou
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiafeng Li
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Chunrong Qu
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Department of Nuclear Medicine, Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New District, Shanghai 200120, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No. 12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| |
Collapse
|
56
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
57
|
Thangudu S, Kaur N, Korupalli C, Sharma V, Kalluru P, Vankayala R. Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications. Biomater Sci 2021; 9:5472-5483. [PMID: 34269365 DOI: 10.1039/d1bm00631b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light-based theranostics have become indispensable tools in the field of cancer nanomedicine. Specifically, near infrared (NIR) light mediated imaging and therapy of deeply seated tumors using a single multi-functional nanoplatform have gained significant attention. To this end, several multi-functional nanomaterials have been utilized to tackle cancer and thereby achieve significant outcomes. The present review mainly focuses on the recent advances in the development of NIR light activatable multi-functional materials such as small molecules, quantum dots, and metallic nanostructures for the diagnosis and treatment of deeply seated tumors. The need for improved disease detection and enhanced treatment options, together with realistic considerations for clinically translatable nanomaterials will be the key driving factors for theranostic agent research in the near future. NIR-light mediated cancer imaging and therapeutic approaches offer several advantages in terms of minimal invasiveness, deeper tissue penetration, spatiotemporal resolution, and molecular specificities. Herein, we have reviewed the recent developments in NIR light responsive multi-functional nanostructures for phototheranostic applications in cancer therapy.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Navpreet Kaur
- Discipline of Biosciences & Bio-Medical Engineering, Indian Institute of Technology Indore, Simrol 453552, India
| | - Chiranjeevi Korupalli
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Vinay Sharma
- Discipline of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Poliraju Kalluru
- Department of Chemistry, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342037, India.
| |
Collapse
|
58
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
59
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
60
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
61
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
62
|
Zhang X, Fu Q, Duan H, Song J, Yang H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS NANO 2021; 15:6147-6191. [PMID: 33739822 DOI: 10.1021/acsnano.1c01146] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Janus nanoparticles (JNPs) refer to the integration of two or more chemically discrepant composites into one structure system. Studies into JNPs have been of significant interest due to their interesting characteristics stemming from their asymmetric structures, which can integrate different functional properties and perform more synergetic functions simultaneously. Herein, we present recent progress of Janus particles, comprehensively detailing fabrication strategies and applications. First, the classification of JNPs is divided into three blocks, consisting of polymeric composites, inorganic composites, and hybrid polymeric/inorganic JNPs composites. Then, the fabrication strategies are alternately summarized, examining self-assembly strategy, phase separation strategy, seed-mediated polymerization, microfluidic preparation strategy, nucleation growth methods, and masking methods. Finally, various intriguing applications of JNPs are presented, including solid surfactants agents, micro/nanomotors, and biomedical applications such as biosensing, controlled drug delivery, bioimaging, cancer therapy, and combined theranostics. Furthermore, challenges and future works in this field are provided.
Collapse
Affiliation(s)
- Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China
| |
Collapse
|
63
|
Monteiro JHSK, Hiti EA, Hardy EE, Wilkinson GR, Gorden JD, Gorden AEV, de Bettencourt-Dias A. New up-conversion luminescence in molecular cyano-substituted naphthylsalophen lanthanide(iii) complexes. Chem Commun (Camb) 2021; 57:2551-2554. [PMID: 33585852 DOI: 10.1039/d0cc08128k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A new naphthylsalophen and its 3 : 2 ligand-to-lanthanide sandwich-type complexes were isolated. When excited at 380 nm, the complexes display the characteristic metal-centred emission for NdIII, ErIII and YbIII. Upon 980 nm excitation, in mixed lanthanide and the Er complexes, Er-centred upconversion emission at 543 and 656 nm is observed, with power densities as low as 2.18 W cm-2.
Collapse
|
64
|
Zha S, Chau H, Chau WY, Chan LS, Lin J, Lo KW, Cho WC, Yip YL, Tsao SW, Farrell PJ, Feng L, Di JM, Law G, Lung HL, Wong K. Dual-Targeting Peptide-Guided Approach for Precision Delivery and Cancer Monitoring by Using a Safe Upconversion Nanoplatform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002919. [PMID: 33717845 PMCID: PMC7927616 DOI: 10.1002/advs.202002919] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/12/2020] [Indexed: 05/04/2023]
Abstract
Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.
Collapse
Affiliation(s)
- Shuai Zha
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ho‐Fai Chau
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Wai Yin Chau
- Department of BiologyHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Lai Sheung Chan
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130000P. R. China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational OncologyThe Chinese University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - William Chi‐Shing Cho
- Department of Clinical OncologyQueen Elizabeth HospitalKowloonHong Kong SAR000000P. R. China
| | - Yim Ling Yip
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Sai Wah Tsao
- School of Biomedical SciencesThe University of Hong KongKowloonHong Kong SAR000000P. R. China
| | - Paul J. Farrell
- Section of VirologyImperial College Faculty of MedicineNorfolk PlaceLondonW12 0BZUK
| | - Liang Feng
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Jin Ming Di
- Department of UrologyThe Third Affiliated Hospital of Sun Yat‐sen University600# Tianhe RoadGuangzhou510630P. R. China
| | - Ga‐Lai Law
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong SAR000000P. R. China
| | - Hong Lok Lung
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| | - Ka‐Leung Wong
- Department of ChemistryHong Kong Baptist University224 Waterloo RoadKowloonHong Kong SAR000000P. R. China
| |
Collapse
|
65
|
Wang Q, Fan X, Jing N, Zhao H, Yu L, Tang X. Photoregulation of Gene Expression with Ligand-Modified Caged siRNAs through Host/Guest Interaction. Chembiochem 2021; 22:1901-1907. [PMID: 33432703 DOI: 10.1002/cbic.202000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Small interfering RNA (siRNA) can effectively silence target genes through Argonate 2 (Ago2)-induced RNA interference (RNAi). It is very important to control siRNA activity in both spatial and temporal modes. Among different masking strategies, photocaging can be used to regulate gene expression through light irradiation with spatiotemporal and dose-dependent resolution. Many different caging strategies and caging groups have been reported for light-activated siRNA gene silencing. Herein, we describe a novel caging strategy that increases the blocking effect of RISC complex formation/process through host/guest (including ligand/receptor) interactions, thereby enhancing the inhibition of caged siRNA activity until light activation. This strategy can be used as a general approach to design caged siRNAs for the photomodulation of gene silencing of exogenous and endogenous genes.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Nannan Jing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| | - Han Zhao
