51
|
Guo R, Liu Y, Xu N, Ling G, Zhang P. Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. Eur J Pharm Biopharm 2022; 173:103-120. [DOI: 10.1016/j.ejpb.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 12/07/2022]
|
52
|
Czysch C, Medina-Montano C, Dal NJK, Dinh T, Fröder Y, Winterwerber P, Maxeiner K, Räder HJ, Schuppan D, Schild H, Bros M, Biersack B, Feranoli F, Grabbe S, Nuhn L. End Group Dye-labeled Polycarbonate Block Copolymers for Micellar (immuno-)Drug Delivery. Macromol Rapid Commun 2022; 43:e2200095. [PMID: 35339115 DOI: 10.1002/marc.202200095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Defined conjugation of functional molecules to block copolymer end groups is a powerful strategy to enhance the scope of micellar carriers for drug delivery. In this study, we have established an approach to access well-defined polycarbonate-based block copolymers by labeling their end groups with single fluorescent dye molecules. Following controlled polymerization conditions, the block copolymers' primary hydroxy end group can be converted into activated pentafluorophenyl ester carbonates and subsequently aminolyzed with fluorescent dyes that are equipped with primary amines. During a solvent evaporation process, the resulting end group dye-labeled block copolymers self-assemble into narrowly dispersed 26 nm sized micelles and simultaneously encapsulate hydrophobic (immuno-)drugs. The covalently attached fluorescent tracer can be used to monitor both uptake into cells and stability under biologically relevant conditions, including incubation with blood plasma or during blood circulation in zebrafish embryos. By encapsulation of the TLR7/8 agonist CL075, immune stimulatory polymeric micelles are generated that get internalized by various antigen presenting dendritic cells and promote their maturation. Generally, such end group dye-labeled polycarbonate block copolymers display ideal features to permit targeted delivery of hydrophobic drugs to key immune cells for vaccination and cancer immunotherapy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | | | - Thi Dinh
- Max Planck Institute for Polymer Research Mainz, Germany
| | - Yannick Fröder
- Max Planck Institute for Polymer Research Mainz, Germany
| | | | | | | | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Germany.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, United States
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Germany
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research Mainz, Germany
| |
Collapse
|
53
|
Du Y, Liu Y, Wang D, Bai H, Wang Z, He X, Zhang P, Tian J, Wang J. Peptidic microarchitecture-trapped tumor vaccine combined with immune checkpoint inhibitor or PI3Kγ inhibitor can enhance immunogenicity and eradicate tumors. J Immunother Cancer 2022; 10:jitc-2021-003564. [PMID: 35217574 PMCID: PMC8883272 DOI: 10.1136/jitc-2021-003564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
Background With the rapid development of immune checkpoint inhibitors and neoantigen (NeoV)-based personalized tumor vaccines, tumor immunotherapy has shown promising therapeutic results. However, the limited efficacy of available tumor vaccines impedes the development of personalized tumor immunotherapy. In this study, we developed a novel tumor vaccine system and proposed combined therapeutic strategies for improving treatment effects. Methods We developed a novel tumor vaccine system comprising a newly synthesized peptidic microarchitecture (PMA) with high assembly efficacy. The PMA-trapped neoantigen vaccine was developed to codeliver tumor neoantigen and the Toll-like receptor 9 agonist CpG (NeoV), abbreviated as PMA-NeoV. A microfluidic chip was used to produce PMA particles in a uniform and precise manner. Vaccine effectiveness was investigated both in vitro and in vivo. The combined immunotherapeutic effect of PMA-NeoV with anti-programmed cell death ligand 1 antibody (aPD-L1) or with the phosphatidylinositol 3‑kinase γ (PI3Kγ) inhibitor IPI-549 was further tested in MC38 mouse tumor model. Results PMA-NeoV not only promoted codelivery of the tumor vaccine but also potentiated vaccine immunogenicity. Moreover, compared with free NeoV, PMA-NeoV significantly increased the number of tumor-infiltrating lymphocytes, promoted the neoantigen-specific systemic immune response, and suppressed murine colon MC38 tumor growth. Furthermore, PMA-NeoV increased the expression of programmed cell death receptor-1 on T lymphocytes, and in combination with aPD-L1 eradicated seven of eight MC38 tumors by rescuing exhausted T lymphocytes. Moreover, we combined the PMA-NeoV with the IPI-549, a molecular switch that controls immune suppression, and found that this combination significantly suppressed tumor growth and eradicated five of eight inoculated tumors, by switching suppressive macrophages to their active state and activating T cells to prime a robust tumor immune microenvironment. Conclusions We developed a tumor vaccine delivery system and presented a promising personalized tumor vaccine-based therapeutic regimen in which a tumor vaccine delivery system is combined with an aPD-L1 or PI3Kγ inhibitor to improve tumor immunotherapy outcomes.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,The University of Chinese Academy of Sciences, Beijing, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Di Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Bai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiran He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pei Zhang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China .,The University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China.,School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
54
|
Singh P, Yadav M, Niveria K, Verma AK. Nano-immunotherapeutics: targeting approach as strategic regulation at tumor microenvironment for cancer treatment. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide, which necessitates our consideration related to novel treatment approach. Tumor cells at the tumor microenvironment (TME), regulate a plethora of key mechanistic signaling pathways that obstruct antitumor immune responses by immune suppression, immune resistance or acquired immune tolerance. The present therapeutic regimes are provided independently or in combination, or as immunotherapies for cancer immune targeting. Immunotherapy has altered the arena of oncology and patient care. By using the host immune system, the immunostimulatory molecules can exert a robust, personalized response against the patient’s own tumors. Alternatively, tumors may exploit these strategies to escape immune recognition, and accordingly, such mechanisms represent chances for immunotherapy intervention. Nonetheless, despite promising outcomes from immunotherapies in recurrent and metastatic cancers, immune-therapeutics in clinics has been limited owing to unpredictability in the produced immune response and reported instances of immune-related adverse effects. The unrealized potential of immunotherapies in cancer management maybe due to the obstacles such as heterogeneous nature, multiple targets, patients’ immune response, specificity for cancer or variability in response generation in toxicity levels, delivery and cost related to therapeutics etc. Further revolutionary trends related to immunotherapies are noticeable with slower progress for cancer management. Recent advances in nanomedicine strategize to ameliorate the lacuna of immunotherapy as it relies on the inherent biophysical characteristics of nanocarriers: size, shape, surface charge and multifunctionality and exploiting them as first line therapy for delivery of biomolecules, single checkpoint inhibitors and for imaging of TME. Therefore, nano-assisted immunotherapies can boost the immunotherapeutic approach, overcoming factors that are with imminent potential risks related to it, thereby significantly improving the survival rate associated with it in cancer patients. Nanotechnology is anticipated to overcome the confines of existing cancer immunotherapy and to successfully combine various cancer treatment modes.
Collapse
Affiliation(s)
- Priyanka Singh
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Anita Kamra Verma
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| |
Collapse
|
55
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
56
|
Hou K, Ning Z, Chen H, Wu Y. Nanomaterial Technology and Triple Negative Breast Cancer. Front Oncol 2022; 11:828810. [PMID: 35096628 PMCID: PMC8790081 DOI: 10.3389/fonc.2021.828810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a malignant breast cancer subtype that is prone to progression, with high associated metastasis and five-year mortality rates and an overall poor prognosis. Chemotherapy is usually administered to treat TNBC without additional targeted therapies. Novel nanomaterials have a variety of excellent physical and chemical properties and biological functions (including targeting specificity), and contrast agents and drug delivery vectors based on nanotechnology are progressing towards a more accurate and targeted direction. This review discusses the mechanisms of action and prospects for the use of nanotechnology in the treatment of TNBC, thus providing potential new strategies for the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Kai Hou
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeng Ning
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
57
|
Doxorubicin-Loaded Metal-Organic Framework Nanoparticles as Acid-Activatable Hydroxyl Radical Nanogenerators for Enhanced Chemo/Chemodynamic Synergistic Therapy. MATERIALS 2022; 15:ma15031096. [PMID: 35161041 PMCID: PMC8838206 DOI: 10.3390/ma15031096] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 01/04/2023]
Abstract
Doxorubicin (DOX) is a widely used first-line antitumor agent; however, acquired drug resistance and side effects have become the main challenges to effective cancer therapy. Herein, DOX is loaded into iron-rich metal–organic framework/tannic acid (TA) nanocomplex to form a tumor-targeting and acid-activatable drug delivery system (MOF/TA-DOX, MTD). Under the acidic tumor microenvironment, MTD simultaneously releases DOX and ferrous ion (Fe2+) accompanied by degradation. Apart from the chemotherapeutic effect, DOX elevates the intracellular H2O2 levels through cascade reactions, which will be beneficial to the Fenton reaction between the Fe2+ and H2O2, to persistently produce hydroxyl radicals (•OH). Thus, MTD efficiently mediates chemodynamic therapy (CDT) and remarkably enhances the sensitivity of chemotherapy. More encouragingly, the cancer cell killing efficiency of MTD is up to ~86% even at the ultralow equivalent concentration of DOX (2.26 µg/mL), while the viability of normal cells remained >88% at the same concentration of MTD. Taken together, MTD is expected to serve as drug-delivery nanoplatforms and •OH nanogenerators for improving chemo/chemodynamic synergistic therapy and reducing the toxic side effects.
