51
|
Xue YC, Ng CS, Xiang P, Liu H, Zhang K, Mohamud Y, Luo H. Dysregulation of RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2020; 13:78. [PMID: 32547363 PMCID: PMC7273501 DOI: 10.3389/fnmol.2020.00078] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have revealed a strong association between mutations in genes encoding many RNA-binding proteins (RBPs), including TARDBP, FUS, hnRNPA1, hnRNPA2B1, MATR3, ATXN2, TAF15, TIA-1, and EWSR1, and disease onset/progression. RBPs are a group of evolutionally conserved proteins that participate in multiple steps of RNA metabolism, including splicing, polyadenylation, mRNA stability, localization, and translation. Dysregulation of RBPs, as a consequence of gene mutations, impaired nucleocytoplasmic trafficking, posttranslational modification (PTM), aggregation, and sequestration by abnormal RNA foci, has been shown to be involved in neurodegeneration and the development of ALS. While the exact mechanism by which dysregulated RBPs contribute to ALS remains elusive, emerging evidence supports the notion that both a loss of function and/or a gain of toxic function of these ALS-linked RBPs play a significant role in disease pathogenesis through facilitating abnormal protein interaction, causing aberrant RNA metabolism, and by disturbing ribonucleoprotein granule dynamics and phase transition. In this review article, we summarize the current knowledge on the molecular mechanism by which RBPs are dysregulated and the influence of defective RBPs on cellular homeostasis during the development of ALS. The strategies of ongoing clinical trials targeting RBPs and/or relevant processes are also discussed in the present review.
Collapse
Affiliation(s)
- Yuan Chao Xue
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chen Seng Ng
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pinhao Xiang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Huitao Liu
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Zhang
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Chung YH, Lin CW, Huang HY, Chen SL, Huang HJ, Sun YC, Lee GC, Lee-Chen GJ, Chang YC, Hsieh-Li HM. Targeting Inflammation, PHA-767491 Shows a Broad Spectrum in Protein Aggregation Diseases. J Mol Neurosci 2020; 70:1140-1152. [PMID: 32170713 DOI: 10.1007/s12031-020-01521-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
Many protein aggregation diseases (PAD) affect the nervous system. Deposits of aggregated disease-specific proteins are found within or around the neuronal cells of neurodegenerative diseases. Although the main protein component is disease-specific, oligomeric aggregates are presumed to be the key agents causing the neurotoxicity. Evidence has shown that protein aggregates cause a chronic inflammatory reaction in the brain, resulting in neurodegeneration. Therefore, strategies targeting anti-inflammation could be beneficial to the therapeutics of PAD. PHA-767491 was originally identified as an inhibitor of CDC7/CDK9 and was found to reduce TDP-43 phosphorylation and prevent neurodegeneration in TDP-43 transgenic animals. We recently identified PHA-767491 as a GSK-3β inhibitor. In this study, we established mouse hippocampal primary culture with tau-hyperphosphorylation through the activation of GSK-3β using Wortmannin and GF109203X. We found that PHA-767491 significantly improved the neurite outgrowth of hippocampal primary neurons against the neurotoxicity induced by GSK-3β. We further showed that PHA-767491 had neuroprotective ability in hippocampal primary culture under oligomeric Aβ treatment. In addition, PHA-767491 attenuated the neuroinflammation in mouse cerebellar slice culture with human TBP-109Q agitation. Further study of SCA17 transgenic mice carrying human TBP-109Q showed that PHA-767491 ameliorated the gait ataxia and the inflammatory response both centrally and peripherally. Our findings suggest that PHA-767491 has a broad spectrum of activity in the treatment of different PAD and that this activity could be based on the anti-inflammation mechanism.
Collapse
Affiliation(s)
- Yu-Han Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yu Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Shu-Ling Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guan-Chiun Lee
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Ching Chang
- Department of Pharmacy, Taiwan Adventist Hospital, Taipei, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
53
|
Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δ kinase inhibitor treatment. Sci Rep 2020; 10:4449. [PMID: 32157143 PMCID: PMC7064575 DOI: 10.1038/s41598-020-61265-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease where no treatment exists, involves the compartmentalization of the nuclear protein TDP-43 (TAR DNA-binding protein 43) in the cytoplasm which is promoted by its aberrant phosphorylation and others posttranslational modifications. Recently, it was reported that CK-1δ (protein casein kinase-1δ) is able to phosphorylate TDP-43. Here, the preclinical efficacy of a benzothiazole-based CK-1δ inhibitor IGS-2.7, both in a TDP-43 (A315T) transgenic mouse and in a human cell-based model of ALS, is shown. Treatment with IGS-2.7 produces a significant preservation of motor neurons in the anterior horn at lumbar level, a decrease in both astroglial and microglial reactivity in this area, and in TDP-43 phosphorylation in spinal cord samples. Furthermore, the recovery of TDP-43 homeostasis (phosphorylation and localization) in a human-based cell model from ALS patients after treatment with IGS-2.7 is also reported. Moreover, we have shown a trend to increase in CK-1δ mRNA in spinal cord and significantly in frontal cortex of sALS cases. All these data show for the first time the in vivo modulation of TDP-43 toxicity by CK-1δ inhibition with IGS-2.7, which may explain the benefits in the preservation of spinal motor neurons and point to the relevance of CK-1δ inhibitors in a future disease-modifying treatment for ALS.
Collapse
|
54
|
Brown DG, Shorter J, Wobst HJ. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. Bioorg Med Chem Lett 2019; 30:126942. [PMID: 31926785 DOI: 10.1016/j.bmcl.2019.126942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/16/2023]
Abstract
Novel treatments are desperately needed for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this review article, a survey of emerging small-molecule approaches for ALS and FTD therapies is provided. These approaches include targeting aberrant liquid-liquid phase separation and stress granule assembly, modulation of RNA-protein interactions, inhibition of TDP-43 phosphorylation, inhibition of poly(ADP-ribose) polymerases (PARP), RNA-targeting approaches to reduce RAN translation of dipeptide repeat proteins from repeat expansions of C9ORF72, and novel autophagy activation pathways. This review details the emerging small-molecule tools and leads in these areas, along with a critical perspective on the key challenges facing these opportunities.
