51
|
Hamadani CM, Mahdi F, Merrell A, Flanders J, Cao R, Vashisth P, Pride MC, Hunter AN, Singh G, Roman G, Paris JJ, Tanner EEL. Ionic Liquid Coating-Driven Nanoparticle Delivery to the Brain: Applications for NeuroHIV. RESEARCH SQUARE 2023:rs.3.rs-2574352. [PMID: 36824802 PMCID: PMC9949257 DOI: 10.21203/rs.3.rs-2574352/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Delivering cargo to the central nervous system (CNS) remains a pharmacological challenge. For infectious diseases such as HIV, the CNS acts as a latent reservoir that is inadequately managed by systemic antiretrovirals (ARTs). ARTs thus cannot eradicate HIV, and given CNS infection, patients experience an array of neurological deficits that are collectively referred to as 'neuroHIV'. Herein we report the development of bioinspired ionic liquid-coated nanoparticles (IL-NPs) for in situ hitchhiking on red blood cells (RBCs), which enabled 48% delivery of intravenously infused cargo to the brain. Moreover, the ionic liquid (IL) choline trans-2-hexenoate (CA2HA 1:2) demonstrated preferential accumulation in parenchymal microglia over endothelial cells post-delivery. We further demonstrate the successful loading of abacavir (ABC), an ART that is challenging to encapsulate, into the IL-coated NPs and verify the retention of antiviral efficacy in vitro. IL-NPs were not cytotoxic to primary human peripheral blood mononuclear cells (PBMCs) and the CA2HA 1:2 coating conferred notable anti-viremic capacity on its own. In addition, in vitro cell culture assays showed markedly increased uptake of IL-coated nanoparticles into neuronal cells compared to bare nanoparticles. This work debuts bioinspired ionic liquids as promising nanoparticle coatings to assist CNS biodistribution and has the potential to revolutionize the delivery of cargos (i.e., drugs, viral vectors) through compartmental barriers such as the blood-brain-barrier (BBB), illustrated in the graphical abstract below.
Collapse
|
52
|
Berton P, Shamshina JL. Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems. Pharmaceuticals (Basel) 2023; 16:272. [PMID: 37259417 PMCID: PMC9963465 DOI: 10.3390/ph16020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 04/05/2024] Open
Abstract
This mini-review focuses on the various roles that ionic liquids (ILs) play in the development and applications of biopolymer-based drug delivery systems (DDSs). Biopolymers are particularly attractive as drug delivery matrices due to their biocompatibility, low immunogenicity, biodegradability, and strength, whereas ILs can assist the formation of drug delivery systems. In this work, we showcase the different strategies that were explored using ILs in biopolymer-based DDSs, including impregnation of active pharmaceutical ingredients (APIs)-ILs into biopolymeric materials, employment of the ILs to simplify the process of making the biopolymer-based DDSs, and using the ILs either as dopants or as anchoring agents.
Collapse
Affiliation(s)
- Paula Berton
- Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
53
|
Almeida C, Pedro AQ, Tavares APM, Neves MC, Freire MG. Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Front Bioeng Biotechnol 2023; 11:1037436. [PMID: 36824351 PMCID: PMC9941158 DOI: 10.3389/fbioe.2023.1037436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The emergence of biopharmaceuticals, including proteins, nucleic acids, peptides, and vaccines, revolutionized the medical field, contributing to significant advances in the prophylaxis and treatment of chronic and life-threatening diseases. However, biopharmaceuticals manufacturing involves a set of complex upstream and downstream processes, which considerably impact their cost. In particular, despite the efforts made in the last decades to improve the existing technologies, downstream processing still accounts for more than 80% of the total biopharmaceutical production cost. On the other hand, the formulation of biological products must ensure they maintain their therapeutic performance and long-term stability, while preserving their physical and chemical structure. Ionic-liquid (IL)-based approaches arose as a promise alternative, showing the potential to be used in downstream processing to provide increased purity and recovery yield, as well as excipients for the development of stable biopharmaceutical formulations. This manuscript reviews the most important progress achieved in both fields. The work developed is critically discussed and complemented with a SWOT analysis.