Collapse
|
58
|
Jiang M, Zhao L, Cui X, Wu X, Zhang Y, Guan X, Ma J, Zhang W. Cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. J Adv Res 2022; 35:49-60. [PMID: 35003793 PMCID: PMC8721234 DOI: 10.1016/j.jare.2021.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Facile antigen/adjuvant co-loaded nanovaccine made by convenient green preparation. The immunological activity of the antigen and adjuvant was maximally preserved. The minimalist nanovaccine had excellent stability and antitumor immune activation. Nanovaccine combined with PD-1 antibody synergistically enhanced therapy outcome. Good practicability for expanding clinical translation and personalized therapy.
Introduction Tumor vaccine has been a research boom for cancer immunotherapy, while its therapeutic outcome is severely depressed by the vulnerable in vivo delivery efficiency. Moreover, tumor immune escape is also another intractable issue, which has badly whittled down the therapeutic efficiency. Objectives Our study aims to solve the above dilemmas by cooperating minimalist nanovaccine with PD-1 blockade for effective and feasible cancer immunotherapy. Methods The minimalist antigen and adjuvant co-delivery nanovaccine was developed by employing natural polycationic protamine (PRT) to carry the electronegative ovalbumin (OVA) antigen and unmethylated Cytosine-phosphorothioate-Guanine (CpG) adjuvant via convenient chemical bench-free “green” preparation without chemical-synthesis and no organic solvent was required, which could preserve the immunological activities of the antigens and adjuvants. On that basis, PD-1 antibody (aPD-1) was utilized to block the tumor immune escape and cooperate with the nanovaccine by maintaining the tumoricidal-activity of the vaccine-induced T cells. Results Benefited from the polycationic PRT, the facile PRT/CpG/OVA nanovaccine displayed satisfactory delivery performance, involving enhanced cellular uptake in dendritic cells (DCs), realizable endosomal escape and promoted stimulation for DCs’ maturation. These features would be helpful for the antitumor immunotherapeutic efficiency of the nanovaccine. Furthermore, the cooperation of the nanovaccine with aPD-1 synergistically improved the immunotherapy outcome, profiting by the cooperation of the “T cell induction” competency of the nanovaccine and the “T cell maintenance” function of the aPD-1. Conclusion This study will provide new concepts for the design and construction of facile nanovaccines, and contribute valuable scientific basis for cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xinghan Wu
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuhan Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.,Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China.,Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
59
|
Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103790. [PMID: 34651344 DOI: 10.1002/adma.202103790] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Cancer vaccines aim at eliciting tumor-specific responses for the immune system to identify and eradicate malignant tumor cells while sparing the normal tissues. Furthermore, cancer vaccines can potentially induce long-term immunological memory for antitumor responses, preventing metastasis and cancer recurrence, thus presenting an attractive treatment option in cancer immunotherapy. However, clinical efficacy of cancer vaccines has remained low due to longstanding challenges, such as poor immunogenicity, immunosuppressive tumor microenvironment, tumor heterogeneity, inappropriate immune tolerance, and systemic toxicity. Recently, bioinspired materials and biomimetic technologies have emerged to play a part in reshaping the field of cancer nanomedicine. By mimicking desirable chemical and biological properties in nature, bioinspired engineering of cancer vaccine delivery platforms can effectively transport therapeutic cargos to tumor sites, amplify antigen and adjuvant bioactivities, and enable spatiotemporal control and on-demand immunoactivation. As such, integration of biomimetic designs into delivery platforms for cancer vaccines can enhance efficacy while retaining good safety profiles, which contributes to expediting the clinical translation of cancer vaccines. Recent advances in bioinspired delivery platforms for cancer vaccines, existing obstacles faced, as well as insights and future directions for the field are discussed here.
Collapse
Affiliation(s)
- Jing Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Si Si Liew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| |
Collapse
|
60
|
Shi L, Gu H. Emerging Nanoparticle Strategies for Modulating Tumor-Associated Macrophage Polarization. Biomolecules 2021; 11:biom11121912. [PMID: 34944555 PMCID: PMC8699338 DOI: 10.3390/biom11121912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has made great progress in recent years, yet the efficacy of solid tumors remains far less than expected. One of the main hurdles is to overcome the immune-suppressive tumor microenvironment (TME). Among all cells in TME, tumor-associated macrophages (TAMs) play pivotal roles because of their abundance, multifaceted interactions to adaptive and host immune systems, as well as their context-dependent plasticity. Underlying the highly plastic characteristic, lots of research interests are focused on repolarizing TAMs from M2-like pro-tumor phenotype towards M1-like antitumoral ones. Nanotechnology offers great opportunities for targeting and modulating TAM polarization to mount the therapeutic efficacy in cancer immunotherapy. Here, this mini-review highlights those emerging nano-approaches for TAM repolarization in the last three years.
Collapse
|
61
|
Zhang ZZ, Wang T, Wang XF, Zhang YQ, Song SX, Ma CQ. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol Res 2021; 175:106036. [PMID: 34920118 DOI: 10.1016/j.phrs.2021.106036] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a late-model of immune cell therapy that has been shown to be effective in refractory/recurrent B-cell leukemia and lymphoma. Compared with the traditional anti-tumor methods, CAR-T cell therapy has the advantages of higher specificity, stronger lethality and longer-lasting efficacy. Although CAR-T cells have made significant progress in the treatment of hematologic malignancies, diverse difficulties remain in the treatment of solid tumors, including immune escape due to tumor antigen heterogeneity, preventing entry or limiting the persistence of CAR-T cells by physical or cytokine barriers and along with other immunosuppressive molecule and cells in the tumor microenvironment (TME). Otherwise, the intracellular signaling of CAR also impact on CAR-T cells persistence. Appropriate modification of intracellular costimulatory molecular signal in the structure of CAR or coexpression of CAR and cytokines can provide a way to enhance CAR-T cells activity. Additionally, CAR-T cells dysfunction due to T cell exhaustion is associated with multi-factors, especially transcription factors, such as c-Jun, NR4A. Engineering CAR-T cells to coexpress or knockout transcription factors in favor of TCM memory CAR-T cells differentiation was proved to prolonged the survival of CAR-T cells. Finally, combination of CAR-T cells with oncolytic viruses, nanoparticles or immune checkpoint inhibitors provides an effective measure to improve CAR-T cells function. Here, we discuss all of these advances and challenges and review promising strategies for treating solid tumors. In particular, we also highlight that CAR-T cells have enormous potential to be used in combination with other immunotherapies.