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, No. 27 Shilong Road, Beijing, P. R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing, P. R. China
| |
Collapse
|
66
|
Yang X, Yuan D, Hou J, Sedgwick AC, Xu S, James TD, Wang L. Organic/inorganic supramolecular nano-systems based on host/guest interactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213609] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
67
|
DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K
+
and pH in Lysosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
68
|
Chen F, Lu Q, Huang L, Liu B, Liu M, Zhang Y, Liu J. DNA Triplex and Quadruplex Assembled Nanosensors for Correlating K
+
and pH in Lysosomes. Angew Chem Int Ed Engl 2021; 60:5453-5458. [PMID: 33244829 DOI: 10.1002/anie.202013302] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Feng Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Linna Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Biwu Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research College of Chemistry and Chemical Engineering Hunan Normal University Changsha Hunan Province China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
69
|
He S, Cheng Z. Near-Infrared II Optical Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
70
|
Li T, Liu L, Xu P, Yuan P, Tian Y, Cheng Q, Yan L. Multifunctional Nanotheranostic Agent for NIR‐II Imaging‐Guided Synergetic Photothermal/Photodynamic Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Le Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Pengping Xu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Youliang Tian
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Quan Cheng
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
71
|
Yang W, Deng H, Zhu S, Lau J, Tian R, Wang S, Zhou Z, Yu G, Rao L, He L, Ma Y, Chen X. Size-transformable antigen-presenting cell-mimicking nanovesicles potentiate effective cancer immunotherapy. SCIENCE ADVANCES 2020; 6:eabd1631. [PMID: 33310853 PMCID: PMC7732193 DOI: 10.1126/sciadv.abd1631] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Artificial antigen-presenting cells (aAPCs) can stimulate CD8+ T cell activation. While nanosized aAPCs (naAPCs) have a better safety profile than microsized (maAPCs), they generally induce a weaker T cell response. Treatment with aAPCs alone is insufficient due to the lack of autologous antigen-specific CD8+ T cells. Here, we devised a nanovaccine for antigen-specific CD8+ T cell preactivation in vivo, followed by reactivation of CD8+ T cells via size-transformable naAPCs. naAPCs can be converted to maAPCs in tumor tissue when encountering preactivated CD8+ T cells with high surface redox potential. In vivo study revealed that naAPC's combination with nanovaccine had an impressive antitumor efficacy. The methodology can also be applied to chemotherapy and photodynamic therapy. Our findings provide a generalizable approach for using size-transformable naAPCs in vivo for immunotherapy in combination with nanotechnologies that can activate CD8+ T cells.
Collapse
Affiliation(s)
- Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
72
|
Zhao M, Li B, Zhang H, Zhang F. Activatable fluorescence sensors for in vivo bio-detection in the second near-infrared window. Chem Sci 2020; 12:3448-3459. [PMID: 34163618 PMCID: PMC8179418 DOI: 10.1039/d0sc04789a] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fluorescence imaging in the second near-infrared (NIR-II, 1000–1700 nm) window has exhibited advantages of high optical resolution at deeper penetration (ca. 5–20 mm) in bio-tissues owing to the reduced photon scattering, absorption and tissue autofluorescence. However, the non-responsive and “always on” sensors lack the ability of selective imaging of lesion areas, leading to the low signal-to-background ratio (SBR) and poor sensitivity during bio-detection. In contrast, activatable sensors show signal variation in fluorescence intensity, spectral wavelength and fluorescence lifetime after responding to the micro-environment stimuli, leading to the high detection sensitivity and reliability in bio-sensing. This minireview summarizes the design and detection ability of recently reported NIR-II activatable sensors. Furthermore, the challenges, opportunities and prospects of NIR-II activatable bio-sensing are also discussed. Fluorescence imaging in the second near-infrared (NIR-II, 1000–1700 nm) window has exhibited advantages of high optical resolution at deeper penetration (ca. 5–20 mm) in bio-tissues owing to the reduced photon scattering and tissue autofluorescence.![]()
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChem, Fudan University Shanghai 200433 P. R. China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChem, Fudan University Shanghai 200433 P. R. China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChem, Fudan University Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChem, Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
73
|
Kantamneni H, Barkund S, Donzanti M, Martin D, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Roth CM, Ganapathy V, Moghe PV. Shortwave infrared emitting multicolored nanoprobes for biomarker-specific cancer imaging in vivo. BMC Cancer 2020; 20:1082. [PMID: 33172421 PMCID: PMC7654009 DOI: 10.1186/s12885-020-07604-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability to detect tumor-specific biomarkers in real-time using optical imaging plays a critical role in preclinical studies aimed at evaluating drug safety and treatment response. In this study, we engineered an imaging platform capable of targeting different tumor biomarkers using a multi-colored library of nanoprobes. These probes contain rare-earth elements that emit light in the short-wave infrared (SWIR) wavelength region (900-1700 nm), which exhibits reduced absorption and scattering compared to visible and NIR, and are rendered biocompatible by encapsulation in human serum albumin. The spectrally distinct emissions of the holmium (Ho), erbium (Er), and thulium (Tm) cations that constitute the cores of these nanoprobes make them attractive candidates for optical molecular imaging of multiple disease biomarkers. METHODS SWIR-emitting rare-earth-doped albumin nanocomposites (ReANCs) were synthesized using controlled coacervation, with visible light-emitting fluorophores additionally incorporated during the crosslinking phase for validation purposes. Specifically, HoANCs, ErANCs, and TmANCs were co-labeled with rhodamine-B, FITC, and Alexa Fluor 647 dyes respectively. These Rh-HoANCs, FITC-ErANCs, and 647-TmANCs were further conjugated with the targeting ligands daidzein, AMD3100, and folic acid respectively. Binding specificities of each nanoprobe to distinct cellular subsets were established by in vitro uptake studies. Quantitative whole-body SWIR imaging of subcutaneous tumor bearing mice was used to validate the in vivo targeting ability of these nanoprobes. RESULTS Each of the three ligand-functionalized nanoprobes showed significantly higher uptake in the targeted cell line compared to untargeted probes. Increased accumulation of tumor-specific nanoprobes was also measured relative to untargeted probes in subcutaneous tumor models of breast (4175 and MCF-7) and ovarian cancer (SKOV3). Preferential accumulation of tumor-specific nanoprobes was also observed in tumors overexpressing targeted biomarkers in mice bearing molecularly-distinct bilateral subcutaneous tumors, as evidenced by significantly higher signal intensities on SWIR imaging. CONCLUSIONS The results from this study show that tumors can be detected in vivo using a set of targeted multispectral SWIR-emitting nanoprobes. Significantly, these nanoprobes enabled imaging of biomarkers in mice bearing bilateral tumors with distinct molecular phenotypes. The findings from this study provide a foundation for optical molecular imaging of heterogeneous tumors and for studying the response of these complex lesions to targeted therapy.