Collapse
Affiliation(s)
- Catarina Almeida
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Augusto Q. Pedro
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P. M. Tavares
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Márcia C. Neves
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | |
Collapse
|
54
|
The Application of Two-Phase Catalytic System in Enantioselective Separation of Racemic (R,S)-1-Phenylethanol. Catalysts 2023. [DOI: 10.3390/catal13020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kinetic resolution is one of the methods which allows obtaining enantiomerically pure compounds. In the study presented herein, enantioselective biotransformations of (R,S)-1-phenylethanol were performed with the use of various catalytic systems containing ionic liquids and n-heptane or toluene as a reaction medium, vinyl acetate or isopropenyl acetate as an acetylating agent, and lipases from Burkholderia cepacia or Candida rugosa. The conducted studies proved that the use of Burkholderia cepacia lipase, vinyl acetate, and n-heptane with [EMIM][BF4] allows obtaining enantiomerically pure 1-phenylethyl acetate, with the enantiomeric excess of products eep = 98.9%, conversion c = 40.1%, and high value of enantioselectivity E > 200. Additionally, the use of ionic liquids allowed us to reuse enzyme in 5 reaction cycles, ensuring the high operational stability of the protein.
Collapse
|
55
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
56
|
Deep eutectic solvents-modified advanced functional materials for pollutant detection in food and the environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
57
|
Zhang S, Liu C, Song Y, Ruan J, Quan P, Fang L. High drug-loading and controlled-release hydroxyphenyl-polyacrylate adhesive for transdermal patch. J Control Release 2023; 353:475-489. [PMID: 36473608 DOI: 10.1016/j.jconrel.2022.11.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Long-acting transdermal drug delivery system (TDDS) requires high drug-loading and drug controlled-release. To simultaneously improve drug-polymer miscibility and realize drug controlled-release, this work aimed to develop a new pressure sensitive adhesive modified with hydroxyphenyl (HP-PSA) by introducing doubly ionic H-bond into drug-PSA interaction. Eight model drugs divided into R3N, R2NH and no N type were chosen to understand the characteristics of the HP-PSA and inner mechanism. The results showed that the doubly ionic H-bond between R3N and R2NH type drugs and HP-PSA, differing from the ionic bond and neutral H-bond, was a reversible and relatively strong interaction. It could significantly enhance their drug-loading by 1.5 to 7 times and control drug release rate to its 1/5 to 1/2 without altering its total release properties, outperforming the commercial Duro-Tak® 87-2510 and Duro-Tak® 87-2852 adhesives. According to the pharmacokinetics results, the high drug-loading patches based on HP-PSA achieved a sustainable plasma drug concentration avoiding burst release, and over 2 times area under concentration-time curve (AUC) as well as 6 times mean residence time (MRT) revealed its potential to realize long-acting drug delivery. Additionally, its safety and mechanical features were satisfied. The mechanism study showed that the repulsion of the ionic drugs in HP-PSA increased drug-loading, and the relatively strong interaction could also control drug release. The incomplete H-bond transfer determined its reversibility, thus making the drug release percentage up to that of non-functional PSA. In conclusion, the high drug-loading efficiency and drug controlled-release capacity of HP-PSA, as well as its unique interaction, would contribute to the development of TDDS. Moreover, the construction of the doubly ionic H-bond would provide further inspiration for various drug delivery systems in the non-polar environment.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yilin Song
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
58
|
Li Y, Yang Q, Liu B, Liu Y, Zhang Q, Li S, Zhao X. Simultaneous Extraction of Flavonoid Glycosides and Flavonoid Aglycones from Discarded Apple Branches by Enzyme-assisted Micelle-mediated Extraction with Cloud Point Enrichment Method. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Liu JZ, Lin ZX, Kong WH, Zhang CC, Yuan Q, Fu YJ, Cui Q. Ultrasonic-assisted extraction-synergistic deep eutectic solvents for green and efficient incremental extraction of Paris polyphylla saponins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
60
|
