51
|
Loi HL, Cao J, Liu CK, Xu Y, Li MG, Yan F. Highly Sensitive Broadband Phototransistors Based on Gradient Tin/Lead Mixed Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205976. [PMID: 36408813 DOI: 10.1002/smll.202205976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Highly sensitive broadband photodetectors are critical to numerous cutting-edge technologies such as biomedical imaging, environment monitoring, and night vision. Here, phototransistors based on mixed Sn/Pb perovskites are reported, which demonstrate ultrahigh responsivity, gain and specific detectivity in a broadband from ultraviolet to near-infrared region. The interface properties of the perovskite phototransistors are optimized by a special three-step cleaning-healing-cleaning treatment, leading to a high hole mobility in the channel. The highly sensitive performance of the mixed Sn/Pb perovskite phototransistors can be attributed to the vertical compositional heterojunction automatically formed during the film deposition, which is helpful for the separation of photocarriers thereby enhancing a photogating effect in the perovskite channel. This work demonstrates a convenient approach to achieving high-performance phototransistors through tuning compositional gradient in mixed-metal perovskite channels.
Collapse
Affiliation(s)
- Hok-Leung Loi
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiupeng Cao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun-Ki Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yang Xu
- Division of Integrative Systems and Design, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Mitch Guijun Li
- Division of Integrative Systems and Design, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Research Institute of Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
52
|
Hong D, Zhang Y, Pan S, Liu H, Mao W, Lu Z, Tian Y. Moisture-Dependent Blinking of Individual CsPbBr 3 Nanocrystals Revealed by Single-Particle Spectroscopy. J Phys Chem Lett 2022; 13:10751-10758. [PMID: 36374491 DOI: 10.1021/acs.jpclett.2c03159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
All-inorganic metal halide perovskite nanocrystals (NCs) have been exceptional candidates for high-performance solution-processed optoelectronic and photonic devices compared with organometal halide perovskite NCs due to their superior stability. However, the interactions between all-inorganic perovskite NCs and moisture, which is an acknowledged detrimental factor, are still under debate, and detailed investigations to uncover such fundamentals remain to be performed. Herein, with wide-field fluorescence microscopy, the burst photoluminescence blinking responses of CsPbBr3 NCs were observed in ambient air, and moisture rather than oxygen was verified to be the key factor that leads to the enhanced PL intensity and reduced OFF duration. This behavior is rationalized through an effective passivation effect of the adsorbed water molecules on the surface halide vacancies on CsPbBr3 NCs. This work validates that ∼40% humidity atmospheres are helpful for better utilizing the all-inorganic perovskites, which is evidence of their promising prospect for application.
Collapse
Affiliation(s)
- Daocheng Hong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng, Jiangsu224051, China
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Shuhan Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Hanyu Liu
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| | - Wei Mao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yuxi Tian
- Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
53
|
Gao P, Yang M, Wang C, Li H, Yang B, Zheng Z, Huo N, Gao W, Luo D, Li J. Low-pressure PVD growth SnS/InSe vertical heterojunctions with type-II band alignment for typical nanoelectronics. NANOSCALE 2022; 14:14603-14612. [PMID: 36156046 DOI: 10.1039/d2nr04165k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) polarization-sensitive detection as a new photoelectric application technology is extensively investigated. However, most devices are mainly based on individual anisotropic materials, which suffer from large dark current and relatively low anisotropic ratio, limiting the practical application in polarized imaging system. Herein, we design a van der Waals (vdWs) p-type SnS/n-type InSe vertical heterojunction with proposed type-II band alignment via low-pressure physical vapor deposition (LPPVD) and dry transfer method. The performance compared with the distinctive thickness of anisotropic SnS component was first studied. The fabricated device with a thick (80 nm) SnS nanosheet exhibits a larger rectification ratio exceeding 103. Moreover, the SnS/InSe heterostructure shows a broadband spectral photoresponse from 405 to 1100 nm with a significant photovoltaic effect. Due to efficient photogenerated carrier separation across the wide depletion region at zero bias, the device with thinner (12.4 nm) SnS exhibits trade-off photoresponse performance with a maximum responsivity of 215 mA W-1, an external quantum efficiency of 42.2%, specific detectivity of 1.05 × 1010 Jones, and response time of 8.6/4.2 ms under 635 nm illumination, respectively. In contrast, benefiting from the stronger in-plane anisotropic structure of thinner SnS component, the device delivers a large photocurrent anisotropic ratio of 4.6 under 635 nm illumination in a zigzag manner. Above all, our work provides a new design scheme for multifunctional optoelectronic applications based on thickness-dependent 2D vdWs heterostructures.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mengmeng Yang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chuanglei Wang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Hengyi Li
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Baoxiang Yang
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Nengjie Huo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wei Gao
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dongxiang Luo
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University, Guangzhou 510631, P. R. China.