Collapse
Affiliation(s)
- Harini Kantamneni
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Shravani Barkund
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Michael Donzanti
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Daniel Martin
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Rd, Singapore, 487372, Singapore
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Charles M Roth
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA.,Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| | - Prabhas V Moghe
- Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ, 08854, USA. .,Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
74
|
Cai W, Fan G, Zhou H, Chen L, Ge J, Huang B, Zhou D, Zeng J, Miao Q, Hu C. Self-Assembled Hybrid Nanocomposites for Multimodal Imaging-Guided Photothermal Therapy of Lymph Node Metastasis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49407-49415. [PMID: 33086013 DOI: 10.1021/acsami.0c14576] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multimodal imaging-guided therapy holds great potential for precise theranostics of cancer metastasis. However, imaging agents enabling the convergence of complementary modalities with therapeutic functions to achieve perfect theranostics have been less exploited. This study reports the construction of a multifunctional nanoagent (FIP-99mTc) that comprises Fe3O4 for magnetic resonance imaging, radioactive 99mTc for single-photon-emission computed tomography, and IR-1061 to serve for the second near-infrared fluorescence imaging, photoacoustic imaging, and photothermal therapy treatment of cancer metastasis. The nanoagent possessed superior multimodal imaging capability with high sensitivity and resolution attributing to the complement of all the imaging modalities. Moreover, the nanoagent showed ideal photothermal conversion ability to effectively kill tumor cells at low concentration and power laser irradiation. In the in vivo study, FIP-99mTc confirmed the fast accumulation and clear delineation of metastatic lymph nodes within 1 h after administration. Attributing to the efficient uptake and photothermal conversion, FIP-99mTc could raise the temperature of metastatic lymph nodes to 54 °C within 10 min laser irradiation, so as to facilitate tumor cell ablation. More importantly, FIP-99mTc not only played an active role in suppressing cancer growth in metastatic lymph nodes with high efficiency but also could effectively prevent further lung metastasis after resection of the primary tumor. This study proposes a simple but effective theranostic approach toward lymph node metastasis.
Collapse
Affiliation(s)
- Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, Suzhou 215006, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, Suzhou 215006, China
| |
Collapse
|
75
|
Liu Y, Wang J, Zhang M, Li H, Lin Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS NANO 2020; 14:12491-12521. [PMID: 32975934 DOI: 10.1021/acsnano.0c06936] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The past several decades have witnessed substantial advances in synthesis and self-assembly of inorganic nanocrystals (NCs) due largely to their size- and shape-dependent properties for use in optics, optoelectronics, catalysis, energy conversion and storage, nanotechnology, and biomedical applications. Among various routes to NCs, the nonlinear block copolymer (BCP) nanoreactor technique has recently emerged as a general yet robust strategy for crafting a rich diversity of NCs of interest with precisely controlled dimensions, compositions, architectures, and surface chemistry. It is notable that nonlinear BCPs are unimolecular micelles, where each block copolymer arm of nonlinear BCP is covalently connected to a central core or polymer backbone. As such, their structures are static and stable, representing a class of functional polymers with complex architecture for directing the synthesis of NCs. In this review, recent progress in synthesizing NCs by capitalizing on two sets of nonlinear BCPs as nanoreactors are discussed. They are star-shaped BCPs for producing 0D spherical nanoparticles, including plain, hollow, and core-shell nanoparticles, and bottlebrush-like BCPs for creating 1D plain and core/shell nanorods (and nanowires) as well as nanotubes. As the surface of these NCs is intimately tethered with the outer blocks of nonlinear BCPs used, they can thus be regarded as polymer-ligated NCs (i.e., hairy NCs). First, the rational design and synthesis of nonlinear BCPs via controlled/living radical polymerizations is introduced. Subsequently, their use as the NC-directing nanoreactors to yield monodisperse nanoparticles and nanorods with judiciously engineered dimensions, compositions, and surface chemistry is examined. Afterward, the intriguing properties of such polymer-ligated NCs, which are found to depend sensitively on their sizes, architectures, and functionalities of surface polymer hairs, are highlighted. Some practical applications of these polymer-ligated NCs for energy conversion and storage and drug delivery are then discussed. Finally, challenges and opportunities in this rapidly evolving field are presented.
Collapse
Affiliation(s)
- Yijiang Liu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Jialin Wang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mingyue Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huaming Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
76
|
Zhang Y, Wang Y, Yang X, Yang Q, Li J, Tan W. Polyaniline Nanovesicles for Photoacoustic Imaging-Guided Photothermal-Chemo Synergistic Therapy in the Second Near-Infrared Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001177. [PMID: 32762022 DOI: 10.1002/smll.202001177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Photoacoustic imaging-guided photothermal therapy in the second near-infrared (NIR-II) window shows promise for clinical deep-penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR-II window are still rare. Here, the emeraldine salt of polyaniline (PANI-ES), especially synthesized by a one-pot enzymatic reaction on sodium bis(2-ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI-ES@AOT, λmax ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping-induced photothermal effect of PANI-ES@AOT, this pH-sensitive NIR-II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template-oriented (or interface-confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.
Collapse
Affiliation(s)
- Ya Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingjie Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xueqin Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qinglai Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Juan Li
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, P. R. China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese, Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
77
|
Wang S, Li B, Zhang F. Molecular Fluorophores for Deep-Tissue Bioimaging. ACS CENTRAL SCIENCE 2020; 6:1302-1316. [PMID: 32875073 PMCID: PMC7453417 DOI: 10.1021/acscentsci.0c00544] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 05/08/2023]
Abstract
Fluorescence imaging has made tremendous inroads toward understanding the complexity of biological systems, but in vivo deep-tissue imaging remains a great challenge due to the optical opacity of biological tissue. Recent improvements in laser and detector manufacturing have allowed the expansion of nonlinear and linear fluorescence imaging to the underexplored "tissue-transparent" second near-infrared (NIR-II; 1000-1700 nm) window, opening up new opportunities for optical access deep inside opaque tissue. Molecular fluorophores have historically played a major role in fluorescence bioimaging. It is increasingly important to design new molecular fluorophores to fully unlock the potential of NIR-II imaging techniques. In this outlook, we give an overview of the novel molecular fluorophores developed for deep-tissue bioimaging in the past five years and discuss their pros and cons in applications. Guidelines for designing new molecular fluorophores with the desirable properties are also provided.