Thadasack M, Chaunier L, Rabesona H, Viau L, De-Carvalho M, Bouchaud G, Lourdin D. Release kinetics of [lidocainium][ibuprofenate] as Active Pharmaceutical Ingredient-Ionic Liquid from a plasticized zein matrix in simulated digestion. Int J Pharm 2022; 629:122349. [DOI: 10.1016/j.ijpharm.2022.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022]
|
61
|
Matsumoto A, Ukai R, Osada H, Sugihara S, Maeda Y. Tuning the Solution Viscosity of Ionic-Liquid-Based Polyelectrolytes with Solvent Dielectric Constants via the Counterion Condensation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Ryosuke Ukai
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Hiroto Osada
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Shinji Sugihara
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| | - Yasushi Maeda
- Department of Applied Chemistry and Biotechnology, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui910-8507, Japan
| |
Collapse
|
62
|
Klebeko J, Krüger O, Dubicki M, Ossowicz-Rupniewska P, Janus E. Isopropyl Amino Acid Esters Ionic Liquids as Vehicles for Non-Steroidal Anti-Inflammatory Drugs in Potential Topical Drug Delivery Systems with Antimicrobial Activity. Int J Mol Sci 2022; 23:ijms232213863. [PMID: 36430346 PMCID: PMC9693575 DOI: 10.3390/ijms232213863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
New derivatives of non-steroidal anti-inflammatory drugs were synthesized via conjugation with L-amino acid isopropyl esters. The characteristics of the physicochemical properties of the obtained pharmaceutically active ionic liquids were determined. It has been shown how the incorporation of various L-amino acid esters as an ion pair affects the properties of the parent drug. Moreover, the antimicrobial activity of the obtained compounds was evaluated. The proposed structural modifications of commonly used drugs indicate great potential for use in topical and transdermal preparations.
Collapse
Affiliation(s)
- Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71065 Szczecin, Poland
- Correspondence: ; Tel.: +48-449-48-01
| | - Oliver Krüger
- Department II Mathematics, Physics and Chemistry, Berliner Hochschule für Technik, Luxemburger Straße, 13353 Berlin, Germany
| | - Mateusz Dubicki
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71065 Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71065 Szczecin, Poland
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71065 Szczecin, Poland
| |
Collapse
|
63
|
To probe the binding of TMPyP4 to c-MYC G-quadruplex with in water and in imidazolium-based ionic liquids using spectroscopy coupled with molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
64
|
Ionic liquids as protein stabilizers for biological and biomedical applications: A review. Biotechnol Adv 2022; 61:108055. [DOI: 10.1016/j.biotechadv.2022.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
65
|
Rami MR, Meskini M, Qarebaghi LM, Salami M, Forouzandehdel S, Cheraghali M. Synthesis of magnetic bio-nanocomposites for drug release and adsorption applications. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
66
|
Riaz M, Akhlaq M, Naz S, Uroos M. An overview of biomedical applications of choline geranate (CAGE): a major breakthrough in drug delivery. RSC Adv 2022; 12:25977-25991. [PMID: 36199602 PMCID: PMC9468656 DOI: 10.1039/d2ra03882j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
A number of studies are on the way to advancing the field of biomedical sciences using ionic liquids (ILs) and deep eutectic solvents (DESs) in view of their unique properties and inherent tunability. These significant solvents tend to enhance the physical properties of the drug, increase their bioavailability and promote the delivery of recalcitrant drugs to the body. One such widely investigated tempting multipurpose IL/DES system is choline geranate (CAGE), which has gained significant interest due to its biocompatible and highly potent antiseptic behavior, which also facilitates its sanitizing ability to combat the coronavirus. This review focuses on total advancements in biomedical applications of CAGE. This biocompatible IL/DES has made facile the solubilization of hydrophobic and hydrophilic drugs and delivery of intractable drugs through physiological barriers by stabilizing proteins and nucleic acids. Therefore, it has been used as a transdermal, subcutaneous, and oral delivery carrier and as an antimicrobial agent to treat infectious diseases and wounds as approved by laboratory and clinical translations. Moreover, current challenges and future outlooks are also highlighted to explore them more purposefully.