Collapse
Affiliation(s)
- Dean G Brown
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, United States.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Heike J Wobst
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Boston, United States.
| |
Collapse
|
55
|
Liachko NF, Saxton AD, McMillan PJ, Strovas TJ, Keene CD, Bird TD, Kraemer BC. Genome wide analysis reveals heparan sulfate epimerase modulates TDP-43 proteinopathy. PLoS Genet 2019; 15:e1008526. [PMID: 31834878 PMCID: PMC6934317 DOI: 10.1371/journal.pgen.1008526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/27/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
Pathological phosphorylated TDP-43 protein (pTDP) deposition drives neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the cellular and genetic mechanisms at work in pathological TDP-43 toxicity are not fully elucidated. To identify genetic modifiers of TDP-43 neurotoxicity, we utilized a Caenorhabditis elegans model of TDP-43 proteinopathy expressing human mutant TDP-43 pan-neuronally (TDP-43 tg). In TDP-43 tg C. elegans, we conducted a genome-wide RNAi screen covering 16,767 C. elegans genes for loss of function genetic suppressors of TDP-43-driven motor dysfunction. We identified 46 candidate genes that when knocked down partially ameliorate TDP-43 related phenotypes; 24 of these candidate genes have conserved homologs in the human genome. To rigorously validate the RNAi findings, we crossed the TDP-43 transgene into the background of homozygous strong genetic loss of function mutations. We have confirmed 9 of the 24 candidate genes significantly modulate TDP-43 transgenic phenotypes. Among the validated genes we focused on, one of the most consistent genetic modifier genes protecting against pTDP accumulation and motor deficits was the heparan sulfate-modifying enzyme hse-5, the C. elegans homolog of glucuronic acid epimerase (GLCE). We found that knockdown of human GLCE in cultured human cells protects against oxidative stress induced pTDP accumulation. Furthermore, expression of glucuronic acid epimerase is significantly decreased in the brains of FTLD-TDP cases relative to normal controls, demonstrating the potential disease relevance of the candidate genes identified. Taken together these findings nominate glucuronic acid epimerase as a novel candidate therapeutic target for TDP-43 proteinopathies including ALS and FTLD-TDP. The protein TDP-43 forms aggregates in disease-affected neurons in patients with ALS and FTLD-TDP. In addition, mutations in the human gene coding for TDP-43 can cause inherited ALS. By expressing human mutant TDP-43 protein in C. elegans neurons, we have modelled aspects of ALS pathobiology. This animal model exhibits severe motor dysfunction, progressive neurodegeneration, and accumulation of abnormally modified TDP-43 protein. To identify genes controlling TDP-43 neurotoxicity in C. elegans, we have conducted a genome-wide reverse genetic screen and found 46 genes that participate in TDP-43 neurotoxicity. We demonstrated that one of them, glucuronic acid epimerase, is decreased in patients with FTLD-TDP suggesting inhibitors of glucuronic acid epimerase could have therapeutic value for ALS and FTLD.
Collapse
Affiliation(s)
- Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Pamela J. McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
56
|
Gu J, Hu W, Tan X, Qu S, Chu D, Gong CX, Iqbal K, Liu F. Elevation of casein kinase 1ε associated with TDP-43 and tau pathologies in Alzheimer's disease. Brain Pathol 2019; 30:283-297. [PMID: 31376192 DOI: 10.1111/bpa.12775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of extracellular amyloid β plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated microtubule-associated protein tau in the brain. Aggregation of transactive response DNA-binding protein of 43 kDa (TDP-43) in the neuronal cytoplasm is another feature of AD. However, how TDP-43 is associated with AD pathogenesis is unknown. Here, we found that casein kinase 1ε (CK1ε) phosphorylated TDP-43 at Ser403/404 and Ser409/410. In AD brains, the level of CK1ε was dramatically increased and positively correlated with the phosphorylation of TDP-43 at Ser403/404 and Ser409/410. Overexpression of CK1ε promoted its cytoplasmic aggregation and suppressed TDP-43-promoted tau mRNA instability and tau exon 10 inclusion, leading to an increase of tau and 3R-tau expressions. Levels of CK1ε and TDP-43 phosphorylation were positively correlated with the levels of total tau and 3R-tau in human brains. Furthermore, we observed, in pilot immunohistochemical studies, that the severe tau pathology was accompanied by robust TDP-43 pathology and a high level of CK1ε. Taken together, our findings suggest that the elevation of CK1ε in AD brain may phosphorylate TDP-43, promote its cytoplasmic aggregation and suppress its function in tau mRNA processing, leading to acceleration/exacerbation of tau pathology. Thus, the elevation of CK1ε may link TDP-43 to tau pathogenesis in AD brain.
Collapse
Affiliation(s)
- Jianlan Gu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Xuefeng Tan
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuting Qu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| |
Collapse
|
57
|
Gu J, Chu D, Jin N, Chen F, Liu F. Cyclic AMP-Dependent Protein Kinase Phosphorylates TDP-43 and Modulates Its Function in Tau mRNA Processing. J Alzheimers Dis 2019; 70:1093-1102. [DOI: 10.3233/jad-190368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianlan Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Feng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
58
|
Taylor LM, McMillan PJ, Kraemer BC, Liachko NF. Tau tubulin kinases in proteinopathy. FEBS J 2019; 286:2434-2446. [PMID: 31034749 PMCID: PMC6936727 DOI: 10.1111/febs.14866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/23/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
Abstract
A number of neurodegenerative diseases are characterized by deposition of abnormally phosphorylated tau or TDP-43 in disease-affected neurons. These diseases include Alzheimer's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. No disease-modifying therapeutics is available to treat these disorders, and we have a limited understanding of the cellular and molecular factors integral to disease initiation or progression. Phosphorylated tau and TDP-43 are important markers of pathology in dementia disorders and directly contribute to tau- and TDP-43-related neurotoxicity and neurodegeneration. Here, we review the scope of tau and TDP-43 phosphorylation in neurodegenerative disease and discuss recent work demonstrating the kinases TTBK1 and TTBK2 phosphorylate both tau and TDP-43, promoting neurodegeneration.