Collapse
Affiliation(s)
| | | | - Fan Zhang
- Department of Chemistry,
State Key Laboratory of Molecular Engineering of Polymers, Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials and
iChem, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
78
|
Zhang K, Lu F, Cai Z, Song S, Jiang L, Min Q, Wu X, Zhu JJ. Plasmonic Modulation of the Upconversion Luminescence Based on Gold Nanorods for Designing a New Strategy of Sensing MicroRNAs. Anal Chem 2020; 92:11795-11801. [PMID: 32786465 DOI: 10.1021/acs.analchem.0c01969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) have potential applications in biosensing and bioimaging. However, the UCNPs-based sensors constructed by luminescence resonance energy transfer (LRET) always suffer from low quenching efficiency, hindering their application. Therefore, exploring a new strategy to resolve this issue is highly desirable. Herein, a strategy based on the surface plasmon resonance (SPR) effect of gold nanorods (AuNRs) is presented. The luminescence of UCNPs was modulated by adjusting the SiO2 thickness of AuNRs@SiO2 and the structure of UCNPs; an enhancement factor of ≈50 times was obtained. Based on the results of the SPR effect of AuNRs, we designed two kinds of potential upconversion microRNA sensors using microRNA-21 as a model to resolve the problem of the lower quenching efficiency resulting from a dye as a quencher. Studies revealed that the proposed strategy could be successfully used to construct upconversion microRNA sensors for avoiding the limitation of the low quenching efficiency. The sensitivity was ≈10 000 times higher than that of the upconversion sensor using dyes as quenchers. Importantly, the assay of microRNA-21 was successfully achieved using this sensor in human serum samples and human breast cancer cell (MCF-7) lysates. It provides a new method for designing upconversion microRNA sensors and may have potential for use in biosensing and bioimaging.
Collapse
Affiliation(s)
- Keying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuting Song
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingcai Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
79
|
Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. J Control Release 2020; 324:104-123. [DOI: 10.1016/j.jconrel.2020.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
80
|
Qi J, Duan X, Cai Y, Jia S, Chen C, Zhao Z, Li Y, Peng HQ, Kwok RTK, Lam JWY, Ding D, Tang BZ. Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chem Sci 2020; 11:8438-8447. [PMID: 34123103 PMCID: PMC8163428 DOI: 10.1039/d0sc03423a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Organic near-infrared (NIR) emitters hold great promise for biomedical applications. Yet, most organic NIR fluorophores face the limitations of short emission wavelengths, low brightness, unsatisfactory processability, and the aggregation-caused quenching effect. Therefore, development of effective molecular design strategies to improve these important properties at the same time is a highly pursued topic, but very challenging. Herein, aggregation-induced emission luminogens (AIEgens) are employed as substituents to simultaneously extend the conjugation length, boost the fluorescence quantum yield, and increase the solubility of organic NIR fluorophores, being favourable for biological applications. A series of donor-acceptor type compounds with different substituent groups (i.e., hydrogen, phenyl, and tetraphenylethene (TPE)) are synthesized and investigated. Compared to the other two analogs, MTPE-TP3 with TPE substituents exhibits the reddest fluorescence, highest brightness, and best solubility. Both the conjugated structure and twisted conformation of TPE groups endow the resulting compounds with improved fluorescence properties and processability for biomedical applications. The in vitro and in vivo applications reveal that the NIR nanoparticles function as a potent probe for tumour imaging. This study would provide new insights into the development of efficient building blocks for improving the performance of organic NIR emitters.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Xingchen Duan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Yuanjing Cai
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Shaorui Jia
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Zheng Zhao
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ying Li
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hui-Qing Peng
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST-Shenzhen Research Institute No. 9 Yuexing First RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China
- NSFC Centre for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
81
|
Feng M, Wang Y, Lin B, Peng X, Yuan Y, Tao X, Lv R. Degradable pH-responsive NIR-II imaging probes based on a polymer-lanthanide composite for chemotherapy. Dalton Trans 2020; 49:9444-9453. [PMID: 32597918 DOI: 10.1039/d0dt02042g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this research, a pH-sensitive degradable nanoprobe was designed by combining hydrophobic rare earth nanoparticles with biocompatible mPEG-PLGA nanomicelles for near infrared II (NIR-II) imaging-guided anti-tumor chemotherapy. The as-synthesized nanoprobes (about 300 nm) with a highly enhanced permeability and retention (EPR) effect show great potential in the diagnosis of solid tumors, providing new prospects for clinical tumor diagnosis. Then, the degradable composite probes increase the imaging sensitivity of the probe and allow for the slow release of the internal anti-tumor drugs, reducing the loss of the drug during delivery. Finally, ultra-small rare earth nanoparticles (about 6 nm) can be excreted after hydrolysis of the composite probe to reduce the enrichment of the inorganic nanoparticles in vivo. Thus, this degradable NIR-II imaging probe based on a polymer-lanthanide composite could be a promising candidate for preclinical cancer chemotherapy and surgery navigation under a single 808 nm laser.
Collapse
Affiliation(s)
- Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiangrong Peng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Xiaofeng Tao
- Department of Radiology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| |
Collapse
|
82
|
Lin C, Xia Z, Zhang L, Chen X, Sun Q, Lu M, Yuan Z, Xie X, Huang L. Organic Linkers Enable Tunable Transfer of Migrated Energy from Upconversion Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31783-31792. [PMID: 32539325 DOI: 10.1021/acsami.0c07683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Energy transfer plays a pivotal role in applying lanthanide-doped upconversion nanoparticles (UCNPs) as optical probes for diverse applications, particularly in biology and medicine. However, achieving tunable energy transfer from UCNPs to different acceptors remains a daunting challenge. Here, we demonstrate that using small organic molecules as linkers, the energy transfer from UCNPs to acceptors can be modulated. Specifically, organic linkers can enable efficient energy transfer from NaGdF4:Yb/Tm@NaGdF4 core-shell UCNPs to different acceptors. Moreover, the organic linker-mediated energy transfer can be facilely tuned by simply changing organic linkers. Based on our mechanistic investigations, the extraction of Gd3+ migrated energy from UCNPs by organic linkers and the subsequent energy injection from linkers to acceptors should be the two key processes for controlling the energy transfer. The tunable energy transfer from UCNPs allows us to design novel applications, including sensors and optical waveguides, based on UCNPs. These findings may open up new ways to develop UCNP-based bioapplications and advance further fabrication of hybrid upconversion nanomaterials.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhengyu Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiumei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiang Sun
- Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu 215123, China
| | - Min Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ze Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
83
|
Huang Y, Xue Z, Zeng S. Hollow Mesoporous Bi@PEG-FA Nanoshell as a Novel Dual-Stimuli-Responsive Nanocarrier for Synergistic Chemo-Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31172-31181. [PMID: 32532159 DOI: 10.1021/acsami.0c07372] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of stimuli-responsive multifunctional nanocarriers for therapeutic drug delivery is extremely desirable for highly specific treatment of disease. Herein, thiol-polyethylene glycol-folate acid-modified hollow mesoporous bismuth nanoshells (HM-Bi@PEG-FA NSs) were developed as the new dual-stimuli-responsive single-"elemental" photothermal nanocarriers for synergistic chemo-photothermal therapy of tumor. The designed hollow-mesoporous-type nanocarriers present excellent photothermal conversion capacity (∼34.72%) and good biocompatibility. Meanwhile, acidic pH and near-infrared (NIR) laser dual-stimulated doxorubicin (DOX) release is successfully achieved. More importantly, the DOX-loaded HM-Bi@PEG-FA NSs hold an efficient in vitro/in vivo antitumor effect through the synergistic chemo-photothermal therapy. Therefore, our findings provide the possibility of designing a dual-stimuli-responsive hollow mesoporous Bi-based photothermal nanocarrier for synergistically enhanced antitumor therapy.