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, China
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
54
|
Ji Z, Liu Y, Zhao C, Wang ZL, Mai W. Perovskite Wide-Angle Field-Of-View Camera. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206957. [PMID: 36037081 DOI: 10.1002/adma.202206957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Researchers have attempted to create wide-angle field-of-view (FOV) cameras inspired by the structure of the eyes of animals, including fisheye and compound eye cameras. However, realizing wide-angle FOV cameras simultaneously exhibiting low distortion and high spatial resolution remains a significant challenge. In this study, a novel wide-angle FOV camera is developed by combining a single large-area flexible perovskite photodetector (FP-PD) using computational technology. With this camera, the proposed single-photodetector imaging technique can obtain high-spatial-resolution images using only a single detector, and the large-area FP-PD can be bent further to collect light from a wide-angle FOV. The proposed camera demonstrates remarkable features of an extraordinarily tunable wide FOV (greater than 150°), high spatial resolution of 256 × 256 pixels, and low distortion. It is believed that the proposed compatible and extensible camera prototype will promote the development of high-performance versatile FOV cameras.
Collapse
Affiliation(s)
- Zhong Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, China
| | - Yujin Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Chuanxi Zhao
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
55
|
Wu D, Zhang H, Liu H, Li W, Xiao X, Shi K, Ye T, Sun J, Lin Z, Liu J, Qiu M, Ko Ko Kyaw A, Wang K. Revealing the Hidden Mechanism of Enhanced Responsivity of Doped p-i-n Perovskite Photodiodes via Coupled Opto-Electronic Model. Molecules 2022; 27:6223. [PMID: 36234760 PMCID: PMC9571005 DOI: 10.3390/molecules27196223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Organic-inorganic halide perovskites have demonstrated preeminent optoelectronic performance in recent years due to their unique material properties, and have shown great potential in the field of photodetectors. In this study, a coupled opto-electronic model is constructed to reveal the hidden mechanism of enhancing the performance of perovskite photodetectors that are suitable for both inverted and regular structure doped p-i-n perovskite photodiodes. Upon illumination, the generation rate of photogenerated carriers is calculated followed by carrier density distribution, which serves as a coupled joint to further analyze the recombination rate, electric field strength, and current density of carriers under different doping types and densities. Moreover, experiments were carried out in which the doping types and densities of the active layer were regulated by changing the precursor ratios. With optimal doping conditions, the inverted and regular perovskite photodiodes achieved an external quantum efficiency of 74.83% and 73.36%, and a responsivity of 0.417 and 0.404 A/W, respectively. The constructed coupled opto-electronic model reveals the hidden mechanism and along with the doping strategy, this study provides important guidance for further analysis and improvement of perovskite-based photodiodes.