Collapse
Affiliation(s)
- Zheng-Zheng Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Tian Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Xiao-Feng Wang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Yu-Qing Zhang
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China
| | - Shu-Xia Song
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| | - Cui-Qing Ma
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention for Serious Diseases in Hebei Province, Shijiazhuang 050017, Heibei, China.
| |
Collapse
|
62
|
He X, Zhou S, Quinn B, Huang W, Jahagirdar D, Vega M, Ortega J, Long MD, Ito F, Abrams SI, Lovell JF. Position-Scanning Peptide Libraries as Particle Immunogens for Improving CD8 + T-Cell Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103023. [PMID: 34716694 PMCID: PMC8693074 DOI: 10.1002/advs.202103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Indexed: 05/14/2023]
Abstract
Short peptides reflecting major histocompatibility complex (MHC) class I (MHC-I) epitopes frequently lack sufficient immunogenicity to induce robust antigen (Ag)-specific CD8+ T cell responses. In the current work, it is demonstrated that position-scanning peptide libraries themselves can serve as improved immunogens, inducing Ag-specific CD8+ T cells with greater frequency and function than the wild-type epitope. The approach involves displaying the entire position-scanning library onto immunogenic nanoliposomes. Each library contains the MHC-I epitope with a single randomized position. When a recently identified MHC-I epitope in the glycoprotein gp70 envelope protein of murine leukemia virus (MuLV) is assessed, only one of the eight positional libraries tested, randomized at amino acid position 5 (Pos5), shows enhanced induction of Ag-specific CD8+ T cells. A second MHC-I epitope from gp70 is assessed in the same manner and shows, in contrast, multiple positional libraries (Pos1, Pos3, Pos5, and Pos8) as well as the library mixture give rise to enhanced CD8+ T cell responses. The library mixture Pos1-3-5-8 induces a more diverse epitope-specific T-cell repertoire with superior antitumor efficacy compared to an established single mutation mimotope (AH1-A5). These data show that positional peptide libraries can serve as immunogens for improving CD8+ T-cell responses against endogenously expressed MHC-I epitopes.
Collapse
Affiliation(s)
- Xuedan He
- University at BuffaloState University of New YorkBuffaloNY14260USA
| | - Shiqi Zhou
- University at BuffaloState University of New YorkBuffaloNY14260USA
| | - Breandan Quinn
- University at BuffaloState University of New YorkBuffaloNY14260USA
| | - Wei‐Chiao Huang
- University at BuffaloState University of New YorkBuffaloNY14260USA
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell BiologyMcGill University MontrealQuebecH3A1Y2Canada
| | - Michael Vega
- Division of Research and Innovation PartnershipsNorthern Illinois UniversityDeKalbIL60115USA
| | - Joaquin Ortega
- Department of Anatomy and Cell BiologyMcGill University MontrealQuebecH3A1Y2Canada
| | - Mark D. Long
- Department of Cancer Genetics and GenomicsRoswell Park Comprehensive Cancer Center (RPCCC)BuffaloNY14263USA
| | - Fumito Ito
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
- Center for ImmunotherapyRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
- Department of Surgical OncologyRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| | - Scott I. Abrams
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterBuffaloNY14263USA
| | | |
Collapse
|
63
|
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021; 29:665-680. [PMID: 34754286 PMCID: PMC8568687 DOI: 10.1007/s13233-021-9093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
The potential of oligonucleotides is exceptional in therapeutics because of their high safety, potency, and specificity compared to conventional therapeutic agents. However, many obstacles, such as low in vivo stability and poor cellular uptake, have hampered their clinical success. Use of polymeric carriers can be an effective approach for overcoming the biological barriers and thereby maximizing the therapeutic efficacy of the oligonucleotides due to the availability of highly tunable synthesis and functional modification of various polymers. As loaded in the polymeric carriers, the therapeutic oligonucleotides, such as antisense oligonucleotides, small interfering RNAs, microRNAs, and even messenger RNAs, become nuclease-resistant by bypassing renal filtration and can be efficiently internalized into disease cells. In this review, we introduced a variety of systematic combinations between the therapeutic oligonucleotides and the synthetic polymers, including the uses of highly functionalized polymers responding to a wide range of endogenous and exogenous stimuli for spatiotemporal control of oligonucleotide release. We also presented intriguing characteristics of oligonucleotides suitable for targeted therapy and immunotherapy, which can be fully supported by versatile polymeric carriers.
Collapse
Affiliation(s)
- Moohyun Han
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429 Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| |
Collapse
|
64
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
65
|
Guan L, Chen J, Tian Z, Zhu M, Bian Y, Zhu Y. Mesoporous organosilica nanoparticles: Degradation strategies and application in tumor therapy. VIEW 2021. [DOI: 10.1002/viw.20200117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lei Guan
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
| | - Min Zhu
- School of Materials Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Yuhai Bian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai China
| | - Yufang Zhu
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering Huanggang Normal University Huanggang Hubei Province China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
| |
Collapse
|
66
|
Fan Y, Zhou Y, Lu M, Si H, Li L, Tang B. Responsive Dual-Targeting Exosome as a Drug Carrier for Combination Cancer Immunotherapy. RESEARCH 2021; 2021:9862876. [PMID: 34541546 PMCID: PMC8426567 DOI: 10.34133/2021/9862876] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022]
Abstract
Recently, combination immunotherapy, which incorporates the activation of the immune system and inhibition of immune escape, has been proved to be a new powerful strategy for more efficient tumor suppression compared to monotherapy. However, the major challenge is how to integrate multiple immune drugs together and efficiently convey these drugs to tumor sites. Although a variety of nanomaterials have been exploited as carriers for targeting tumor issues and the delivery of multiple drugs, their potential toxicity, immune rejection, and stability are still controversial for clinical application. Here, we proposed endogenic exosomes as drug carriers to deliver two antibodies acting as tumor-targeting molecules and block checkpoint inhibitors with specific response to the tumor microenvironment and costimulatory molecules for further improvement of therapeutic effect. The versatile exosomes exhibit excellent biocompatibility and provide a combination immunotherapy platform with synergistic advantages of activation of immune response and inhibition of immune escape.
Collapse
Affiliation(s)
- Yuanyuan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yingshun Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Meng Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
67
|
Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. NANOSCALE 2021; 13:13943-13961. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-radiotherapy is a common and effective combinational treatment for cancer. This study aimed to explore the ionizing radiation-optimized drug treatment based on nanomaterials so as to improve the synergistic efficacy of drug-radiotherapy against cancer and limit the adverse effect on healthy organs. In this review, these emerging strategies were divided into four parts. First, the delivery of the drug-loaded nanoparticles was optimized owing to the strengthened passive targeting process, active targeting process, and cell targeting process of nanoparticles after ionizing radiation exposure. Second, nanomaterials were designed to respond to the ionizing radiation, thus leading to the release of the loading drugs controllably. Third, radiation-activated pro-drugs were loaded onto nanoparticles for radiation-triggered drug therapy. In particular, nontoxic nanoparticles with radiosensitization capability and innocuous radio-dynamic contrast agents can be considered as radiation-activated drugs, which were discussed in this review. Fourth, according to the various synergetic mechanisms, radiotherapy could improve the drug response of cancer, obtaining optimized drug-radiotherapy. Finally, relative suggestions were provided to further optimize these aforementioned strategies. Therefore, a novel topic was selected and the emerging strategies in this region were discussed, aiming to stimulate the inspiration for the development of ionizing radiation-optimized drug treatment based on nanomaterials.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | |
Collapse
|
68
|
Lakshmanan VK, Jindal S, Packirisamy G, Ojha S, Lian S, Kaushik A, Alzarooni AIMA, Metwally YAF, Thyagarajan SP, Do Jung Y, Chouaib S. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther 2021; 28:911-923. [PMID: 33558704 DOI: 10.1038/s41417-021-00299-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
The combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. The development of cancer nanomedicine has posthaste ratified the outcomes of immunotherapy to the subsequent stage in the current era of medical research. This review focuses on key findings with respect to the effectiveness of nanomedicine-based cancer immunotherapies and their applications, which include i) immune checkpoint inhibitors and nanomedicine, ii) CRISPR-Cas nanoparticles (NPs) in cancer immunotherapy, iii) combination cancer immunotherapy with core-shell nanoparticles, iv) biomimetic NPs for cancer immunotherapy, and v) CAR-T cells and cancer nanoimmunotherapy. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
Affiliation(s)
- Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India. .,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Shlok Jindal
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India. .,Centre for Nanotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ajeet Kaushik
- NanoBio Tech Laboratory, Health System Engineering, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, USA
| | | | - Yasser Abdelraouf Farahat Metwally
- Department of Urology, H.H. Sheikh Khalifa General Hospital, Al Salama, Opp. Ministry of Community Development, Umm Al Quwain, United Arab Emirates
| | - Sadras Panchatcharam Thyagarajan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, South Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
69
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
70
|
Song Q, Zhang G, Wang B, Cao G, Li D, Wang Y, Zhang Y, Geng J, Li H, Li Y. Reinforcing the Combinational Immuno-Oncotherapy of Switching "Cold" Tumor to "Hot" by Responsive Penetrating Nanogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36824-36838. [PMID: 34314148 DOI: 10.1021/acsami.1c08201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although immuno-oncotherapy in clinic has gained great success, the immunosuppressive tumor microenvironment (TME) existing in the "cold" tumor with insufficient and exhausted lymphocytes may result in a lower-than-expected therapeutic efficiency. Therefore, a properly designed synergistic strategy that can effectively turn the "cold" tumor to "hot" should be considered to improve the therapeutic effects of immuno-oncotherapy. Herein, TME-responsive penetrating nanogels (NGs) were developed, which can improve the delivery and penetration of the co-loaded resiquimod (R848) and green tea catechin (EGCG) in tumors by a nano-sized controlled releasing system of the soluble cyclodextrin-drug inclusion complex. Consequently, the NGs effectively promoted the maturation of dendritic cells, stimulated the cytotoxic T lymphocytes (CTLs), and decreased the PD-L1 expression in tumors. The combination of NGs with the OX40 agonist (αOX40) further synergistically enhanced the activation and infiltration of CTLs into the deep tumor and inhibited the suppression effects from the regulatory T cells (Tregs). As a result, an increased ratio of active CTLs to Tregs in tumors (20.66-fold) was achieved with a 91.56% tumor suppression effect, indicating a successful switch of "cold" tumors to "hot" for an immunologically beneficial TME with significantly improved anti-tumor immune therapeutics. This strategy could be tailored to other immuno-oncotherapeutic approaches to solve the urgent efficiency concerns of the checkpoint-based treatment in clinic.