Collapse
Affiliation(s)
- Laura M Taylor
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
59
|
Palomo V, Tosat-Bitrian C, Nozal V, Nagaraj S, Martin-Requero A, Martinez A. TDP-43: A Key Therapeutic Target beyond Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2019; 10:1183-1196. [PMID: 30785719 DOI: 10.1021/acschemneuro.9b00026] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulation of TDP-43 in the cytoplasm of diseased neurons is the pathological hallmark of frontotemporal dementia-TDP (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), two diseases that lack efficacious medicine to prevent or to stop disease progression. The discovery of mutations in the TARDBP gene (encoding the nuclear protein known as TDP-43) in both FTLD and ALS patients provided evidence for a link between TDP-43 alterations and neurodegeneration. Our understanding of TDP-43 function has advanced profoundly in the past several years; however, its complete role and the molecular mechanisms that lead to disease are not fully understood. Here we summarize the recent studies of this protein, its relation to neurodegenerative diseases, and the therapeutic strategies for restoring its homeostasis with small molecules. Finally, we briefly discuss the available cellular and animal models that help to shed light on TDP-43 pathology and could serve as tools for the discovery of pharmacological agents for the treatment of TDP-43-related diseases.
Collapse
Affiliation(s)
- Valle Palomo
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | | | - Vanesa Nozal
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Siranjeevi Nagaraj
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Angeles Martin-Requero
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| |
Collapse
|
60
|
Nozal V, Martinez A. Tau Tubulin Kinase 1 (TTBK1), a new player in the fight against neurodegenerative diseases. Eur J Med Chem 2019; 161:39-47. [DOI: 10.1016/j.ejmech.2018.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
61
|
Yanagi KS, Wu Z, Amaya J, Chapkis N, Duffy AM, Hajdarovic KH, Held A, Mathur AD, Russo K, Ryan VH, Steinert BL, Whitt JP, Fallon JR, Fawzi NL, Lipscombe D, Reenan RA, Wharton KA, Hart AC. Meta-analysis of Genetic Modifiers Reveals Candidate Dysregulated Pathways in Amyotrophic Lateral Sclerosis. Neuroscience 2019; 396:A3-A20. [PMID: 30594291 PMCID: PMC6549511 DOI: 10.1016/j.neuroscience.2018.10.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease that has significant overlap with frontotemporal dementia (FTD). Mutations in specific genes have been identified that can cause and/or predispose patients to ALS. However, the clinical variability seen in ALS patients suggests that additional genes impact pathology, susceptibility, severity, and/or progression of the disease. To identify molecular pathways involved in ALS, we undertook a meta-analysis of published genetic modifiers both in patients and in model organisms, and undertook bioinformatic pathway analysis. From 72 published studies, we generated a list of 946 genes whose perturbation (1) impacted ALS in patient populations, (2) altered defects in laboratory models, or (3) modified defects caused by ALS gene ortholog loss of function. Herein, these are all called modifier genes. We found 727 modifier genes that encode proteins with human orthologs. Of these, 43 modifier genes were identified as modifiers of more than one ALS gene/model, consistent with the hypothesis that shared genes and pathways may underlie ALS. Further, we used a gene ontology-based bioinformatic analysis to identify pathways and associated genes that may be important in ALS. To our knowledge this is the first comprehensive survey of ALS modifier genes. This work suggests that shared molecular mechanisms may underlie pathology caused by different ALS disease genes. Surprisingly, few ALS modifier genes have been tested in more than one disease model. Understanding genes that modify ALS-associated defects will help to elucidate the molecular pathways that underlie ALS and provide additional targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine S Yanagi
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua Amaya
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Natalie Chapkis
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Amanda M Duffy
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kaitlyn H Hajdarovic
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Aaron Held
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Arjun D Mathur
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kathryn Russo
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Veronica H Ryan
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Beatrice L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Joshua P Whitt
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Justin R Fallon
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Robert A Reenan
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Kristi A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| | - Anne C Hart
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, United States.
| |
Collapse
|
62
|
Makhouri FR, Ghasemi JB. High-throughput Docking and Molecular Dynamics Simulations towards the Identification of Novel Peptidomimetic Inhibitors against CDC7. Mol Inform 2018; 37:e1800022. [DOI: 10.1002/minf.201800022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Farahnaz Rezaei Makhouri
- Chemistry Department, Faculty of Sciences; K.N. Toosi University of Technology; Tehran 1969764499 Iran
| | - Jahan B. Ghasemi
- Chemistry Department, Faculty of Sciences; K.N. Toosi University of Technology; Tehran 1969764499 Iran
- Chemistry Department, Faculty of Sciences; University of Tehran; Tehran 1417466191 Iran
| |
Collapse
|
63
|
Lee A, Rayner SL, De Luca A, Gwee SSL, Morsch M, Sundaramoorthy V, Shahheydari H, Ragagnin A, Shi B, Yang S, Williams KL, Don EK, Walker AK, Zhang KY, Yerbury JJ, Cole NJ, Atkin JD, Blair IP, Molloy MP, Chung RS. Casein kinase II phosphorylation of cyclin F at serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF (cyclin F) complex. Open Biol 2018; 7:rsob.170058. [PMID: 29021214 PMCID: PMC5666078 DOI: 10.1098/rsob.170058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that is characterized by progressive weakness, paralysis and muscle loss often resulting in patient death within 3–5 years of diagnosis. Recently, we identified disease-linked mutations in the CCNF gene, which encodes the cyclin F protein, in cohorts of patients with familial and sporadic ALS and frontotemporal dementia (FTD) (Williams KL et al. 2016 Nat. Commun.7, 11253. (doi:10.1038/ncomms11253)). Cyclin F is a part of a Skp1-Cul-F-box (SCF) E3 ubiquitin-protein ligase complex and is responsible for ubiquitylating proteins for degradation by the proteasome. In this study, we investigated the phosphorylation status of cyclin F and the effect of the serine to glycine substitution at site 621 (S621G) on E3 ligase activity. This specific mutation (S621G) was found in a multi-generational Australian family with ALS/FTD. We identified seven phosphorylation sites on cyclin F, of which five are newly reported including Ser621. These phosphorylation sites were mostly identified within the PEST (proline, glutamic acid, serine and threonine) sequence located at the C-terminus of cyclin F. Additionally, we determined that casein kinase II (CK2) can phosphorylate Ser621 and thereby regulate the E3 ligase activity of the SCF(cyclin F) complex. Furthermore, the S621G mutation in cyclin F prevents phosphorylation by CK2 and confers elevated Lys48-ubiquitylation activity, a hallmark of ALS/FTD pathology. These findings highlight the importance of phosphorylation in regulating the activity of the SCF(cyclin F) E3 ligase complex that can affect downstream processes and may lead to defective motor neuron development, neuron degeneration and ultimately ALS and FTD.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia .,Australian Proteome Analysis Facility, Research Park Drive, Macquarie University, North Ryde, NSW 2109, Australia
| | - Stephanie L Rayner