Collapse
Affiliation(s)
- Mubeshar Riaz
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab 54590 Lahore Pakistan
| | - Maida Akhlaq
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab 54590 Lahore Pakistan
| | - Sadia Naz
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab 54590 Lahore Pakistan
| | - Maliha Uroos
- Centre for Research in Ionic Liquids, School of Chemistry, University of the Punjab 54590 Lahore Pakistan
| |
Collapse
|
67
|
Grewal J, Khare SK, Drewniak L, Pranaw K. Recent perspectives on microbial and ionic liquid interactions with implications for biorefineries. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
68
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
69
|
Lu Y, Qi J, Wu W. Ionic Liquids-Based Drug Delivery: a Perspective. Pharm Res 2022; 39:2329-2334. [PMID: 35974125 DOI: 10.1007/s11095-022-03362-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) recently draw attention for addressing unmet needs in biomedicines. By converting solids into liquids, ILs are emerging as novel platforms to overcome some critical drawbacks associated with the application of solid or crystalline active pharmaceutical ingredients (APIs). ILs have shown promise in liquidizing or solubilizing APIs, or as green solvents, novel permeation enhancers or active ingredients, alone or synergistically with APIs. Meanwhile, challenges turn up in company with the deepening understanding of ILs as drug delivery carrier systems. This perspective aims to provide a sketchy overview on the status quo with specific attention paid to new problems arising from the utilization of ILs-based technologies in drug delivery.
Collapse
Affiliation(s)
- Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Jianping Qi
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, 201203, China.
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
- Fudan Zhangjiang Institute, Shanghai, 201203, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| |
Collapse
|
70
|
Hydrogen bonding between 1-ethyl-3-methyl-imidazolium dicyanamide ionic liquid and selected co-solvents with varying polarity: A DFT study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
71
|
Recent updates on applications of ionic liquids (ILs) for biomedical sciences. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
72
|
Synthesis and structure-activity-toxicity relationships of DABCO-containing ammonium amphiphiles based on natural isatin scaffold. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
73
|
Dib N, Silber JJ, Correa NM, Falcone RD. Amphiphilic Ionic Liquids Capable to Formulate Organized Systems in an Aqueous Solution, Designed by a Combination of Traditional Surfactants and Commercial Drugs. Pharm Res 2022; 39:2379-2390. [PMID: 35854078 DOI: 10.1007/s11095-022-03342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The present review describes the state of the art in the conversion of pharmaceutically active ingredients (API) in amphiphilic Ionic Liquids (ILs) as alternative drug delivery systems. In particular, we focus our attention on the compounds generated by ionic exchange and without original counterions which generate different systems in comparison with the simple mixtures. In water, these new amphiphiles show similar or even better properties as surfactants in comparison with their precursors. Cations such as 1-alkyl-3-methyl-imidazolium and anions such as dioctyl sulfosuccinate or sodium dodecyl sulfate appear as the amphiphilic components most studied. In conclusion, this work shows interesting information on several promissory compounds and they appear as an interesting challenge to extend the application of ILs in the medical field.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - Juana J Silber
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - N Mariano Correa
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Rio Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Rio Cuarto, Córdoba, Argentina.