Collapse
Affiliation(s)
- Qingle Song
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guoli Cao
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life Science, Hebei Normal University, Shijiazhuang 050016, China
| | - Yu Wang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuqian Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Geng
- Center for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
71
|
Chen M, Miao Y, Qian K, Zhou X, Guo L, Qiu Y, Wang R, Gan Y, Zhang X. Detachable Liposomes Combined Immunochemotherapy for Enhanced Triple-Negative Breast Cancer Treatment through Reprogramming of Tumor-Associated Macrophages. NANO LETTERS 2021; 21:6031-6041. [PMID: 34240603 DOI: 10.1021/acs.nanolett.1c01210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a high recurrence rate and poor outcomes in clinic. In this study, inspired by the enriched innate immune cell type tumor-associated macrophages (TAMs) in TNBC, we proposed a matrix metalloprotease 2 (MMP2) responsive integrated immunochemotherapeutic strategy to deliver paclitaxel (PTX) and anti-CD47 (aCD47) by detachable immune liposomes (ILips). In the TNBC microenvironment, the "two-in-one" ILips facilitated MMP2-responsive release of aCD47 to efficiently polarize M2 macrophages toward the M1 phenotype to enhance phagocytosis against tumor cells and activate the systemic T cell immune response. Together with the immune effect, the detached PTX-loaded liposomes were internalized in MDA-MB-231 cells to synergistically inhibit tumor cell proliferation and metastasis. In the TNBC-bearing mouse model, PTX-loaded ILips demonstrated superior antitumor efficacy against TNBC and inhibited tumor recurrence. Our integrated strategy represents a promising approach to synchronously enhance immune response and tumor-killing effects, improving the therapeutic efficacy against TNBC.
Collapse
Affiliation(s)
- Mingshu Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linmiao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Qiu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
72
|
Aldahlawi AM, Abdullah ST. Dendritic Cell-Based Immunotherapies and their Potential use in Colorectal Cancer Immunotherapy. J Microsc Ultrastruct 2021; 10:107-113. [PMID: 36504589 PMCID: PMC9728090 DOI: 10.4103/jmau.jmau_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, which are resident or proliferating in organs. Major histocompatibility complex (MHC) Class I and II on DCs in normal steady conditions process and present antigens including cancer antigens. Many approaches are used to enhance antigen presentation process of DCs and capture cancer cells. DCs are harvested from cancer patients and manipulated ex vivo in DC-based cancer immunotherapy. In addition, DCs' vaccines and other anticancer therapy combinations were discussed to optimize DCs' efficiency for cancer immunotherapy. This review addressed the use of the human conventional type-1 DCs, OX40+ plasmacytoid DCs, and DCs-derived exosomes. In addition, different combinations with DCs therapy such as combination with the monoclonal antibody, cytokine-induced killer cells, adjuvants, chemotherapy (DCs-based chemoimmunotherapy), and nanoparticles were listed and explored for their effectiveness against cancer, and mainly against colorectal cancer.
Collapse
Affiliation(s)
- Alia M. Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Immunology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samaa Taha Abdullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Address for correspondence: Dr. Samaa Taha Abdullah, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia. E-mail:
| |
Collapse
|
73
|
Yang J, Li Z, Shen M, Wang Y, Wang L, Li J, Yang W, Li J, Li H, Wang X, Wu Q, Gong C. Programmable Unlocking Nano-Matryoshka-CRISPR Precisely Reverses Immunosuppression to Unleash Cascade Amplified Adaptive Immune Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100292. [PMID: 34258164 PMCID: PMC8261501 DOI: 10.1002/advs.202100292] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Indexed: 02/05/2023]
Abstract
Immune checkpoint blockade (ICB) is an attractive option in cancer therapy, but its efficacy is still less than expected due to the transient and incomplete blocking and the low responsiveness. Herein, an unprecedented programmable unlocking nano-matryoshka-CRISPR system (PUN) targeting programmed cell death ligand 1 (PD-L1) and protein tyrosine phosphatase N2 (PTPN2) is fabricated for permanent and complete and highly responsive immunotherapy. While PUN is inert at normal physiological conditions, enzyme-abundant tumor microenvironment and preternatural intracellular oxidative stress sequentially trigger programmable unlocking of PUN to realize a nano-matryoshka-like release of CRISPR/Cas9. The successful nucleus localization of CRISPR/Cas9 ensures the highly efficient disruption of PD-L1 and PTPN2 to unleash cascade amplified adaptive immune response via revoking the immune checkpoint effect. PD-L1 downregulation in tumor cells not only disrupts PD-1/PD-L1 interaction to attenuate the immunosurveillance evasion but also spurs potent immune T cell responses to enhance adaptive immunity. Synchronously, inhibition of JAK/STAT pathway is relieved by deleting PTPN2, which promotes tumor susceptibility to CD8+ T cells depending on IFN-γ, thus further amplifying adaptive immune responses. Combining these advances together, PUN exhibits optimal antitumor efficiency and long-term immune memory with negligible toxicity, which provides a promising alternative to current ICB therapy.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhike Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jiamiao Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jie Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haijun Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xinxin Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
74
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
75
|
Noh I, Son Y, Jung W, Kim M, Kim D, Shin H, Kim YC, Jon S. Targeting the tumor microenvironment with amphiphilic near-infrared cyanine nanoparticles for potentiated photothermal immunotherapy. Biomaterials 2021; 275:120926. [PMID: 34147723 DOI: 10.1016/j.biomaterials.2021.120926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Despite the potential of photothermal therapy (PTT) for cancer treatments, PTT alone has limitations in treating metastatic tumors and preventing tumor recurrence, highlighting the need to combine PTT with immunotherapy. This study reports tumor microenvironment (TME)-targeting, near-infrared (NIR) dye derivative-based nanomedicine for effective combined PTT-immunotherapy. Amphiphilic NIR dye cyanine derivatives are used not only for constructing the nanoparticle mass, but also for creating a stable complex with CpG adjuvant; a peptide specific to fibronectin extra domain B (APTEDB) is also introduced as a TME-targeting ligand, yielding the TME-targeting nanomedicine, APTEDB-cyNP@CpG. APTEDB-cyNP@CpG shows cancer-targeting ability in EDB-overexpressing CT26 colon tumor-bearing mice. When combined with laser irradiation, it induces immunogenic cell death (ICD) and subsequently leads to significant increase in CD8+ T cell population in the tumor, resulting in greater antitumor therapeutic efficacy than does cyNP@CpG lacking the TME-targeting ligand. Moreover, the combination of APTEDB-cyNP@CpG-based PTT and an immune checkpoint blockade (ICB) antibody leads to remarkable antitumor efficacy against the laser-irradiated primary tumor as well as distant tumor through potentiation of systemic cancer cell-specific T cell immunity. Furthermore, the PTT-immunotherapy combination regimen is highly effective in inhibiting tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Ilkoo Noh
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Youngju Son
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Wonsik Jung
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Munsik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Dohyeon Kim
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Hocheol Shin
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, South Korea.