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia.,Faculty of Science and Engineering, Department of Chemistry and Biomolecular Sciences, Research Park Drive, Macquarie University, North Ryde, NSW 2109, Australia
| | - Alana De Luca
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Serene S L Gwee
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Vinod Sundaramoorthy
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Hamideh Shahheydari
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Shu Yang
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Kelly L Williams
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Emily K Don
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Katharine Y Zhang
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Victoria, Australia
| | - Ian P Blair
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Research Park Drive, Macquarie University, North Ryde, NSW 2109, Australia.,Faculty of Science and Engineering, Department of Chemistry and Biomolecular Sciences, Research Park Drive, Macquarie University, North Ryde, NSW 2109, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|
64
|
Sun L, Zhang K, Zhai W, Li H, Shen H, Yu Z, Chen G. TAR DNA Binding Protein-43 Loss of Function Induced by Phosphorylation at S409/410 Blocks Autophagic Flux and Participates in Secondary Brain Injury After Intracerebral Hemorrhage. Front Cell Neurosci 2018; 12:79. [PMID: 29623031 PMCID: PMC5874314 DOI: 10.3389/fncel.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the role of TAR DNA binding protein-43 (TDP-43) in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI) and its underlying mechanisms. After ICH, expression of TDP-43 in the nucleus was significantly decreased, and its expression in the cytoplasm increased both in vivo and in vitro, which indicates that TDP-43 translocates from the nucleus to the cytoplasm during SBI after ICH. In addition, mutations at S409/410 of TDP-43 could inhibit its phosphorylation, attenuate nuclear loss, and abolish the increase in neuronal apoptosis in the subcortex. Inhibition of TDP-43 phosphorylation attenuated ICH-induced downregulation of mTOR activity and dynactin1 expression, which may relieve blocking of autophagosome-lysosome fusion and the increase of autophagosomal and lysosomal biogenesis induced by ICH. However, knockdown of TDP-43 could worsen ICH-induced SBI. Furthermore, TDP-43 could be dephosphorylated by calcineurin (CN), and CN activity was increased by OxyHb treatment. In conclusion, this study demonstrated that TDP-43 loss-of-function by phosphorylation at S409/410 may block autophagosome-lysosome fusion and induce elevation of LC3II and p62 levels by inhibiting the activity of mTOR and expression of dynactin1. This mechanism may play an important role in ICH-induced SBI, and TDP-43 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Liang Sun
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.,Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiwei Zhai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
65
|
Taylor LM, McMillan PJ, Liachko NF, Strovas TJ, Ghetti B, Bird TD, Keene CD, Kraemer BC. Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration. Mol Neurodegener 2018; 13:7. [PMID: 29409526 PMCID: PMC5802059 DOI: 10.1186/s13024-018-0237-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Progressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer's disease and other tauopathies. METHODS To further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease. RESULTS We show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls. CONCLUSIONS Our findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Laura M Taylor
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Thomas D Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
66
|
Fujita K, Chen X, Homma H, Tagawa K, Amano M, Saito A, Imoto S, Akatsu H, Hashizume Y, Kaibuchi K, Miyano S, Okazawa H. Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nat Commun 2018; 9:433. [PMID: 29382817 PMCID: PMC5789822 DOI: 10.1038/s41467-018-02821-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Abstract
Mutations in the progranulin (PGRN) gene cause a tau pathology-negative and TDP43 pathology-positive form of frontotemporal lobar degeneration (FTLD-TDP). We generated a knock-in mouse harboring the R504X mutation (PGRN-KI). Phosphoproteomic analysis of this model revealed activation of signaling pathways connecting PKC and MAPK to tau prior to TDP43 aggregation and cognitive impairments, and identified PKCα as the kinase responsible for the early-stage tau phosphorylation at Ser203. Disinhibition of Gas6 binding to Tyro3 due to PGRN reduction results in activation of PKCα via PLCγ, inducing tau phosphorylation at Ser203, mislocalization of tau to dendritic spines, and spine loss. Administration of a PKC inhibitor, B-Raf inhibitor, or knockdown of molecules in the Gas6-Tyro3-tau axis rescues spine loss and cognitive impairment of PGRN-KI mice. Collectively, these results suggest that targeting of early-stage and aggregation-independent tau signaling represents a promising therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Xigui Chen
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hidenori Homma
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuhiko Tagawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Ayumu Saito
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Seiya Imoto
- Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroyasu Akatsu
- Department of Medicine for Aging in Place and Community-Based Medical Education, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65, Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
67
|
Weeks JC, Roberts WM, Leasure C, Suzuki BM, Robinson KJ, Currey H, Wangchuk P, Eichenberger RM, Saxton AD, Bird TD, Kraemer BC, Loukas A, Hawdon JM, Caffrey CR, Liachko NF. Sertraline, Paroxetine, and Chlorpromazine Are Rapidly Acting Anthelmintic Drugs Capable of Clinical Repurposing. Sci Rep 2018; 8:975. [PMID: 29343694 PMCID: PMC5772060 DOI: 10.1038/s41598-017-18457-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Parasitic helminths infect over 1 billion people worldwide, while current treatments rely on a limited arsenal of drugs. To expedite drug discovery, we screened a small-molecule library of compounds with histories of use in human clinical trials for anthelmintic activity against the soil nematode Caenorhabditis elegans. From this screen, we found that the neuromodulatory drugs sertraline, paroxetine, and chlorpromazine kill C. elegans at multiple life stages including embryos, developing larvae and gravid adults. These drugs act rapidly to inhibit C. elegans feeding within minutes of exposure. Sertraline, paroxetine, and chlorpromazine also decrease motility of adult Trichuris muris whipworms, prevent hatching and development of Ancylostoma caninum hookworms and kill Schistosoma mansoni flatworms, three widely divergent parasitic helminth species. C. elegans mutants with resistance to known anthelmintic drugs such as ivermectin are equally or more susceptible to these three drugs, suggesting that they may act on novel targets to kill worms. Sertraline, paroxetine, and chlorpromazine have long histories of use clinically as antidepressant or antipsychotic medicines. They may represent new classes of anthelmintic drug that could be used in combination with existing front-line drugs to boost effectiveness of anti-parasite treatment as well as offset the development of parasite drug resistance.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Caitlyn Leasure
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D.C., 20052, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | | | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Thomas D Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Neurology, University of Washington, Seattle, Washington, 98195, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 98195, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98104, USA
- Department of Pathology, University of Washington, Seattle, Washington, 98195, USA
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D.C., 20052, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, 98104, USA.