Collapse
Affiliation(s)
- Dan Wu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Hechun Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Haochen Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Li
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangtian Xiao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kanming Shi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Taikang Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaowen Lin
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Jing Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Aung Ko Ko Kyaw
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kai Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
56
|
Qi Z, Zhai X, Jiang X, Xu X, Fan C, Shen L, Xiao Q, Jiang S, Deng Q, Liu H, Jing F, Zhang Q. Epitaxy of NiTe 2 on WS 2 for the p-Type Schottky Contact and Increased Photoresponse. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31121-31130. [PMID: 35767657 DOI: 10.1021/acsami.2c06968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have great potential applications in the electronic and optoelectronic devices. Nevertheless, due to the difficulty in the efficient doping of atomic-thickness TMDCs or Fermi level pinning (FLP) effects at the metal/semiconductor interface, most TMDC devices exhibit the n-type conduction polarity, which significantly limits their functional applications based on the p-n junction. Here, 2D semi-metal NiTe2 nanosheets were epitaxially grown on the WS2 monolayer by a two-step chemical vapor deposition route. The microstructure and optical characterizations confirm that the vertically stacked NiTe2/WS2 heterostructures are formed by van der Waals epitaxy. Interestingly, p-type WS2 field-effect transistors can be obtained with the hole mobility of ∼4.22 cm2/V·s, when the epitaxial NiTe2 sheets act as the source/drain electrodes. This is attributed to the decreased FLP effect and hence the low potential barrier for holes at the van der Waals contacts. Furthermore, the photodetectors based on the heterostructures show a 2 orders of magnitude increase in the switch ratio, responsivity, and detectivity and a 1 order of magnitude increase in the rise and decay speeds relative to those based on pristine WS2. This work paves the way to realize the p-type contact for monolayer WS2 with significantly enhanced optoelectronic performance.
Collapse
Affiliation(s)
- Zhuodong Qi
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Xiaokun Zhai
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiaohong Jiang
- Key Laboratory for Special Functional Materials, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| | - Xing Xu
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Chao Fan
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Lei Shen
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Qin Xiao
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Sha Jiang
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Qi Deng
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| | - Hongjun Liu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fangli Jing
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Qinglin Zhang
- School of Physics and Electronics, and Hunan Key Laboratory of Two-Dimensional Materials, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
57
|
Ghosh J, Sellin PJ, Giri PK. Recent advances in lead-free double perovskites for x-ray and photodetection. NANOTECHNOLOGY 2022; 33:312001. [PMID: 35443239 DOI: 10.1088/1361-6528/ac6884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Over the last decade, lead halide perovskites have attracted significant research attention in the field of photovoltaics, light-emitting devices, photodetection, ionizing radiation detection, etc, owing to their outstanding optoelectrical properties. However, the commercial applications of lead-based perovskite devices are restricted due to the poor ambient stability and toxicity of lead. The encapsulation of lead-based devices can reduce the possible leakage of lead. However, it is hard to ensure safety during large-scale production and long-term storage. Recently, considerable efforts have been made to design lead-free perovskites for different optoelectronic applications. Metal halide double perovskites with the general formula of A2MIMIIIX6or A2MIVX6could be potentially considered as green and stable alternatives for different optoelectronic applications. In this review article, we focus on the recent progress and findings on lead-free halide double perovskites for x-ray and UV-vis photodetection applications. Lead-free halide double perovskite has recently drawn a great deal of attention for superior x-ray detection due to its high absorption coefficient, large carrier mobility-lifetime product, and large bulk resistance. In addition, these materials exhibit good performance in photodetection in the UV-vis region due to high photocarrier generation and efficient carrier separation. In this review, first, we define the characteristics of lead-free double perovskite materials. The fundamental characteristics and beneficial properties of halide perovskites for direct and indirect x-ray detection are then discussed. We comprehensively review recent developments and efforts on lead-free double perovskite for x-ray detection and UV-vis photodetection. We bring out the current challenges and opportunities in the field and finally present the future outlook for developing lead-free double perovskite-based x-ray and UV-vis photodetectors for practical applications.