| |
Collapse
|
76
|
Li S, Xu S, Liang X, Xue Y, Mei J, Ma Y, Liu Y, Liu Y. Nanotechnology: Breaking the Current Treatment Limits of Lung Cancer. Adv Healthc Mater 2021; 10:e2100078. [PMID: 34019739 DOI: 10.1002/adhm.202100078] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most rapidly growing malignancies in terms of morbidity and mortality. Although traditional treatments have been used for more than 50 years, it is still far from solving the problems of postoperative risks and systemic toxicity. Emerging targeting and immunotherapy are developing continuously and are gaining recognition; eventually, they face the inevitable challenge of drug resistance. Nanotechnology has several important effects on lung cancer treatment, owing to its unique properties. Several nanoparticle-based treatments have successfully become cancer treatments. Good biocompatibility with higher specific surface area can carry substantial amounts of lung cancer treatment medications while avoiding medication toxicity; editable and modified characteristics give rise to multifunctional nanomedicines; excellent photoelectric effects make lung cancer a multimodal treatment. This article summarizes the breakthroughs achieved by nanotechnology, targeted therapy, and immunotherapy, reflecting the importance and necessity of nanotechnology in the treatment of lung cancer.
Collapse
Affiliation(s)
- Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shanshan Xu
- Institute for Advanced Study Shenzhen University Shenzhen Guangdong 518060 P. R. China
| | - Xiaoyu Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- School of Pharmaceutical Sciences of Zhengzhou University Zhengzhou Henan 450001 P. R. China
| | - Yueguang Xue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongfu Ma
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Yang Liu
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
- The GBA National Institute for Nanotechnology Innovation Guangzhou Guangdong 510700 P. R. China
| |
Collapse
|
77
|
Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9816594. [PMID: 34041494 PMCID: PMC8125200 DOI: 10.34133/2021/9816594] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Although photothermal therapy (PTT) with the assistance of nanotechnology has been considered as an indispensable strategy in the biomedical field, it still encounters some severe problems that need to be solved. Excessive heat can induce treated cells to develop thermal resistance, and thus, the efficacy of PTT may be dramatically decreased. In the meantime, the uncontrollable diffusion of heat can pose a threat to the surrounding healthy tissues. Recently, low-temperature PTT (also known as mild PTT or mild-temperature PTT) has demonstrated its remarkable capacity of conquering these obstacles and has shown excellent performance in bacterial elimination, wound healing, and cancer treatments. Herein, we summarize the recently proposed strategies for achieving low-temperature PTT based on nanomaterials and introduce the synthesis, characteristics, and applications of these nanoplatforms. Additionally, the combination of PTT and other therapeutic modalities for defeating cancers and the synergistic cancer therapeutic effect of the combined treatments are discussed. Finally, the current limitations and future directions are proposed for inspiring more researchers to make contributions to promoting low-temperature PTT toward more successful preclinical and clinical disease treatments.
Collapse
Affiliation(s)
- Xiulin Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
78
|
Zheng C, Zhang J, Chan HF, Hu H, Lv S, Na N, Tao Y, Li M. Engineering Nano-Therapeutics to Boost Adoptive Cell Therapy for Cancer Treatment. SMALL METHODS 2021; 5:e2001191. [PMID: 34928094 DOI: 10.1002/smtd.202001191] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Indexed: 06/14/2023]
Abstract
Although adoptive transfer of therapeutic cells to cancer patients is demonstrated with great success and fortunately approved for the treatment of leukemia and B-cell lymphoma, potential issues, including the unclear mechanism, complicated procedures, unfavorable therapeutic efficacy for solid tumors, and side effects, still hinder its extensive applications. The explosion of nanotechnology recently has led to advanced development of novel strategies to address these challenges, facilitating the design of nano-therapeutics to improve adoptive cell therapy (ACT) for cancer treatment. In this review, the emerging nano-enabled approaches, that design multiscale artificial antigen-presenting cells for cell proliferation and stimulation in vitro, promote the transducing efficiency of tumor-targeting domains, engineer therapeutic cells for in vivo imaging, tumor infiltration, and in vivo functional sustainability, as well as generate tumoricidal T cells in vivo, are summarized. Meanwhile, the current challenges and future perspectives of the nanostrategy-based ACT for cancer treatment are also discussed in the end.
Collapse
Affiliation(s)
- Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shixian Lv
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China
| |
Collapse
|
79
|
Xu Y, Liu J, Liu Z, Chen G, Li X, Ren H. Damaging Tumor Vessels with an Ultrasound-Triggered NO Release Nanosystem to Enhance Drug Accumulation and T Cells Infiltration. Int J Nanomedicine 2021; 16:2597-2613. [PMID: 33833514 PMCID: PMC8021257 DOI: 10.2147/ijn.s295445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Limited by tumor vascular barriers, restricted intratumoural T cell infiltration and nanoparticles accumulation remain major bottlenecks for anticancer therapy. Platelets are now known to maintain tumor vascular integrity. Therefore, inhibition of tumor-associated platelets may be an effective method to increase T cell infiltration and drug accumulation at tumor sites. Herein, we designed an ultrasound-responsive nitric oxide (NO) release nanosystem, SNO-HSA-PTX, which can release NO in response to ultrasound (US) irradiation, thereby inhibiting platelet function and opening the tumor vascular barrier, promoting drug accumulation and T cell infiltration. METHODS We evaluated the ability of SNO-HSA-PTX to release NO in response to US irradiation. We also tested the effect of SNO-HSA-PTX on platelet function. Plenty of studies including cytotoxicity, pharmacokinetics study, biodistribution, blood perfusion, T cell infiltration, in vivo antitumor efficacy and safety assessment were conducted to investigate the antitumor effect of SNO-HSA-PTX. RESULTS SNO-HSA-PTX with US irradiation inhibited tumor-associated platelets activation and induced openings in the tumor vascular barriers, which promoted the accumulation of SNO-HSA-PTX nanoparticles to the tumor sites. Meanwhile, the damaged vascular barriers allowed oxygen-carrying hemoglobin to infiltrate tumor regions, alleviating hypoxia of the tumor microenvironment. In addition, the intratumoral T cell infiltration was augmented, together with chemotherapy and NO therapy, which greatly inhibited tumor growth. DISCUSSION Our research designed a simple strategy to open the vascular barrier by inhibiting the tumor-associated platelets, which provide new ideas for anti-tumor treatment.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiwei Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhangya Liu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Guoguang Chen
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
80
|
Balakrishnan PB, Sweeney EE. Nanoparticles for Enhanced Adoptive T Cell Therapies and Future Perspectives for CNS Tumors. Front Immunol 2021; 12:600659. [PMID: 33833751 PMCID: PMC8021848 DOI: 10.3389/fimmu.2021.600659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Adoptive T cell therapy has emerged as a revolutionary immunotherapy for treating cancer. Despite immense promise and clinical success in some hematologic malignancies, limitations remain that thwart its efficacy in solid tumors. Particularly in tumors of the central nervous system (CNS), T cell therapy is often restricted by the difficulty in intratumoral delivery across anatomical niches, suboptimal T cell specificity or activation, and intratumoral T cell dysfunction due to immunosuppressive tumor microenvironments (TMEs). Nanoparticles may offer several advantages to overcome these limitations of T cell therapy, as they can be designed to robustly and specifically activate T cells ex vivo prior to adoptive transfer, to encapsulate T cell stimulating agents for co-localized stimulation, and to be conjugated onto T cells for added functionality. This perspective highlights recent preclinical advances in using nanoparticles to enhance T cell therapy, and discusses the potential applicability and constraints of nanoparticle-enhanced T cells as a new platform for treating CNS tumors.