Collapse
Affiliation(s)
- Yao Huang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Zhenluan Xue
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Songjun Zeng
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, School of Physics and Electronics, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
84
|
Zheng Y, Chen Z, Jiang Q, Feng J, Wu S, Del Campo A. Near-infrared-light regulated angiogenesis in a 4D hydrogel. NANOSCALE 2020; 12:13654-13661. [PMID: 32567640 DOI: 10.1039/d0nr02552f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-responsive hydrogels are useful platforms to study cellular responses. Current photosensitive motifs need UV light to be activated, which is intrinsically cytotoxic and has a low penetration depth in tissues. Herein we describe a strategy for near-infrared (NIR) controlled activation of cellular processes (3D cell spreading and angiogenesis) by embedding upconverting nanoparticles (UCNPs) in a hydrogel modified with light-activatable cell adhesive motifs. The UCNPs can convert NIR light (974 nm) into local UV emission and activate photochemical reactions on-demand. Such optoregulation is spatially controllable, dose-dependent and can be performed at different timepoints of the cell culture without appreciable photodamage of the cells. HUVEC cells embedded in this hydrogel can form vascular networks at predefined geometries determined by the irradiation pattern. The penetration depth of NIR light enabled activation of the angiogenesis response through skin tissue with a thickness of 2.5 mm. Our strategy opens a new avenue for 4D cell cultures, with the potential to be extended to dynamically manipulate cell-matrix interactions and derived cellular processes in vivo.
Collapse
Affiliation(s)
- Yijun Zheng
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
85
|
Zhao M, Li B, Wu Y, He H, Zhu X, Zhang H, Dou C, Feng L, Fan Y, Zhang F. A Tumor-Microenvironment-Responsive Lanthanide-Cyanine FRET Sensor for NIR-II Luminescence-Lifetime In Situ Imaging of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001172. [PMID: 32490572 DOI: 10.1002/adma.202001172] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/03/2020] [Indexed: 05/05/2023]
Abstract
Deep tissue imaging in the second near-infrared (NIR-II) window holds great promise for widespread fundamental research. However, inhomogeneous signal attenuation due to tissue absorption and scattering hampers its application for accurate in vivo biosensing. Here, lifetime-based in situ hepatocellular carcinoma (HCC) detection in NIR-II region is presented using a tumor-microenvironment (peroxynitrite, ONOO- )-responsive lanthanide-cyanine Förster resonance energy transfer (FRET) nanosensor. A specially designed ONOO- -responsive NIR-II dye, MY-1057, is synthesized as the FRET acceptor. Robust lifetime sensing is demonstrated to be independent of tissue penetration depth. Tumor lesions are accurately distinguished from normal tissue due to the recovery lifetime. Magnetic resonance imaging and liver dissection results illustrate the reliability of lifetime-based detection in single and multiple HCC models. Moreover, the ONOO- amount can be calculated according to the standard curve.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Benhao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yifan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Haisheng He
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyan Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Hongxin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Chaoran Dou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Lishuai Feng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
86
|
Wojtynek NE, Mohs AM. Image-guided tumor surgery: The emerging role of nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1624. [PMID: 32162485 PMCID: PMC9469762 DOI: 10.1002/wnan.1624] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
Surgical resection is a mainstay treatment for solid tumors. Yet, methods to distinguish malignant from healthy tissue are primarily limited to tactile and visual cues as well as the surgeon's experience. As a result, there is a possibility that a positive surgical margin (PSM) or the presence of residual tumor left behind after resection may occur. It is well-documented that PSMs can negatively impact treatment outcomes and survival, as well as pose an economic burden. Therefore, surgical tumor imaging techniques have emerged as a promising method to decrease PSM rates. Nanoparticles (NPs) have unique characteristics to serve as optical contrast agents during image-guided surgery (IGS). Recently, there has been tremendous growth in the volume and types of NPs used for IGS, including clinical trials. Herein, we describe the most recent contributions of nanotechnology for surgical tumor identification. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Nicholas E. Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aaron M. Mohs
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Drug Delivery and Nanomedicine, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
87
|
Li F, Li T, Zhi D, Xu P, Wang W, Hu Y, Zhang Y, Wang S, Matula Thomas J, Beauchamp Norman J, Ding W, Yan L, Qiu B. Novel ultrasmall multifunctional nanodots for dual-modal MR/NIR-II imaging-guided photothermal therapy. Biomaterials 2020; 256:120219. [PMID: 32736173 DOI: 10.1016/j.biomaterials.2020.120219] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/22/2020] [Accepted: 06/27/2020] [Indexed: 02/01/2023]
Abstract
Encouraging progress in multifunctional nanotheranostic agents that combine photothermal therapy (PTT) and different imaging modalities has been made. However, rational designed and biocompatible multifunctional agents that suitfable for in vivo application is highly desired but still challenging. In this work, we rationally designed novel ultrasmall multifunctional nanodots (FS-GdNDs) by combining the bovine serum albumin (BSA)-based gadolinium oxide nanodots (GdNDs) obtained through a biomineralization process with a small-molecule NIR-II fluorophore (FS). The as-prepared FS-GdNDs with an ultrasmall hydrodynamic diameter of 9.3 nm exhibited prominent NIR-II fluorescence properties, high longitudinal relaxivity (10.11 mM-1 s-1), and outstanding photothermal conversion efficiency (43.99%) and photothermal stability. In vivo studies showed that the FS-GdNDs with enhanced multifunctional characteristics diaplayed satisfactory dual-modal MR/NIR-II imaging performance with a quite low dose. The imaging-guided PTT achieved successful ablation of tumors and effectively extended the survival of mice. Cytotoxicity studies and histological assay demonstrated excellent biocompatibility of the nanodots. Importantly, this novel FS-GdNDs can undergo efficient body clearance through both hepatobiliary and renal excretion pathways. The novel ultrasmall multifunctional FS-GdNDs with excellent features hold tremendous potential in biomedical and clinical applications.