- Instituto de Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto, Agencia Postal 3, C.P. X5804BYA, Ruta Nacional 36, km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
74
|
Torrinha Á, Oliveira TMBF, Ribeiro FWP, de Lima-Neto P, Correia AN, Morais S. (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools. NANOMATERIALS 2022; 12:nano12142368. [PMID: 35889592 PMCID: PMC9319828 DOI: 10.3390/nano12142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022]
Abstract
The interaction of carbon-based nanomaterials and ionic liquids (ILs) has been thoroughly exploited for diverse electroanalytical solutions since the first report in 2003. This combination, either through covalent or non-covalent functionalization, takes advantage of the unique characteristics inherent to each material, resulting in synergistic effects that are conferred to the electrochemical (bio)sensing system. From one side, carbon nanomaterials offer miniaturization capacity with enhanced electron transfer rates at a reduced cost, whereas from the other side, ILs contribute as ecological dispersing media for the nanostructures, improving conductivity and biocompatibility. The present review focuses on the use of this interesting type of nanocomposites for the development of (bio)sensors specifically for pharmaceutical detection, with emphasis on the analytical (bio)sensing features. The literature search displayed the conjugation of more than 20 different ILs and several carbon nanomaterials (MWCNT, SWCNT, graphene, carbon nanofibers, fullerene, and carbon quantum dots, among others) that were applied for a large set (about 60) of pharmaceutical compounds. This great variability causes a straightforward comparison between sensors to be a challenging task. Undoubtedly, electrochemical sensors based on the conjugation of carbon nanomaterials with ILs can potentially be established as sustainable analytical tools and viable alternatives to more traditional methods, especially concerning in situ environmental analysis.
Collapse
Affiliation(s)
- Álvaro Torrinha
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
| | - Thiago M. B. F. Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, Av. Tenente Raimundo Rocha, 1639, Cidade Universitária, Juazeiro do Norte 63048-080, Brazil;
| | - Francisco W. P. Ribeiro
- Instituto de Formação de Educadores, Universidade Federal do Cariri, Rua Olegário Emídio de Araújo, S/N, Centro, Brejo Santo 63260-000, Brazil;
| | - Pedro de Lima-Neto
- Centro de Ciências, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Bloco 940, Campus do Pici, Fortaleza 60440-900, Brazil; (P.d.L.-N.); (A.N.C.)
| | - Adriana N. Correia
- Centro de Ciências, Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Bloco 940, Campus do Pici, Fortaleza 60440-900, Brazil; (P.d.L.-N.); (A.N.C.)
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal;
- Correspondence:
| |
Collapse
|
75
|
|
76
|
Matsumoto A, Shen AQ. Rheological scaling of ionic-liquid-based polyelectrolytes in ionic liquid solutions: the effect of the ion diameter of ionic liquids. SOFT MATTER 2022; 18:4197-4204. [PMID: 35607974 DOI: 10.1039/d2sm00484d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We investigate the effect of the ion diameter a of ionic liquids (ILs) on the shear viscosity of polymerized ionic liquids (PILs) in IL solutions. When both the PIL and IL contain large PFSI anions (a ≈ 0.57 nm), the specific viscosity ηsp first decreases with increasing IL concentration cIL in the low cIL regime, reaches a minimum and then increases with increasing cIL in the high cIL regime. By comparing the measured ηsp with the modified charge screening model proposed in our previous study [Matsumoto et al., Macromolecules, 2021, 54, 5648-5661], we attribute the observed non-monotonic trend of ηsp against cIL to the charge underscreening phenomenon, i.e., an increase of the screening length at high cIL leads to the upturn of ηsp. On the other hand, when the PIL and IL contain small BF4 anions (a ≈ 0.34 nm), the ηsp decreases asymptotically with increasing cIL, because the charge on the PIL chain is likely screened fully in the entire cIL regime. Our results demonstrate that the ion diameter of ILs plays an important role in governing the charge screening mechanism of PILs in IL solutions, and thus influencing the viscoelastic properties of PIL solutions.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
77
|
Sundaram V, Ramanan RN, Selvaraj M, Vijayaraghavan R, MacFarlane DR, Ooi CW. Enhanced structural stability of insulin aspart in cholinium aminoate ionic liquids. Int J Biol Macromol 2022; 208:544-552. [PMID: 35331796 DOI: 10.1016/j.ijbiomac.2022.03.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Cholinium aminoates [Ch][AA] have gained tremendous interest as a promising ionic liquid medium for the synthesis and storage of proteins. However, high alkalinity of [Ch][AA] limits its usage with pH-sensitive proteins. Here, we probed the structure, stability, and interactions of a highly unstable therapeutic protein, insulin aspart (IA), in a range of buffered [Ch][AA] (b-[Ch][AA]) using a combination of biophysical tools and in silico pipeline including ultraviolet-visible, fluorescence, and circular dichroism spectroscopies, dynamic light scattering measurements and molecular docking. b-[Ch][AA] used in the study differed in concentrations and their anionic counterparts. We reveal information on ion and residue specific solvent-protein interactions, demonstrating that the structural stability of IA was enhanced by a buffered cholinium prolinate. In comparison to the glycinate and alaninate anions, the hydrophilic prolinate anions established more hydrogen bonds with the residues of IA and provided a less polar environment that favours the preservation of IA in its active monomeric form, opening new opportunities for utilizing [Ch][AA] as storage medium.