Collapse
Affiliation(s)
- Preethi Bala Balakrishnan
- The George Washington University Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | - Elizabeth E Sweeney
- The George Washington University Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
81
|
Chen Q, Sun T, Jiang C. Recent Advancements in Nanomedicine for 'Cold' Tumor Immunotherapy. NANO-MICRO LETTERS 2021; 13:92. [PMID: 34138315 PMCID: PMC8006526 DOI: 10.1007/s40820-021-00622-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/31/2021] [Indexed: 05/02/2023]
Abstract
Although current anticancer immunotherapies using immune checkpoint inhibitors (ICIs) have been reported with a high clinical success rate, numerous patients still bear 'cold' tumors with insufficient T cell infiltration and low immunogenicity, responding poorly to ICI therapy. Considering the advancements in precision medicine, in-depth mechanism studies on the tumor immune microenvironment (TIME) among cold tumors are required to improve the treatment for these patients. Nanomedicine has emerged as a promising drug delivery system in anticancer immunotherapy, activates immune function, modulates the TIME, and has been applied in combination with other anticancer therapeutic strategies. This review initially summarizes the mechanisms underlying immunosuppressive TIME in cold tumors and addresses the recent advancements in nanotechnology for cold TIME reversal-based therapies, as well as a brief talk about the feasibility of clinical translation.
Collapse
Affiliation(s)
- Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Pharmaceutics, and School of Pharmacy, Research Center on Aging and Medicine, Fudan University, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
82
|
Lin X, Wang X, Gu Q, Lei D, Liu X, Yao C. Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomed Mater 2021; 16. [PMID: 33601351 DOI: 10.1088/1748-605x/abe7b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy was emerged as a novel cancer treatment in the last decade, however, efficacious responses to mono-immunotherapy have only been achieved in a relatively small portion of patients whereas combinational immunotherapies often lead to concurrent side effects. It has been proved that the tumor microenvironment (TME) is responsible for tumor immune escape and the ultimate treatment failure. Recently, both the understanding of the TME and the applications of nanotechnological strategies have achieved remarkable progresses, and reviewing the emerging immune-regulatory nanosystems may provide valuable information for specifically modulating the TME at different immune stages. In this review, we focus on comprehending the recently proposed T-cell-based tumor classification and identifying the most promising targets for different tumor phenotypes, and then summarizing the nanotechnological strategies to best target corresponding immune-related factors. For future precise personalized immunotherapy, the tailor-made TME modulation strategies conducted by well-designed nanosystems to alleviate the suppressive TME and then promote anti-tumor immune responses will significantly benefit the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Xinyi Lin
- Xi'an Jiaotong University School of Life Science and Technology, NO. 28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| | - Xiaoyan Wang
- Fujian Agriculture and Forestry University, NO.15 Shangdian Road, Fuzhou, 350002, CHINA
| | - Qing Gu
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Dongqin Lei
- Xi'an Jiaotong University, NO.28 Xianning Xi Road, Xi'an, 710049, CHINA
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, NO.312 Xihong Road, Fuzhou, Fujian, 350025, CHINA
| | - Cuiping Yao
- Xi'an Jiaotong University School of Life Science and Technology, NO.28 Xianning Xi Road, Xi'an, Shaanxi, 710049, CHINA
| |
Collapse
|
83
|
Li Y, Zhang X, Liu X, Pan W, Li N, Tang B. Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chem Sci 2021; 12:3130-3145. [PMID: 34164080 PMCID: PMC8179382 DOI: 10.1039/d0sc06557a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy is a revolutionary treatment method in oncology, which uses a human's own immune system against cancer. Many immunomodulators that trigger an immune response have been developed and applied in cancer immunotherapy. However, there is the risk of causing an excessive immune response upon directly injecting common immunomodulators into the human body to trigger an immune response. Therefore, the development of intelligent stimuli-responsive immunomodulators to elicit controlled immune responses in cancer immunotherapy is of great significance. Nanotechnology offers the possibility of designing smart nanomedicine to amplify the antitumor response in a safe and effective manner. Progress relating to intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy is highlighted as a new creative direction in the field. Considering the clinical demand for cancer immunotherapy, we put forward some suggestions for constructing new intelligent stimuli-responsive nano immunomodulators, which will advance the development of cancer immunotherapy.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes, Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
84
|
Cancer Immunotherapy Strategies: Basic Principles. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
85
|
Lv F, Jin Y, Feng X, Fan M, Ren C, Dai X, Zhang J, Li Z, Jin Y, Liu H. Traceable metallic antigen release for enhanced cancer immunotherapy. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:130. [PMID: 34149308 PMCID: PMC8202220 DOI: 10.1007/s11051-021-05256-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
Tumor vaccine has shown outstanding advantages and good therapeutic effects in tumor immunotherapy. However, antigens in tumor vaccines can be easily cleared by the reticuloendothelium system in advance, which leads to poor therapeutic effect of tumor vaccines. Moreover, it was still hard to monitor the fate and distribution of antigens. To address these limitations, we synthesized a traceable nanovaccine based on gold nanocluster-labeled antigens and upconversion nanoparticles (UCNPs) for the treatment of melanoma in this study. PH-sensitive Schiff base bond is introduced between UCNPs and gold nanocluster-labeled ovalbumin antigens for monitoring antigens release. Our studies demonstrated that UCNPs conjugated metallic antigen showed excellent biocompatibility, pH-sensitive and therapeutic effect.
Collapse
Affiliation(s)
- Fangfang Lv
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yan Jin
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Xiaochen Feng
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Miao Fan
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Cui Ren
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Xinyue Dai
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Zhenhua Li
- College of Chemistry & Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002 China
| | - Yi Jin
- College of Basic Medical Science, Hebei University, Baoding, 071000 China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
86
|
Pei M, Xu R, Zhang C, Wang X, Li C, Hu Y. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids Surf B Biointerfaces 2021; 197:111378. [DOI: 10.1016/j.colsurfb.2020.111378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023]
|
87
|
Alsaiari SK, Qutub SS, Sun S, Baslyman W, Aldehaiman M, Alyami M, Almalik A, Halwani R, Merzaban J, Mao Z, Khashab NM. Sustained and targeted delivery of checkpoint inhibitors by metal-organic frameworks for cancer immunotherapy. SCIENCE ADVANCES 2021; 7:eabe7174. [PMID: 33523955 DOI: 10.1126/sciadv.abe7174] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 05/21/2023]
Abstract
The major impediments to the implementation of cancer immunotherapies are the sustained immune effect and the targeted delivery of these therapeutics, as they have life-threatening adverse effects. In this work, biomimetic metal-organic frameworks [zeolitic imidazolate frameworks (ZIFs)] are used for the controlled delivery of nivolumab (NV), a monoclonal antibody checkpoint inhibitor that was U.S. Food and Drug Administration-approved back in 2014. The sustained release behavior of NV-ZIF has shown a higher efficacy than the naked NV to activate T cells in hematological malignancies. The system was further modified by coating NV-ZIF with cancer cell membrane to enable tumor-specific targeted delivery while treating solid tumors. We envisage that such a biocompatible and biodegradable immunotherapeutic delivery system may promote the development and the translation of hybrid superstructures into smart and personalized delivery platforms.
Collapse
Affiliation(s)
- Shahad K Alsaiari
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Somayah S Qutub
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shichao Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Walaa Baslyman
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mansour Aldehaiman
- Cell Migration and Signaling Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mram Alyami
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdulaziz Almalik
- Institute Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
| | - Rabih Halwani
- Sharjah Institute for Medical Research (SIMR), Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmeen Merzaban
- Cell Migration and Signaling Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhengwei Mao
- Institute Center of Excellence in Nanomedicine (CENM), King Abdulaziz City for Science and Technology (KACST), Riyadh 11461, Saudi Arabia
- Sharjah Institute for Medical Research (SIMR), Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
88
|
Hagan CT, Mi Y, Knape NM, Wang AZ. Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjug Chem 2020; 31:2668-2678. [PMID: 33251789 PMCID: PMC7747221 DOI: 10.1021/acs.bioconjchem.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Radiotherapy and immunotherapy are two key treatments for cancer. There is growing evidence that they are also synergistic, and combination treatments are being studied extensively in the clinical setting. In addition, there is emerging evidence that nanotechnology-enabled therapeutics can potentiate both radiotherapy and immunotherapy, in turn improving both treatments. This is an exciting new area of interdisciplinary science and has significant potential for major clinical impact. Some of the approaches in this area have already reached the clinical stage. In this review, we will discuss recent advances in the interface between radiotherapy, immunotherapy, and nanomedicine. We plan to review the many approaches to combine these three fields for cancer treatment.