Collapse
Affiliation(s)
- Joydip Ghosh
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P J Sellin
- Department of Physics, University of Surrey, Guildford, Surrey, United Kingdom
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, India
| |
Collapse
|
58
|
Tonkaev P, Sinev IS, Rybin MV, Makarov SV, Kivshar Y. Multifunctional and Transformative Metaphotonics with Emerging Materials. Chem Rev 2022; 122:15414-15449. [PMID: 35549165 DOI: 10.1021/acs.chemrev.1c01029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Ivan S Sinev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia.,Ioffe Institute, Russian Academy of Science, St. Petersburg 194021, Russia
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
59
|
Zou C, Liu Q, Chen K, Chen F, Zhao Z, Cao Y, Deng C, Wang X, Li X, Zhan S, Gao F, Li S. A high-performance polarization-sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu 2I 3/GaN heterostructure. MATERIALS HORIZONS 2022; 9:1479-1488. [PMID: 35262131 DOI: 10.1039/d1mh02073k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polarization-sensitive photodetectors are the core of optics applications and have been successfully demonstrated in photodetectors based on the newly-emerging metal-halide perovskites. However, achieving high polarization sensitivity is still extremely challenging. In addition, most of the previously reported photodetectors were concentrated on 1D lead-halide perovskites and 2D asymmetric intrinsic structure materials, but suffered from being external bias driven, lead-toxicity, poor stability and complex processes, severely limiting their practical applications. Here, we demonstrate a high-performance polarization-sensitive and stable polarization-sensitive UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure. By combining the anisotropic morphology and asymmetric intrinsic structure of CsCu2I3 dendrites with the isotropic material GaN film, a high specific surface area and built-in electric field are achieved, exhibiting an ultra-high polarization selectivity up to 28.7 and 102.8 under self-driving mode and -3 V bias, respectively. To our knowledge, such a high polarization selectivity has exceeded those of all of the reported perovskite-based devices, and is comparable to, or even superior to, those of the conventional 2D heterostructure materials. Interestingly, the unsealed device shows outstanding stability, and can be stored for over 2 months, and effectively maintained the performance even after repeated heating (373K)-cooling (300K) for different periods of time in ambient air, indicating a remarkable temperature tolerance and desired compatibility for applications under harsh conditions. Such excellent performance and simple method strongly show that the CsCu2I3/GaN heterojunction photodetector has great potential in practical applications with high polarization-sensitivity. This work provides a new insight into designing novel high-performance polarization-sensitive optoelectronic devices.
Collapse
Affiliation(s)
- Can Zou
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Qing Liu
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Kai Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Fei Chen
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Zixuan Zhao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Yunxuan Cao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Congcong Deng
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xingfu Wang
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Xiaohang Li
- King Abdullah University of Science and Technology (KAUST), Advanced Semiconductor Laboratory, Thuwal 23955, Saudi Arabia
| | - Shaobin Zhan
- Shenzhen Institute of Information Technology, Innovation and Entrepreneurship School, Shenzhen, 518172, P. R. China.
| | - Fangliang Gao
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
| | - Shuti Li
- Guangdong Engineering Research centre of Optoelectronic Functional Materials and Devices, Institute of Semiconductors, South China Normal University, Guangzhou, 510631, P. R. China.
- 21C Innovation Laboratory, Contemporary Amperex Technology Ltd, Ningde, Fujian, 352100, P. R. China.
| |
Collapse
|
60
|
Yang J, Wang Y, Huang L, Li G, Qiu X, Zhang X, Sun W. High-Efficiency and Stable Perovskite Photodetectors with an F4-TCNQ-Modified Interface of NiO x and Perovskite Layers. J Phys Chem Lett 2022; 13:3904-3914. [PMID: 35471973 DOI: 10.1021/acs.jpclett.2c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nickel oxide (NiOx), a typical p-type semiconductor, is emerging as the most promising hole transport layer material. However, the inferior interfacial contact of the NiOx/perovskite interface has limited the improvement of the performance of photodetectors (PDs). In this work, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is introduced to modify the NiOx/perovskite interface to prepare high-performance PDs. This study shows that the F4-TCNQ layer interacts with the NiOx/perovskite layers. It can increase the Ni3+/Ni2+ ratio and then enhance the hole extraction and charge carrier mobility; on the contrary, it can form a new Lewis adduct and passivate the undercoordinated Pb2+ ions. Furthermore, with the F4-TCNQ modification, the perovskite film exhibits good thermal stability and photostability. The PDs demonstrate excellent photoelectric properties and long-term stability in the atmosphere. This finding provides a simple and efficient way to further develop the NiOx/perovskite interface.