Collapse
Affiliation(s)
- Vidya Sundaram
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Biological Enginerring Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar-382055, Gujarat, India
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Manikandan Selvaraj
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - R Vijayaraghavan
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Douglas R MacFarlane
- School of Chemistry, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
78
|
Gaikwad N, Kudal S, Avachat AM. Choline-Amino Acid-Derived Bio-ionic Liquids for Solubility Enhancement of Zafirlukast. AAPS PharmSciTech 2022; 23:146. [PMID: 35585441 DOI: 10.1208/s12249-022-02296-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the application of bio-ionic liquids (ILs) prepared from choline as cation and amino acid as anion for solubility enhancement of poorly water-soluble drug, Zafirlukast (ZFL). Herein, the solubility of ZFL in water and mixtures of water and ILs was assessed using UV spectroscopy at two temperature points 25°C and 37°C with increasing concentrations of IL. ZFL solubility was found to improve linearly with increasing concentration of [Ch][Pro] in water, representing 35- to 37-fold improvement in ZFL solubility at maximum concentration of [Ch][Pro] (1% w/v) compared to when only pure water was present. Also, the effect of IL on ZFL solubility was analyzed using NMR, DSC, and TGA. These results clearly suggest that ZFL solubility was increased by forming hydrogen bonds with selected [Ch][Pro] IL. Toxicity study of ILs was tested against gram-positive and gram-negative bacteria. Since IL solvent was found to increase the solubility of ZFL, this may serve as "functional excipient solvent" for solubility enhancement in its commercialized formulations.
Collapse
|
79
|
Ionic Liquids: Promising Approach for Oral Drug Delivery. Pharm Res 2022; 39:2353-2365. [PMID: 35449344 DOI: 10.1007/s11095-022-03260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Oral administration is the most preferred route for drug administration in clinic. However, due to unsatisfactory physicochemical properties of drugs and various physiological barriers, the oral bioavailability of most poorly water-soluble and macromolecules drugs is low and the therapeutic effect is unsatisfactory. Ionic liquids (ILs), molten salts with unique properties, show amazing potential for oral delivery. In addition to being able to form active pharmaceutical ingredients based ILs (API-ILs) to overcome drug solubility and polymorphism issues, ILs have also been used to enhance the solubility of poorly soluble drugs, enhance drug stability in the gastrointestinal environment, improve drug permeability in intestinal mucus, and facilitate drug penetration across the intestinal epithelial barrier. Furthermore, ILs were attempted as formulation components to develop novel oral drug delivery systems. This review focus on the application progress of ILs in oral drug delivery and the mechanisms. The challenges and perspectives of the development of ILs-based oral delivery systems are also discussed. This article reviews the latest advances of ionic liquids for oral drug delivery, focusing on the application and related mechanisms of ionic liquids in improving the drug physicochemical properties and enhancing drug delivery across physiological barriers.