Collapse
Affiliation(s)
- C. Tilden Hagan
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC/NCSU
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yu Mi
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nicole M. Knape
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Z. Wang
- Laboratory
of Nano- and Translational Medicine, Lineberger Comprehensive Cancer
Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina
Institute of Nanomedicine, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
89
|
Fluorine assembly nanocluster breaks the shackles of immunosuppression to turn the cold tumor hot. Proc Natl Acad Sci U S A 2020; 117:32962-32969. [PMID: 33318219 DOI: 10.1073/pnas.2011297117] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical investigations have shown that a nonimmunogenic "cold" tumor is usually accompanied by few immunopositive cells and more immunosuppressive cells in the tumor microenvironment (TME), which is still the bottleneck of immune activation. Here, a fluorine assembly nanocluster was explored to break the shackles of immunosuppression, reawaken the immune system, and turn the cold tumor "hot." Once under laser irradiation, FS@PMPt produces sufficient reactive oxygen species (ROS) to fracture the ROS-sensitive linker, thus releasing the cisplatin conjugated PMPt to penetrate into the tumors and kill the regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Meanwhile, ROS will induce potent immunogenic cell death (ICD) and further promote the accumulation of dendritic cells (DCs) and T cells, therefore not only increasing the infiltration of immunopositive cells from the outside but also reducing the immunosuppressive cells from the inside to break through the bottleneck of immune activation. The FS@PMPt nanocluster regulates the immune process in TME from negative to positive, from shallow to deep, to turn the cold tumor into a hot tumor and provoke a robust antitumor immune response.
Collapse
|
90
|
Selvaraja VK, Gudipudi DK. Fundamentals to clinical application of nanoparticles in cancer immunotherapy and radiotherapy. Ecancermedicalscience 2020; 14:1095. [PMID: 33082845 PMCID: PMC7532032 DOI: 10.3332/ecancer.2020.1095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 01/23/2023] Open
Abstract
Cancer immunotherapy has made rapid progress over the past decade leading to high enthusiasm and interest worldwide. Codelivery of immunomodulators with chemotherapeutic agents and radioisotopes has been shown to elicit a strong and sustained immune response in animal models. Despite showing promising results in metastatic and recurrent cancers, the utilisation of immunotherapy in clinical settings has been limited owing to uncertainties in elicited immune response and occurrence of immune-related adverse events. These uncertainties can be overcome with the help of nanoparticles possessing unique properties for the effective delivery of targeted agents to specific sites. Nanoparticles play a crucial role in the effective delivery of cancer antigens and adjuvants, modulation of tumour microenvironment, production of long-term immune response and development of cancer vaccines. Here, we provide a comprehensive summary of nanotechnology-based cancer immunotherapy and radiotherapy including basics of nanotechnology, properties of nanoparticles and various methods of employing nanoparticles in cancer treatment. Thus, nanotechnology is anticipated to overcome the limitations of existing cancer immunotherapy and to effectively combine various cancer treatment modalities.
Collapse
|
91
|
Xia Y, Song T, Hu Y, Ma G. Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain. Acc Chem Res 2020; 53:2068-2080. [PMID: 32945648 DOI: 10.1021/acs.accounts.0c00336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer vaccines have opened a new paradigm for safe and effective antitumor therapy, but they still suffer from shortcomings such as insufficient immunogenicity and immune tolerance, which seldom makes them the first choice in clinic. In fact, similar to providing a high-end product, a robust antitumor effect depends on the inherent supply chain, which attains, processes, and presents tumor-associated antigens via antigen presenting cells to T cells, which then leads to lysis of the cancer cells to release more antigens to complete the supply chain. Under these circumstances, the failure of cancer vaccines can be treated as a blockade or chain rupture. Thus, for effective tumor treatment, the key is to rationally design logistic systems to restore the supply chain.Under these circumstances, this Account summarizes our recent attempts to exploit the immunogenic trait of synthetic particles to enhance the distribution, presentation, and immune activations of the whole priming process in cancer vaccines: (1) Raw material (tumor antigen/signals) procurement: We illustrated the efforts to deliver antigens to antigen presenting cells (APCs) and draining lymph nodes for potent internalizations, and put more emphasis on the structural effect of sizes, charges, shapes, and assembly strategies for the antigen depot, lymph node transfer, and APC endocytosis. (2) Manufacture of cytotoxic T lymphocytes (CTLs) via APC recognition and presentation: We centered on exploiting the softness of two-dimensional graphene and Pickering emulsions to dynamically potentiate the immune recognition, and demonstrating the recent advances in lysosome escape strategies for enhanced antigen cross-presentations. (3) Marketing the accumulations of CTLs and the reversal of an immunosuppressive microenvironment within the tumor: We demonstrated the previous attempts to inherently cultivate the tumor tropism of the T cells via the multiantigenic repertoire and discussed the advances and challenges of combinatory cancer vaccines with an immune checkpoint blockade to reinforce the antitumor efficacy. Collectively, this Account aims to illustrate the potential of the particulate cancer vaccines to recapitalize the inherent host immune responses for the maximum antitumor effect. And by integrating the antitumor supply chain, optimized synthetic particles may shed light on the development of safe and effective particulate cancer vaccines.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tiantian Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Yuning Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
92
|
Darling R, Senapati S, Christiansen J, Liu L, Ramer-Tait AE, Narasimhan B, Wannemuehler M. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 + T Cell Memory and Delayed Tumor Progression. Int J Nanomedicine 2020; 15:6579-6592. [PMID: 32982219 PMCID: PMC7490050 DOI: 10.2147/ijn.s261041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Adjuvants and immunotherapies designed to activate adaptive immunity to eliminate infectious disease and tumors have become an area of interest aimed at providing a safe and effective strategy to prevent or eliminate disease. Existing approaches would benefit from the development of immunization regimens capable of inducing efficacious cell-mediated immunity directed toward CD8+ T cell-specific antigens. This goal is critically dependent upon appropriate activation of antigen-presenting cells (APCs) most notably dendritic cells (DCs). In this regard, polyanhydride particles have been shown to be effectively internalized by APCs and induce activation. Methods Here, a prophylactic vaccine regimen designed as a single-dose polyanhydride nanovaccine encapsulating antigen is evaluated for the induction of CD8+ T cell memory in a model system where antigen-specific protection is restricted to CD8+ T cells. Bone marrow-derived dendritic cells (BMDCs) are used as an in vitro model system to evaluate the magnitude and phenotype of APC activation. Primary DCs, particularly those with described ability to activate CD8+ T cells, are also evaluated for their in vitro responses to polyanhydride nanoparticles. Results Herein, polyanhydride nanoparticles are shown to induce potent in vitro upregulation of costimulatory molecules on the cell surface of BMDCs. In contrast to the classically used TLR agonists, nanoparticles did not induce large amounts of pro-inflammatory cytokines, did not induce characteristic metabolic response of DCs, nor produce innate antimicrobial effector molecules, such as nitric oxide (NO). The polyanhydride nanovaccine results in protective CD8+ T cell responses as measured by inhibition of tumor progression and survival. Discussion Together, these results suggest that the use of a polyanhydride-based nanovaccine can be an effective approach to inducing antigen-specific CD8+ T cell memory by providing antigen delivery and DC activation while avoiding overt inflammatory responses typically associated with traditional adjuvants.
Collapse
Affiliation(s)
- Ross Darling
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - John Christiansen
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA
| | - Luman Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Michael Wannemuehler
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, USA.,Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
93
|
Shi Y. Clinical Translation of Nanomedicine and Biomaterials for Cancer Immunotherapy: Progress and Perspectives. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900215] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yang Shi
- Department of Nanomedicine and Theranostics Institute for Experimental Molecular Imaging Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering Faculty of Medicine RWTH Aachen University Aachen 52074 Germany
| |
Collapse
|
94
|
Zhong XF, Sun X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:928-935. [PMID: 32355277 PMCID: PMC7468577 DOI: 10.1038/s41401-020-0414-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer immunotherapy, with an aim to enhance host immune responses, has been recognized as a promising therapeutic treatment for cancer. A diversity of immunomodulatory agents, including tumor-associated antigens, adjuvants, cytokines and immunomodulators, has been explored for their ability to induce a cascading adaptive immune response. Nanoscale metal-organic frameworks (nMOFs), a class of crystalline-shaped nanomaterials formed by the self-assembly of organic ligands and metal nodes, are attractive for cancer immunotherapy because they feature tunable pore size, high surface area and loading capacity, and intrinsic biodegradability. In this review we summarize recent progress in the development of nMOFs for cancer immunotherapy, including cancer vaccine delivery and combination of in situ vaccination with immunomodulators to reverse immune suppression. Current challenges and future perspectives for rational design of nMOF-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Xiao-Fang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
95
|
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives. Theranostics 2020; 10:6011-6023. [PMID: 32483434 PMCID: PMC7255011 DOI: 10.7150/thno.38742] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are one of the most promising strategies of immunotherapy. Traditional vaccines consisting of tumor-associated antigens have met with limited success. Recently, neoantigens derived from nonsynonymous mutations in tumor cells have emerged as alternatives that can improve tumor-specificity and reduce on-target off-tumor toxicity. Synthetic peptides are a common platform for neoantigen vaccines. It has been suggested that extending short peptides into long peptides can overcome immune tolerance and induce both CD4+ and CD8+ T cell responses. This review will introduce the history of long peptide-based neoantigen vaccines, discuss their advantages, summarize current preclinical and clinical developments, and propose future perspectives.