Collapse
Affiliation(s)
- Jia Yang
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yukun Wang
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Lixiang Huang
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Guoxin Li
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xin Qiu
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoxiao Zhang
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenhong Sun
- Research Center for Optoelectronic Materials and Devices, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and the Guangxi Key of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
61
|
Zhao W, Yan Y, Chen X, Wang T. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation (N Y) 2022; 3:100253. [PMID: 35602121 PMCID: PMC9117940 DOI: 10.1016/j.xinn.2022.100253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Nanoparticles (NPs) printing assembly is a good solution for patterned devices NPs assembly can be combined with 2D, 3D, and 4D printing technologies A variety of ink-dispersed NPs are available for printing assembly NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
Collapse
Affiliation(s)
- Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanling Yan
- National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Corresponding author
| |
Collapse
|
62
|
Li Z, Hong E, Zhang X, Deng M, Fang X. Perovskite-Type 2D Materials for High-Performance Photodetectors. J Phys Chem Lett 2022; 13:1215-1225. [PMID: 35089041 DOI: 10.1021/acs.jpclett.1c04225] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials. Through the reduction of thickness to thin or molecularly thin levels, single-crystalline 2D perovskites can exhibit superior optoelectronic performance characteristics, such as tunable absorption property by chemical design, enhanced carrier separation by remarkable photosensing capability, and improved carrier extraction by versatile band engineering. More importantly, perovskite-type 2D materials exhibit great potential for large-scale monolithic integration to achieve all-in-one sensing-memory-computing optoelectronic devices. In this Perspective, recent progress in 2D perovskite-based photodetectors is presented in detail. The focus is on growth strategies for reducing thickness, thickness-dependent optical and electrical properties, device engineering, heterojunction fabrication, and device performance. Finally, the current challenges and future prospects in this field are presented.
Collapse
Affiliation(s)
- Ziqing Li
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Enliu Hong
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xinyu Zhang
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Ming Deng
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| | - Xiaosheng Fang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, P.R. China
- Department of Materials Science, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
63
|
Weng W, Chen Q, Fan Y, Li Z, Huang H, Wu H, Ji C, Lin W. A lead-free halide hybrid perovskite (TMHD)BiCl 5 for ultraviolet photodetection. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead halide hybrid perovskites with a wide bandgap (e.g., CH3NH3PbCl3) have gained tremendous attention in the field of ultraviolet (UV) photodetection due to their brilliant optoelectronic activity.
Collapse
Affiliation(s)
- Wen Weng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectcronic Information of China, Fuzhou, 350108, P.R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 116023, P.R. China
| | - Qin Chen
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Yipeng Fan
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Zhou Li
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Haizhou Huang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectcronic Information of China, Fuzhou, 350108, P.R. China
| | - Hongchun Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectcronic Information of China, Fuzhou, 350108, P.R. China
| | - Chengmin Ji
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P.R. China
| | - Wenxiong Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, 350002, P.R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectcronic Information of China, Fuzhou, 350108, P.R. China
| |
Collapse
|
64
|
Huang X, Guo Y, Liu Y. Perovskite photodetectors and their application in artificial photonic synapses. Chem Commun (Camb) 2021; 57:11429-11442. [PMID: 34642713 DOI: 10.1039/d1cc04447h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic-inorganic hybrid perovskites exhibit superior optoelectrical properties and have been widely used in photodetectors. Perovskite photodetectors with excellent detectivity have great potential for developing artificial photonic synapses which can merge data transmission and storage. They are highly desired for next generation neuromorphic computing. The recent progress of perovskite photodetectors and their application in artificial photonic synapses are summarized in this review. Firstly, the key performance parameters of photodetectors are briefly introduced. Secondly, the recent research progress of photodetectors including photoconductors, photodiodes, and phototransistors is summarized. Finally, the applications of perovskite photodetectors in artificial photonic synapses in recent years are highlighted. All these demonstrate the great potential of perovskite photonic synapses for the development of artificial intelligence.
Collapse
Affiliation(s)
- Xin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| |
Collapse
|