Collapse
Affiliation(s)
- Fenfen Li
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Tuanwei Li
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Debo Zhi
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Pengping Xu
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenshen Wang
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yi Hu
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yuanyuan Zhang
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shaozhen Wang
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - J Matula Thomas
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, 98105, USA
| | - J Beauchamp Norman
- The College of Human Medicine Michigan State University, Grand Rapids, MI, 49503, USA
| | - Weiping Ding
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
88
|
Yusheng S, Chenjun M, Yingying H, Tiantian W, Liefeng Z. Multifunctional nanoparticles of paclitaxel and cyclodextrin-polypeptide conjugates with in vitro anticancer activity. Pharm Dev Technol 2020; 25:1071-1080. [PMID: 32589088 DOI: 10.1080/10837450.2020.1787441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, the cyclodextrin polypeptide (R8-CMβCD) was successfully synthesized by the conjugation of a cell-penetrating peptide (R8) with carboxymethyl-β-cyclodextrin (CMβCD) via the carbon diamine reaction. Then, paclitaxel-loaded nanoparticles (PTX@R8-CMβCD NPs) was prepared. Results of transmission electron microscopy (TEM) showed that PTX@R8-CMβCD NPs were spherical with smooth surfaces and an average diameter about 144 nm. The amount of PTX released from NPs was less than 20% at pH7.4, but it increased significantly to 80% in the weakly acidic cytoplasm of tumors (pH5.0). Furthermore, PTX@R8-CMβCD NPs promoted the cellular uptake of PTX. Further studies on the mechanism showed that cellular uptake of PTX@R8-CMβCD NPs could rely on multiple pathways. In addition, the NPs had the ability to inhibit P-gp efflux pumps. Cytotoxicity tests showed that the NPs had no side effects. Taken together, PTX@R8-CMβCD NPs is an effective anticancer drug delivery system, and the material (R8-CMβCD) may be a promising anti-cancer drug carrier.
Collapse
Affiliation(s)
- Sun Yusheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ma Chenjun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Hua Yingying
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wei Tiantian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhang Liefeng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
89
|
Li B, Zhao M, Feng L, Dou C, Ding S, Zhou G, Lu L, Zhang H, Chen F, Li X, Li G, Zhao S, Jiang C, Wang Y, Zhao D, Cheng Y, Zhang F. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun 2020; 11:3102. [PMID: 32555157 PMCID: PMC7303218 DOI: 10.1038/s41467-020-16924-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Real-time monitoring of vessel dysfunction is of great significance in preclinical research. Optical bioimaging in the second near-infrared (NIR-II) window provides advantages including high resolution and fast feedback. However, the reported molecular dyes are hampered by limited blood circulation time (~ 5-60 min) and short absorption and emission wavelength, which impede the accurate long-term monitoring. Here, we report a NIR-II molecule (LZ-1105) with absorption and emission beyond 1000 nm. Thanks to the long blood circulation time (half-life of 3.2 h), the fluorophore is used for continuous real-time monitoring of dynamic vascular processes, including ischemic reperfusion in hindlimbs, thrombolysis in carotid artery and opening and recovery of the blood brain barrier (BBB). LZ-1105 provides an approach for researchers to assess vessel dysfunction due to the long excitation and emission wavelength and long-term blood circulation properties.
Collapse
Affiliation(s)
- Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Lishuai Feng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Chaoran Dou
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Suwan Ding
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Gang Zhou
- Lab of Advanced Materials & Department of Macromolecular Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Lingfei Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Feiya Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Guangfeng Li
- Lab of Advanced Materials & Department of Macromolecular Science, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, PR China
| | - Shichang Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, 600 Yishan Road, Shanghai, 200233, PR China
| | - Chunyu Jiang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Yan Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, PR China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
90
|
Yu Z, Eich C, Cruz LJ. Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front Chem 2020; 8:496. [PMID: 32656181 PMCID: PMC7325968 DOI: 10.3389/fchem.2020.00496] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fluorescence imaging in the second near infrared window (NIR-II, 1,000-1,700 nm) has been widely used in cancer diagnosis and treatment due to its high spatial resolution and deep tissue penetration depths. In this work, recent advances in rare-earth-doped nanoparticles (RENPs)-a novel kind of NIR-II nanoprobes-are presented. The main focus of this study is on the modification of RENPs and their applications in NIR-II in vitro and in vivo imaging and cancer theranostics. Finally, the perspectives and challenges of NIR-II RENPs are discussed.
Collapse
Affiliation(s)
| | | | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
91
|
Wu W, Zheng T, Tian Y. An enzyme-free amplification strategy based on two-photon fluorescent carbon dots for monitoring miR-9 in live neurons and brain tissues of Alzheimer's disease mice. Chem Commun (Camb) 2020; 56:8083-8086. [PMID: 32543623 DOI: 10.1039/d0cc01971b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An enzyme-free amplification strategy based on two-photon fluorescent carbon dots for monitoring miR-9 in live neurons and brain tissues of Alzheimer's disease (AD) mice. Notably, using our developed probe, miR-9 was found to be up-regulated in early onset AD, while it was found to be down regulated to lower than the normal level in late onset AD.
Collapse
Affiliation(s)
- Wenxiao Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China.
| | | | | |
Collapse
|
92
|
Deng Z, Huang J, Xue Z, Jiang M, Li Y, Zeng S. A general strategy for designing NIR-II emissive silk for the in vivo monitoring of an implanted stent model beyond 1500 nm. J Mater Chem B 2020; 8:4587-4592. [PMID: 32348399 DOI: 10.1039/c9tb02685a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Silk fibroin-based materials spun by silkworms present excellent biocompatible and biodegradable properties, endowing them with broad applications for use in in vivo implanted devices. Therefore, it is highly desirable to explore functionalized silk with additional optical bioimaging abilities for the direct in situ monitoring of the status of implanted devices in vivo. Herein, a new type of silk material with a second near-infrared (NIR-II, 1000-1700 nm) emission is explored for the real-time observation of a biological stent model using a general route of feeding larval silkworms with lanthanide-based NaYF4:Gd3+/Yb3+/Er3+@SiO2 nanocrystals. After being fed lanthanide nanocrystals, the silk spun by silkworms shows efficient NIR-II emission beyond 1500 nm. Moreover, NIR-II bio-imaging guided biological stent model monitoring presents a superior signal-to-noise (S/N) ratio compared to the traditional optical imaging by utilizing the upconversion (UC) region. These findings open up the possibility of designing NIR-II optically functionalized silk materials for highly sensitive and deep-tissue monitoring of the in vivo states of the implanted devices.