| |
Collapse
|
68
|
Rainey MD, Quachthithu H, Gaboriau D, Santocanale C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 2017; 12:1893-1902. [PMID: 28560864 DOI: 10.1021/acschembio.7b00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CDC7 kinase, by phosphorylating the MCM DNA helicase, is a key switch for DNA replication initiation. ATP competitive CDC7 inhibitors are being developed as potential anticancer agents; however how human cells respond to the selective pharmacological inhibition of this kinase is controversial and not understood. Here we have characterized the mode of action of the two widely used CDC7 inhibitors, PHA-767491 and XL-413, which have become important tool compounds to explore the kinase's cellular functions. We have used a chemical genetics approach to further characterize pharmacological CDC7 inhibition and CRISPR/CAS9 technology to assess the requirement for kinase activity for cell proliferation. We show that, in human breast cells, CDC7 is essential and that CDC7 kinase activity is formally required for proliferation. However, full and sustained inhibition of the kinase, which is required to block the cell-cycle progression with ATP competitor compounds, is problematic to achieve. We establish that MCM2 phosphorylation is highly sensitive to CDC7 inhibition and, as a biomarker, it lacks in dynamic range since it is easily lost at concentrations of inhibitors that only mildly affect DNA synthesis. Furthermore, we find that the cellular effects of selective CDC7 inhibitors can be altered by the concomitant inhibition of cell-cycle and transcriptional CDKs. This work shows that DNA replication and cell proliferation can occur with reduced CDC7 activity for at least 5 days and that the bulk of DNA synthesis is not tightly coupled to MCM2 phosphorylation and provides guidance for the development of next generation CDC7 inhibitors.
Collapse
Affiliation(s)
- Michael D. Rainey
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| |
Collapse
|
69
|
Sambataro F, Pennuto M. Post-translational Modifications and Protein Quality Control in Motor Neuron and Polyglutamine Diseases. Front Mol Neurosci 2017; 10:82. [PMID: 28408866 PMCID: PMC5374214 DOI: 10.3389/fnmol.2017.00082] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022] Open
Abstract
Neurodegenerative diseases, including motor neuron and polyglutamine (polyQ) diseases, are a broad class of neurological disorders. These diseases are characterized by neuronal dysfunction and death, and by the accumulation of toxic aggregation-prone proteins in the forms of inclusions and micro-aggregates. Protein quality control is a cellular mechanism to reduce the burden of accumulation of misfolded proteins, a function that results from the coordinated actions of chaperones and degradation systems, such as the ubiquitin-proteasome system (UPS) and autophagy-lysosomal degradation system. The rate of turnover, aggregation and degradation of the disease-causing proteins is modulated by post-translational modifications (PTMs), such as phosphorylation, arginine methylation, palmitoylation, acetylation, SUMOylation, ubiquitination, and proteolytic cleavage. Here, we describe how PTMs of proteins linked to motor neuron and polyQ diseases can either enhance or suppress protein quality control check and protein aggregation and degradation. The identification of molecular strategies targeting these modifications may offer novel avenues for the treatment of these yet incurable diseases.
Collapse
Affiliation(s)
- Fabio Sambataro
- Department of Experimental and Clinical Medical Sciences, University of UdineUdine, Italy
| | - Maria Pennuto
- Centre for Integrative Biology, Dulbecco Telethon Institute, University of TrentoTrento, Italy
| |
Collapse
|
70
|
Hou J, Zhang Z, Huang Q, Yan J, Zhang X, Yu X, Tan G, Zheng C, Xu F, He S. Antiviral activity of PHA767491 against human herpes simplex virus in vitro and in vivo. BMC Infect Dis 2017; 17:217. [PMID: 28320320 PMCID: PMC5358049 DOI: 10.1186/s12879-017-2305-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) is a common human pathogen that causes a variety of diseases, including oral-labial, genital lesions and life-threatening encephalitis. The antiviral nucleoside analogues such as acyclovir are currently used in anti-HSV therapies; however, clinical overuse of these drugs has led to the emergence of drug-resistant viral strains. Hence, there is an urgent need to develop new anti-HSV agents. METHODS To identify novel anti-HSV-1 compounds, we screened the LOPAC small scale library of 1280 bioactive compounds to identify inhibitors of HSV-1-induced necroptosis. Further experiments including western blot analysis, Q-PCR analysis and immunohistochemistry were performed to explore the antiviral mechanism of the compounds. RESULTS Here, we identified PHA767491 as a new inhibitor of HSV. PHA767491 potently blocked the proliferation of HSV in cells, as well as HSV induced cell death. Further, we found that PHA767491 strongly inhibited HSV infection post viral entry. Moreover, PHA767491 reduced the expression of viral genes required for DNA synthesis including UL30/42 DNA polymerase and UL5/8/52 helicase-primase complex. The essential immediate early (IE) genes such as ICP4 and ICP27 are critical for the expression of the early and late genes. Of note, PHA767491 inhibited the expression of all IE genes of both HSV-1 and HSV-2. Importantly, PHA767491 reduced viral titers in the tissues from the mice infected with HSV-1. Consistently, immunohistochemistry analysis showed that PHA767491 dramatically attenuated expression of viral protein gB in the livers. CONCLUSIONS Taken together, PHA767491 has potent anti-HSV activity by inhibiting viral replication both in vitro and in mouse model. Thus, PHA767491 could be a promising agent for the development of new anti-HSV therapy.