Collapse
|
80
|
Theoretical and Experimental Studies of Phosphonium Ionic Liquids as Potential Antibacterials of MDR Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11040491. [PMID: 35453241 PMCID: PMC9025513 DOI: 10.3390/antibiotics11040491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/27/2022] Open
Abstract
A previously developed model to predict antibacterial activity of ionic liquids against a resistant A. baumannii strain was used to assess activity of phosphonium ionic liquids. Their antioxidant potential was additionally evaluated with newly developed models, which were based on public data. The accuracy of the models was rigorously evaluated using cross-validation as well as test set prediction. Six alkyl triphenylphosphonium and alkyl tributylphosphonium bromides with the C8, C10, and C12 alkyl chain length were synthesized and tested in vitro. Experimental studies confirmed their activity against A. baumannii as well as showed pronounced antioxidant properties. These results suggest that phosphonium ionic liquids could be promising lead structures against A. baumannii.
Collapse
|
81
|
Boscariol R, Caetano ÉA, Grotto D, Rosa-Castro RM, Oliveira Junior JM, Vila MMDC, Balcão VM. Transdermal Permeation Assays of Curcumin Aided by CAGE-IL: In Vivo Control of Psoriasis. Pharmaceutics 2022; 14:pharmaceutics14040779. [PMID: 35456612 PMCID: PMC9027471 DOI: 10.3390/pharmaceutics14040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a clinically heterogeneous skin disease with an important genetic component, whose pathophysiology is not yet fully understood and for which there is still no cure. Hence, alternative therapies have been evaluated, using plant species such as turmeric (Curcuma longa Linn.) in topical preparations. However, the stratum corneum is a barrier to be overcome, and ionic liquids have emerged as potential substances that promote skin permeation. Thus, the main objective of this research was to evaluate a biopolysaccharide hydrogel formulation integrating curcumin with choline and geranic acid ionic liquid (CAGE-IL) as a facilitator of skin transdermal permeation, in the treatment of chemically induced psoriasis in mice. The developed gel containing curcumin and CAGE-IL showed a high potential for applications in the treatment of psoriasis, reversing the histological manifestations of psoriasis to a state very close to that of normal skin.
Collapse
Affiliation(s)
- Rodrigo Boscariol
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Érika A. Caetano
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Denise Grotto
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Raquel M. Rosa-Castro
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - José M. Oliveira Junior
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Marta M. D. C. Vila
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
- Correspondence: (M.M.D.C.V.); (V.M.B.); Tel.: +55-15-2101-7029 (M.M.D.C.V. & V.M.B.)
| | - Victor M. Balcão
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
- Correspondence: (M.M.D.C.V.); (V.M.B.); Tel.: +55-15-2101-7029 (M.M.D.C.V. & V.M.B.)
| |
Collapse
|
82
|
|
83
|
Zhang X, Cheng Y, You J, Zhang J, Yin C, Zhang J. Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance. Nat Commun 2022; 13:1117. [PMID: 35236853 PMCID: PMC8891296 DOI: 10.1038/s41467-022-28759-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Herein, we present a phosphorescent cationized cellulose derivative by simply introducing ionic structures, including cyanomethylimidazolium cations and chloride anions, into cellulose chains. The imidazolium cations with the cyano group and nitrogen element promote intersystem crossing. The cyano-containing cations, chloride anions and hydroxyl groups of cellulose form multiple hydrogen bonding interactions and electrostatic attraction interactions, effectively inhibiting the non-radiative transitions. The resultant cellulose-based RTP material is easily processed into phosphorescent films, fibers, coatings and patterns by using eco-friendly aqueous solution processing strategies. Furthermore, after we construct a cross-linking structure by adding a small amount of glutaraldehyde as the cross-linking agent, the as-fabricated phosphorescent patterns exhibit excellent antibacterial properties and water resistance. Therefore, considering the outstanding biodegradability and sustainability of cellulose materials, cellulose-based easy-to-process RTP materials can act as antibacterial, water-resistant, and eco-friendly phosphorescent patterns, coatings and bulk materials, which have enormous potential in advanced anti-counterfeiting, information encryption, disposable smart labels, etc.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yaohui Cheng
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingxuan You
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.
| | - Chunchun Yin
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
84
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|