Collapse
Affiliation(s)
- Zhiming Deng
- School of Physics and Electronics, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha, 410081, P. R. China.
| | | | | | | | | | | |
Collapse
|
93
|
Li J, Li B, Sun J, Ma C, Wan S, Li Y, Göstl R, Herrmann A, Liu K, Zhang H. Engineered Near-Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000964. [PMID: 32162422 DOI: 10.1002/adma.202000964] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 05/21/2023]
Abstract
Fluorescent proteins are investigated extensively as markers for the imaging of cells and tissues that are treated by gene transfection. However, limited transfection efficiency and lack of targeting restrict the clinical application of this method rooted in the challenging development of robust fluorescent proteins for in vivo bioimaging. To address this, a new type of near-infrared (NIR) fluorescent protein assemblies manufactured by genetic engineering is presented. Due to the formation of well-defined nanoparticles and spectral operation within the phototherapeutic window, the NIR protein aggregates allow stable and specific tumor imaging via simple exogenous injection. Importantly, in vivo tumor metastases are tracked and this overcomes the limitations of in vivo imaging that can only be implemented relying on the gene transfection of fluorescent proteins. Concomitantly, the efficient loading of hydrophobic drugs into the protein nanoparticles is demonstrated facilitating the therapy of tumors in a mouse model. It is believed that these theranostic NIR fluorescent protein assemblies, hence, show great potential for the in vivo detection and therapy of cancer.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Chao Ma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sikang Wan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
94
|
Ge X, Lou Y, Su L, Chen B, Guo Z, Gao S, Zhang W, Chen T, Song J, Yang H. Single Wavelength Laser Excitation Ratiometric NIR-II Fluorescent Probe for Molecule Imaging in Vivo. Anal Chem 2020; 92:6111-6120. [DOI: 10.1021/acs.analchem.0c00556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaoguang Ge
- Departments of Nuclear Medicine, China−Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People’s Republic of China
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Yuheng Lou
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Lichao Su
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Bin Chen
- Departments of Nuclear Medicine, China−Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People’s Republic of China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Shi Gao
- Departments of Nuclear Medicine, China−Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People’s Republic of China
| | - Wenmin Zhang
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Tao Chen
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Huanghao Yang
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
95
|
Li Z, Wu J, Wang Q, Liang T, Ge J, Wang P, Liu Z. A Universal Strategy to Construct Lanthanide-Doped Nanoparticles-Based Activable NIR-II Luminescence Probe for Bioimaging. iScience 2020; 23:100962. [PMID: 32200096 PMCID: PMC7090340 DOI: 10.1016/j.isci.2020.100962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 10/31/2022] Open
Abstract
Lanthanide-doped nanoparticles (LnNPs) have gained increasing attention recently for bioimaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) because of their excellent photophysical properties, but the construction of LnNPs-based activable probe responding to specific targets remains a challenge. Herein, we proposed an uncomplicated and universal strategy to fabricate LnNPs-based NIR-II probes by target-triggered dye-sensitization process. The dye acts as both the recognition motif of the target and a potential antenna for LnNPs, which can be activated by the target to sensitize the NIR-II luminescence of LnNPs. A proof-of-concept probe for glutathione (GSH) was constructed to validate this approach. It was able to track the fluctuation of GSH level in liver and lymphatic drainage and provide clear images with high contrast and resolution in vivo. This strategy can be generalized to construct NIR-II probes for various analytes by simply changing the recognition motif of the dye, greatly promoting the application of LnNPs.
Collapse
Affiliation(s)
- Zhen Li
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Junjie Wu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qirong Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Tao Liang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Juan Ge
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Peipei Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhihong Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
96
|
Wu D, Xue D, Zhou J, Wang Y, Feng Z, Xu J, Lin H, Qian J, Cai X. Extrahepatic cholangiography in near-infrared II window with the clinically approved fluorescence agent indocyanine green: a promising imaging technology for intraoperative diagnosis. Theranostics 2020; 10:3636-3651. [PMID: 32206113 PMCID: PMC7069080 DOI: 10.7150/thno.41127] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: Biliary tract injury remains the most dreaded complication during laparoscopic cholecystectomy. New intraoperative guidance technologies, including near-infrared (NIR) fluorescence cholangiography with indocyanine green (ICG), are under comprehensive evaluation. Previous studies had shown the limitations of traditional NIR light (NIR-I, 700-900 nm) in visualizing the biliary tract structures in specific clinical situations. The aim of this study was to evaluate the feasibility of performing the extrahepatic cholangiography in the second NIR window (NIR-II, 900-1700 nm) and compare it to the conventional NIR-I imaging. Methods: The absorption and emission spectra, as well as fluorescence intensity and photostability of ICG-bile solution in the NIR-II window were recorded and measured. In vitro intralipid® phantom imaging was performed to evaluate tissue penetrating depth in NIR-I and NIR-II window. Different clinical scenarios were modeled by broadening the penetration distance or generating bile duct injuries, and bile duct visualization and lesion site diagnosis in the NIR-II window were evaluated and compared with NIR-I imaging. Results: The fluorescence spectrum of ICG-bile solution extends well into the NIR-II region, exhibiting intense emission value and excellent photostability sufficient for NIR-II biliary tract imaging. Extrahepatic cholangiography using ICG in the NIR-II window obviously reduced background signal and enhanced penetration depth, providing more structural information and improved visualization of the bile duct or lesion location in simulated clinical scenarios, outperforming the NIR-I window imaging. Conclusions: The conventional clinically approved agent ICG is an excellent fluorophore for NIR-II bile duct imaging. Fluorescence cholangiography with ICG in the NIR-II window could provide adequate visualization of the biliary tract structures with increased resolution and penetration depth and might be a valid option to increase the safety of cholecystectomy in difficult cases.
Collapse
Affiliation(s)
- Di Wu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Dingwei Xue
- Department of Urology, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Junjie Xu
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hui Lin
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou, 310016, China
| |
Collapse
|
97
|
Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics 2020; 10:2631-2644. [PMID: 32194825 PMCID: PMC7052904 DOI: 10.7150/thno.40808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Intraoperative image-guided surgery (IGS) has attracted extensive research interests in determination of tumor margins from surrounding normal tissues. Introduction of near infrared (NIR) fluorophores into IGS could significantly improve the in vivo imaging quality thus benefit IGS. Among the reported NIR fluorophores, rare-earth nanoparticles exhibit unparalleled advantages in disease theranostics by taking advantages such as large Stokes shift, sharp emission spectra, and high chemical/photochemical stability. The recent advances in elements doping and morphologies controlling endow the rare-earth nanoparticles with intriguing optical properties, including emission span to NIR-II region and long life-time photoluminescence. Particularly, NIR emissive rare earth nanoparticles hold advantages in reduction of light scattering, photon absorption and autofluorescence, largely improve the performance of nanoparticles in biological and pre-clinical applications. In this review, we systematically compared the benefits of RE nanoparticles with other NIR probes, and summarized the recent advances of NIR emissive RE nanoparticles in bioimaging, photodynamic therapy, drug delivery and NIR fluorescent IGS. The future challenges and promises of NIR emissive RE nanoparticles for IGS were also discussed.