Collapse
Affiliation(s)
- Jue Hou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Zili Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Qiang Huang
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizhi Rd, Suzhou, Jiangsu, China
| | - Jun Yan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Xiaohu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiaoliang Yu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Guihua Tan
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Feng Xu
- Department of emergency medicine, First Affiliated Hospital, Soochow University, 1 Shizhi Rd, Suzhou, Jiangsu, China.
| | - Sudan He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Soochow University, Suzhou, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
71
|
Liachko NF, Saxton AD, McMillan PJ, Strovas TJ, Currey HN, Taylor LM, Wheeler JM, Oblak AL, Ghetti B, Montine TJ, Keene CD, Raskind MA, Bird TD, Kraemer BC. The phosphatase calcineurin regulates pathological TDP-43 phosphorylation. Acta Neuropathol 2016; 132:545-61. [PMID: 27473149 DOI: 10.1007/s00401-016-1600-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90 % of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date, several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together, these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.
Collapse
|
72
|
Guerrero EN, Wang H, Mitra J, Hegde PM, Stowell SE, Liachko NF, Kraemer BC, Garruto RM, Rao KS, Hegde ML. TDP-43/FUS in motor neuron disease: Complexity and challenges. Prog Neurobiol 2016; 145-146:78-97. [PMID: 27693252 PMCID: PMC5101148 DOI: 10.1016/j.pneurobio.2016.09.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS), a common motor neuron disease affecting two per 100,000 people worldwide, encompasses at least five distinct pathological subtypes, including, ALS-SOD1, ALS-C9orf72, ALS-TDP-43, ALS-FUS and Guam-ALS. The etiology of a major subset of ALS involves toxicity of the TAR DNA-binding protein-43 (TDP-43). A second RNA/DNA binding protein, fused in sarcoma/translocated in liposarcoma (FUS/TLS) has been subsequently associated with about 1% of ALS patients. While mutations in TDP-43 and FUS have been linked to ALS, the key contributing molecular mechanism(s) leading to cell death are still unclear. One unique feature of TDP-43 and FUS pathogenesis in ALS is their nuclear clearance and simultaneous cytoplasmic aggregation in affected motor neurons. Since the discoveries in the last decade implicating TDP-43 and FUS toxicity in ALS, a majority of studies have focused on their cytoplasmic aggregation and disruption of their RNA-binding functions. However, TDP-43 and FUS also bind to DNA, although the significance of their DNA binding in disease-affected neurons has been less investigated. A recent observation of accumulated genomic damage in TDP-43 and FUS-linked ALS and association of FUS with neuronal DNA damage repair pathways indicate a possible role of deregulated DNA binding function of TDP-43 and FUS in ALS. In this review, we discuss the different ALS disease subtypes, crosstalk of etiopathologies in disease progression, available animal models and their limitations, and recent advances in understanding the specific involvement of RNA/DNA binding proteins, TDP-43 and FUS, in motor neuron diseases.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Sara E. Stowell
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, New York
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York
| | - K. S. Rao
- Centre for Neuroscience, Institute for Scientific Research and Technology Services (INDICASAT-AIP), City of Knowledge, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
- Houston Methodist Neurological Institute, Houston, Texas 77030 USA
- Weill Medical College of Cornell University, New York
| |
Collapse
|
73
|
Alves S, Marais T, Biferi MG, Furling D, Marinello M, El Hachimi K, Cartier N, Ruberg M, Stevanin G, Brice A, Barkats M, Sittler A. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener 2016; 11:58. [PMID: 27465358 PMCID: PMC4964261 DOI: 10.1186/s13024-016-0123-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background We used lentiviral vectors (LVs) to generate a new SCA7 animal model overexpressing a truncated mutant ataxin-7 (MUT ATXN7) fragment in the mouse cerebellum, in order to characterize the specific neuropathological and behavioral consequences of the genetic defect in this brain structure. Results LV-mediated overexpression of MUT ATXN7 into the cerebellum of C57/BL6 adult mice induced neuropathological features similar to that observed in patients, such as intranuclear aggregates in Purkinje cells (PC), loss of synaptic markers, neuroinflammation, and neuronal death. No neuropathological changes were observed when truncated wild-type ataxin-7 (WT ATXN7) was injected. Interestingly, the local delivery of LV-expressing mutant ataxin-7 (LV-MUT-ATXN7) into the cerebellum of wild-type mice also mediated the development of an ataxic phenotype at 8 to 12 weeks post-injection. Importantly, our data revealed abnormal levels of the FUS/TLS, MBNL1, and TDP-43 RNA-binding proteins in the cerebellum of the LV-MUT-ATXN7 injected mice. MUT ATXN7 overexpression induced an increase in the levels of the pathological phosphorylated TDP-43, and a decrease in the levels of soluble FUS/TLS, with both proteins accumulating within ATXN7-positive intranuclear inclusions. MBNL1 also co-aggregated with MUT ATXN7 in most PC nuclear inclusions. Interestingly, no MBNL2 aggregation was observed in cerebellar MUT ATXN7 aggregates. Immunohistochemical studies in postmortem tissue from SCA7 patients and SCA7 knock-in mice confirmed SCA7-induced nuclear accumulation of FUS/TLS and MBNL1, strongly suggesting that these proteins play a physiopathological role in SCA7. Conclusions This study validates a novel SCA7 mouse model based on lentiviral vectors, in which strong and sustained expression of MUT ATXN7 in the cerebellum was found sufficient to generate motor defects. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0123-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| | - Thibaut Marais
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Maria-Grazia Biferi
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Denis Furling
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Martina Marinello
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | - Khalid El Hachimi
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France
| | | | - Merle Ruberg
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Giovanni Stevanin
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,EPHE Ecole Pratique des Hautes Etudes, Laboratoire de Neurogénétique, PSL Universités, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Alexis Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.,Département de Génétique et Cytogénétique, AP-HP, G-H Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Martine Barkats
- CNRS FRE3617, Center for Research in Myology, Sorbonne Universités UPMC Univ Paris 06, INSERM UMRS974, Institut de Myologie, G-H Pitié-Salpêtrière, 75013, Paris, France
| | - Annie Sittler
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités UPMC, Univ Paris 06 UMR_S 1127, ICM (Brain and Spine Institute) Pitié-Salpêtrière Hospital, 75013, Paris, France.