Collapse
|
96
|
An JJ, Li SY, Guan X, Xu XN, Jiang XJ. Clinical significance of expression of MEG8 and TGM2 genes in gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:122-128. [DOI: 10.11569/wcjd.v28.i4.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the common malignant tumors, and its incidence and mortality rates are among the highest in China and even the world, posing an important threat to human health. There is still a lack of early diagnosis, treatment, and prognosis-related gene targets for GC.
AIM To investigate the expression of maternally expressed gene 8 (MEG8) and transglutaminase-2 (TGM2) in GC and analyze their clinical significance.
METHODS The expression of MEG8 and TGM2 in 30 pairs of GC and tumor-adjacent tissues was detected by fluorescence quantitative polymerase chain reaction. The correlation between MEG8 and TGM2 expression and clinicopathological features of GC patients was analyzed. The difference of TGM2 expression and its correlation with the survival status of GC patients were analyzed by employing the relevant research data in Oncomine database.
RESULTS The expression of MEG8 in GC tissues was significantly lower than that in tumor-adjacent tissues (0.462 ± 0.082 vs 1.048 ± 0.149, P < 0.05), and the expression of TGM2 in GC tissues was significantly higher than that in tumor-adjacent tissues (1.202 ± 0.143 vs 0.742 ± 0.083, P < 0.05). The expression of MEG8 was correlated with age and clinical stage, and the expression of TGM2 was correlated with clinical stage (P < 0.05). The expression of TGM2 was not related to the survival status of patients with GC (P > 0.05).
CONCLUSION MEG8 and TGM2 may be involved in the occurrence and development of GC and can be used as potential targets for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Jian-Jian An
- Second Department of Gastroenterology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266000, Shandong Province, China
| | - Si-Yuan Li
- Department of General Surgery, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xin Guan
- Second Department of Gastroenterology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xiao-Na Xu
- Central Laboratory, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266000, Shandong Province, China
| | - Xiang-Jun Jiang
- Second Department of Gastroenterology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao 266000, Shandong Province, China
| |
Collapse
|
97
|
Miura R, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Synergistic anti-tumor efficacy by combination therapy of a self-assembled nanogel vaccine with an immune checkpoint anti-PD-1 antibody. RSC Adv 2020; 10:8074-8079. [PMID: 35497849 PMCID: PMC9049940 DOI: 10.1039/c9ra10066k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/12/2020] [Indexed: 12/07/2022] Open
Abstract
Therapeutic strategies for cancer involving immune checkpoint inhibitors (ICIs) have been gaining widespread attention, but their efficacy remains limited. Thus, combination of ICI therapies with other therapeutic modalities may be required to improve their outcomes. In this study, we examined the improved efficacy of a CHP nanogel-based vaccine delivery system after combination with ICI therapy. For this, we evaluated the therapeutic efficacy of combining an anti-PD-1 antibody as an ICI with an OVA antigen-complexed CHP nanogel vaccine delivery system in a mouse E.G7-OVA tumor model. Mice were subcutaneously inoculated with E.G7-OVA tumor cells on one side of the back, and subcutaneously injected with OVA or the OVA/CHP nanogel vaccine on the other side of the back. Anti-PD-1 antibody was administered at defined intervals. Tumor volume, immune responses, and tumor-infiltrating cells were evaluated. Mice treated with OVA vaccine alone showed weak tumor suppression compared with untreated control mice. Mice receiving combined OVA/CHP nanogel vaccine and anti-PD-1 antibody therapy exhibited strong tumor growth suppression and markedly improved survival, suggesting that PD-1 signaling blockade by the anti-PD-1 antibody enhanced the anti-tumor efficacy of the OVA vaccine. Furthermore, tumor-infiltrating cells and immune responses were increased in the combined therapy group. No serious side effects were observed for any of the treatments. Taken together, the immune system activation induced by the CHP nanogel vaccine was synergistically enhanced by the anti-PD-1 antibody. The present findings suggest the potential for enhanced therapeutic efficacy by combining the CHP nanogel vaccine delivery system with ICI therapy for various cancer types. Combination therapy of OVA/CHP nanogel vaccine with anti-PD-1 antibody synergistically improved anti-tumor effect and survival rate without side effects.![]()
Collapse
Affiliation(s)
- Risako Miura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Sada-Atsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University A3-317 Kyotodaigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
98
|
Chen PM, Pan WY, Wu CY, Yeh CY, Korupalli C, Luo PK, Chou CJ, Chia WT, Sung HW. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials 2020; 230:119629. [DOI: 10.1016/j.biomaterials.2019.119629] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
99
|
Šamec N, Zottel A, Videtič Paska A, Jovčevska I. Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma. Molecules 2020; 25:E490. [PMID: 31979318 PMCID: PMC7038132 DOI: 10.3390/molecules25030490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to the advancement of technology combined with our deeper knowledge of human nature and diseases, we are able to move towards precision medicine, where patients are treated at the individual level in concordance with their genetic profiles. Lately, the integration of nanoparticles in biotechnology and their applications in medicine has allowed us to diagnose and treat disease better and more precisely. As a model disease, we used a grade IV malignant brain tumor (glioblastoma). Significant improvements in diagnosis were achieved with the application of fluorescent nanoparticles for intraoperative magnetic resonance imaging (MRI), allowing for improved tumor cell visibility and increasing the extent of the surgical resection, leading to better patient response. Fluorescent probes can be engineered to be activated through different molecular pathways, which will open the path to individualized glioblastoma diagnosis, monitoring, and treatment. Nanoparticles are also extensively studied as nanovehicles for targeted delivery and more controlled medication release, and some nanomedicines are already in early phases of clinical trials. Moreover, sampling biological fluids will give new insights into glioblastoma pathogenesis due to the presence of extracellular vesicles, circulating tumor cells, and circulating tumor DNA. As current glioblastoma therapy does not provide good quality of life for patients, other approaches such as immunotherapy are explored. To conclude, we reason that development of personalized therapies based on a patient's genetic signature combined with pharmacogenomics and immunogenomic information will significantly change the outcome of glioblastoma patients.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| |
Collapse
|
100
|
Emerging Prospects for Nanoparticle-Enabled Cancer Immunotherapy. J Immunol Res 2020; 2020:9624532. [PMID: 32377541 PMCID: PMC7199570 DOI: 10.1155/2020/9624532] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
One of the standards for cancer treatment is cancer immunotherapy which treats both primary and metastasized tumors. Although cancer immunotherapeutics show better outcomes as compared with conventional approaches of cancer treatment, the currently used cancer immunotherapeutics have limited application in delivering cancer antigens to immune cells. Conversely, in solid tumors, tumor microenvironment suppresses the immune system leading to the evasion of anticancer immunity. Some promising attempts have been made to overcome these drawbacks by using different approaches, for instance, the use of biomaterial-based nanoparticles. Accordingly, various studies involving the application of nanoparticles in cancer immunotherapy have been discussed in this review article. This review not only describes the modes of cancer immunotherapy to reveal the importance of nanoparticles in this modality but also narrates nanoparticle-mediated delivery of cancer antigens and therapeutic supplements. Moreover, the impact of nanoparticles on the immunosuppressive behavior of tumor environment has been discussed. The last part of this review deals with cancer immunotherapy using a combination of traditional interventional oncology approach and image-guided local immunotherapy against cancer. According to recent studies, cancer therapy can potentially be improved through nanoparticle-based immunotherapy. In addition, drawbacks associated with the currently used cancer immunotherapeutics can be fixed by using nanoparticles.
Collapse
|