Collapse
Affiliation(s)
- Zhibei Qu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Xu
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueli Zhang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
98
|
Chen L, Zhao T, Zhao M, Wang W, Sun C, Liu L, Li Q, Zhang F, Zhao D, Li X. Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chem Sci 2020; 11:2819-2827. [PMID: 34084342 PMCID: PMC8157500 DOI: 10.1039/c9sc06260b] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A series of biological barriers in a nanoparticle-formulated drug delivery process inevitably result in the current low delivery efficiency, limited tumor penetration and insufficient cellular internalization of drugs. These multiple biological barriers are intimately related to the physicochemical properties of nanoparticles, especially the contradictory demand on size and surface charge for long blood circulation (larger and negative) and deep tumor penetration (smaller) as well as efficient cellular internalization (positive). Herein, we report tumor microenvironment triggered size and charge dual-transformable nanoassemblies. The nanoassembly is realized by immobilizing positive up/downconverting luminescent nanoparticles (U/DCNPs) onto large mesoporous silica nanoparticles (MSNs) via acid-labile bonds to form core@satellite structured MSN@U/DCNPs nanoassemblies, and subsequent capping of charge reversible polymers. At physiological pH, the integrated nanoassemblies with a larger size (∼180 nm) and negative charge can effectively achieve a prolonged blood circulation and high tumor accumulation. While under an acidic tumor microenvironment, the charge reversal of outer polymers and cleavage of linkers between MSNs and U/DCNPs can induce disintegration of the nanoassemblies into isolated MSNs and smaller U/DCNPs, both with a positively charged surface, which thereby potentiate the tumor penetration and cell uptake of dissociated nanoparticles. Combined with the independent near-infrared (NIR)-to-visible and NIR-to-NIR luminescence of U/DCNPs and high surface area of MSNs, the nanoassemblies can implement NIR bioimaging guided chemo- and photodynamic combined therapy with remarkable antitumor efficiency because of the high accumulation and deep tumor penetration induced by the dual transformability of the nanoassemblies. Size and charge dual-transformable core@satellite structured nanoassemblies are developed to overcome multiple biological barriers in a drug delivery system.![]()
Collapse
Affiliation(s)
- Liang Chen
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Mengyao Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Wenxing Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Caixia Sun
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Lu Liu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, School of Engineering & Built Environment, Griffith University Nathan QLD 4111 Australia
| | - Fan Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University Shanghai 200433 P. R. China .,Queensland Micro- and Nanotechnology Centre, School of Engineering & Built Environment, Griffith University Nathan QLD 4111 Australia
| |
Collapse
|
99
|
Yao D, Wang Y, Zou R, Bian K, Liu P, Shen S, Yang W, Zhang B, Wang D. Molecular Engineered Squaraine Nanoprobe for NIR-II/Photoacoustic Imaging and Photothermal Therapy of Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4276-4284. [PMID: 31896256 DOI: 10.1021/acsami.9b20147] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various squaraine dyes have been developed for biological imaging. Nevertheless, squaraine dyes with emission in the second window (NIR-II, 1000-1700 nm) have few reports largely due to the short of a simple and universal design strategy. In this contribution, molecular engineering strategy is explored to develop squaraine dyes with NIR-II emission. First, NIR-I squaraine dye SQ2 is constructed by the ethyl-grafted 1,8-naphtholactam as donor units and square acid as acceptor unit in a donor-acceptor-donor (D-A-D) structure. To red-shift the fluorescence emission into NIR-II window, malonitrile, as a forceful electron-withdrawing group, is introduced to strengthen square acid acceptor. As a result, the fluorescence spectrum of acceptor-engineered squaraine dye SQ1 exhibits a significant red-shift into NIR-II window. To translate NIR-II fluorophores SQ1 into effective theranostic agents, fibronectin-targeting SQ1 nanoprobe was constructed and showed excellent NIR-II imaging performance in angiography and tumor imaging, including lung metastatic foci in deep tissue. Furthermore, SQ1 nanoprobe can be used for photoacoustic imaging and photothermal ablation of tumors. This research demonstrates that the donor-acceptor engineering strategy is feasible and effective to develop NIR-II squaraine dyes.
Collapse
Affiliation(s)
- Defan Yao
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
- State Key Laboratory of Molecular Engineering of Polymers , Fudan University , 200433 Shanghai , China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
| | - Rongfeng Zou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , KTH Royal Institute of Technology, AlbaNova University Center , 10691 Stockholm , Sweden
| | - Kexin Bian
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Pei Liu
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Shuzhan Shen
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Weitao Yang
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Bingbo Zhang
- The Institute for Translational Nanomedicine, Shanghai East Hospital; The Institute for Biomedical Engineering & Nano Science , Tongji University School of Medicine , 200092 Shanghai , China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , 200092 Shanghai , China
| |
Collapse
|
100
|
Dou WT, Qin ZY, Li J, Zhou DM, He XP. Self-assembled sialyllactosyl probes with aggregation-enhanced properties for ratiometric detection and blocking of influenza viruses. Sci Bull (Beijing) 2019; 64:1902-1909. [PMID: 36659586 DOI: 10.1016/j.scib.2019.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 01/21/2023]
Abstract
Infection and dissemination of influenza viruses (IVs) causes serious health concerns worldwide. However, effective tools for the accurate detection and blocking of IVs remain elusive. Here, we develop a new sialyllactosyl probe with self-assembled core-shell structure for the ratiometric detection and blocking of IVs. N,N'-diaryl-dihydrodibenzo[a,c]phenazines were used to form the core structure by hydrophobic assembly in an aqueous solution with an aggregation-enhanced blue fluorescence mission. Subsequently, dicyanomethylene-4H-pyran-based sialyllactosides were used for self-assembly with the core structure, producing the sialyllactosyl probe that emits a red fluorescence due to Förster resonance energy transfer. The probe developed has been proven to be available for (1) the fluorescence ratiometric detection of IVs through selective interaction with the sialyllactosyl-binding proteins on the virus surface, and (2) effectively blocking the invasion of human-infecting IVs towards host cells as accentuated by the sialyllactosides on the surface of the probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhao-Yang Qin
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Li
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong-Ming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|