| |
Collapse
|
74
|
Yamashita T, Teramoto S, Kwak S. Phosphorylated TDP-43 becomes resistant to cleavage by calpain: A regulatory role for phosphorylation in TDP-43 pathology of ALS/FTLD. Neurosci Res 2016; 107:63-9. [DOI: 10.1016/j.neures.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022]
|
75
|
Alquezar C, Salado IG, de la Encarnación A, Pérez DI, Moreno F, Gil C, de Munain AL, Martínez A, Martín-Requero Á. Targeting TDP-43 phosphorylation by Casein Kinase-1δ inhibitors: a novel strategy for the treatment of frontotemporal dementia. Mol Neurodegener 2016; 11:36. [PMID: 27138926 PMCID: PMC4852436 DOI: 10.1186/s13024-016-0102-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Background Mutations in the progranulin gene (GRN) are the most common cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). TDP-43 pathology is characterized by the hyperphosphorylation of the protein at Serine 409/410 residues. Casein kinase-1δ (CK-1δ) was reported to phosphorylate TDP-43 directly. Previous works from our laboratory described the presence of CDK6/pRb-dependent cell cycle alterations, and cytosolic accumulation of TDP-43 protein in lymphoblast from FTLD-TDP patients carriers of a loss-of function mutation in GRN gene (c.709-1G > A). In this work, we have investigated the effects of two brain penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27) designed and synthetized in our laboratory on cell proliferation, TDP-43 phosphorylation and subcellular localization, as well as their effects on the known nuclear TDP-43 function repressing the expression of CDK6. Results We report here that both CK-1δ inhibitors (IGS-2.7 and IGS-3.27) normalized the proliferative activity of PGRN-deficient lymphoblasts by preventing the phosphorylation of TDP-43 fragments, its nucleo-cytosol translocation and the overactivation of the CDK6/pRb cascade. Moreover, ours results show neuroprotective effects of CK-1δ inhibitors in a neuronal cell model of induced TDP-43 phosphorylation. Conclusions Our results suggest that modulating CK-1δ activity could be considered a novel therapeutic approach for the treatment of FTLD-TDP and other TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Carolina Alquezar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Irene G Salado
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana de la Encarnación
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Daniel I Pérez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Fermín Moreno
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain
| | - Carmen Gil
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Adolfo López de Munain
- Neuroscience Area-Institute Biodonostia, San Sebastian, Spain.,Department of Neurology, Hospital Donostia, San Sebastian, Spain.,Department of Neurosciences, University of Basque Country, San Sebastián, Spain.,CIBER de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ana Martínez
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
76
|
Nonaka T, Suzuki G, Tanaka Y, Kametani F, Hirai S, Okado H, Miyashita T, Saitoe M, Akiyama H, Masai H, Hasegawa M. Phosphorylation of TAR DNA-binding Protein of 43 kDa (TDP-43) by Truncated Casein Kinase 1δ Triggers Mislocalization and Accumulation of TDP-43. J Biol Chem 2016; 291:5473-5483. [PMID: 26769969 DOI: 10.1074/jbc.m115.695379] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 11/06/2022] Open
Abstract
Intracellular aggregates of phosphorylated TDP-43 are a major component of ubiquitin-positive inclusions in the brains of patients with frontotemporal lobar degeneration and ALS and are considered a pathological hallmark. Here, to gain insight into the mechanism of intracellular TDP-43 accumulation, we examined the relationship between phosphorylation and aggregation of TDP-43. We found that expression of a hyperactive form of casein kinase 1 δ (CK1δ1-317, a C-terminally truncated form) promotes mislocalization and cytoplasmic accumulation of phosphorylated TDP-43 (ubiquitin- and p62-positive) in cultured neuroblastoma SH-SY5Y cells. Insoluble phosphorylated TDP-43 prepared from cells co-expressing TDP-43 and CK1δ1-317 functioned as seeds for TDP-43 aggregation in cultured cells, indicating that CK1δ1-317-induced aggregated TDP-43 has prion-like properties. A striking toxicity and alterations of TDP-43 were also observed in yeast expressing TDP-43 and CK1δ1-317. Therefore, abnormal activation of CK1δ causes phosphorylation of TDP-43, leading to the formation of cytoplasmic TDP-43 aggregates, which, in turn, may trigger neurodegeneration.
Collapse
Affiliation(s)
| | | | | | | | - Shinobu Hirai
- Departments of Brain Development and Neural Regeneration
| | - Haruo Okado
- Departments of Brain Development and Neural Regeneration
| | | | | | | | - Hisao Masai
- Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | |
Collapse
|
77
|
Post-Translational Modifications and RNA-Binding Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:297-317. [PMID: 27256391 DOI: 10.1007/978-3-319-29073-7_12] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins affect cellular metabolic programs through development and in response to cellular stimuli. Though much work has been done to elucidate the roles of a handful of RNA-binding proteins and their effect on RNA metabolism, the progress of studies to understand the effects of post-translational modifications of this class of proteins is far from complete. This chapter summarizes the work that has been done to identify the consequence of post-translational modifications to some RNA-binding proteins. The effects of these modifications have been shown to increase the panoply of functions that a given RNA-binding protein can assume. We will survey the experimental methods that are used to identify the presence of several protein modifications and methods that attempt to discern the consequence of these modifications.
Collapse
|
78
|
Chen X, Barclay JW, Burgoyne RD, Morgan A. Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases. Chem Cent J 2015; 9:65. [PMID: 26617668 PMCID: PMC4661952 DOI: 10.1186/s13065-015-0143-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022] Open
Abstract
Age-associated neurodegenerative disorders such as Alzheimer's disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK ; Centre for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, Michigan, MI 49503 USA
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool, L69 3BX UK
| |
Collapse
|
79
|
Sreedharan J, Neukomm LJ, Brown RH, Freeman MR. Age-Dependent TDP-43-Mediated Motor Neuron Degeneration Requires GSK3, hat-trick, and xmas-2. Curr Biol 2015; 25:2130-6. [PMID: 26234214 DOI: 10.1016/j.cub.2015.06.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/24/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022]
Abstract
The RNA-processing protein TDP-43 is central to the pathogenesis of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron (MN) disease. TDP-43 is conserved in Drosophila, where it has been the topic of considerable study, but how TDP-43 mutations lead to age-dependent neurodegeneration is unclear and most approaches have not directly examined changes in MN morphology with age. We used a mosaic approach to study age-dependent MN loss in the adult fly leg where it is possible to resolve single motor axons, NMJs and active zones, and perform rapid forward genetic screens. We show that expression of TDP-43(Q331K) caused dying-back of NMJs and axons, which could not be suppressed by mutations that block Wallerian degeneration. We report the identification of three genes that suppress TDP-43 toxicity, including shaggy/GSK3, a known modifier of neurodegeneration. The two additional novel suppressors, hat-trick and xmas-2, function in chromatin modeling and RNA export, two processes recently implicated in human ALS. Loss of shaggy/GSK3, hat-trick, or xmas-2 does not suppress Wallerian degeneration, arguing TDP-43(Q331K)-induced and Wallerian degeneration are genetically distinct processes. In addition to delineating genetic factors that modify TDP-43 toxicity, these results establish the Drosophila adult leg as a valuable new tool for the in vivo study of adult MN phenotypes.
Collapse
Affiliation(s)
- Jemeen Sreedharan
- Howard Hughes Medical Institute and Department of Neurobiology, LRB-740A1, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01655, USA; Department of Neurology, S5-755, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Signalling ISP, The Babraham Institute, Cambridge CB22 3AT, UK.
| | - Lukas J Neukomm
- Howard Hughes Medical Institute and Department of Neurobiology, LRB-740A1, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01655, USA
| | - Robert H Brown
- Department of Neurology, S5-755, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Marc R Freeman
- Howard Hughes Medical Institute and Department of Neurobiology, LRB-740A1, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01655, USA.
| |
Collapse
|
80
|
An acetylation switch controls TDP-43 function and aggregation propensity. Nat Commun 2015; 6:5845. [PMID: 25556531 DOI: 10.1038/ncomms6845] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022] Open
Abstract
TDP-43 pathology is a disease hallmark that characterizes amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). Although a critical role for TDP-43 as an RNA-binding protein has emerged, the regulation of TDP-43 function is poorly understood. Here, we identify lysine acetylation as a novel post-translational modification controlling TDP-43 function and aggregation. We provide evidence that TDP-43 acetylation impairs RNA binding and promotes accumulation of insoluble, hyper-phosphorylated TDP-43 species that largely resemble pathological inclusions in ALS and FTLD-TDP. Moreover, biochemical and cell-based assays identify oxidative stress as a signalling cue that promotes acetylated TDP-43 aggregates that are readily engaged by the cellular defense machinery. Importantly, acetylated TDP-43 lesions are found in ALS patient spinal cord, indicating that aberrant TDP-43 acetylation and loss of RNA binding are linked to TDP-43 proteinopathy. Thus, modulating TDP-43 acetylation represents a plausible strategy to fine-tune TDP-43 activity, which could provide new therapeutic avenues for TDP-43 proteinopathies.
Collapse
|
81
|
Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA, Montine TJ, Bird TD, Leverenz JB, Kraemer BC. The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 2014; 10:e1004803. [PMID: 25473830 PMCID: PMC4256087 DOI: 10.1371/journal.pgen.1004803] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
Abstract
Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Nicole F. Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Pamela J. McMillan
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Strovas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Elaine Loomis
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Lynne Greenup
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Jill R. Murrell
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bernardino Ghetti
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Murray A. Raskind
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Thomas J. Montine
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Parkinson's Disease Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Thomas D. Bird
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - James B. Leverenz
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Parkinson's Disease Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
82
|
Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM, Parker SJ, Caragounis A, Lidgerwood G, Turner BJ, Atkin JD, Grubman A, Liddell JR, Proepper C, Boeckers TM, Kanninen KM, Blair I, Crouch PJ, White AR. Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Hum Mol Genet 2014; 24:1655-69. [PMID: 25410660 DOI: 10.1093/hmg/ddu578] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.
Collapse
Affiliation(s)
| | | | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Katharine Zhang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Donia M Moujalled
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
| | | | | | | | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Julie D Atkin
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Christian Proepper
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tobias M Boeckers
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, Laboratory of Molecular Brain Research, University of Eastern Finland, Kuopio, Finland
| | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | |
Collapse
|
83
|
Therrien M, Parker JA. Worming forward: amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Front Genet 2014; 5:85. [PMID: 24860590 PMCID: PMC4029022 DOI: 10.3389/fgene.2014.00085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 03/30/2014] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.
Collapse
Affiliation(s)
- Martine Therrien
- Départment de Pathologie et Biologie Cellulaire, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| | - J Alex Parker
- Départment de Pathologie et Biologie Cellulaire, Départment de Neurosciences, CRCHUM-Centre Hospitalier de l'Université de Montréal, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
84
|
Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, Miguel L, Lecourtois M, Gil C, Martinez A, Perez DI. Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem 2014; 57:2755-72. [PMID: 24592867 PMCID: PMC3969104 DOI: 10.1021/jm500065f] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons in cortex, brain stem, and spinal cord die progressively, resulting in muscle wasting, paralysis, and death. Currently, effective therapies for ALS are lacking; however, identification of pathological TAR DNA-binding protein 43 (TDP-43) as the hallmark lesion in sporadic ALS suggests new therapeutic targets for pharmacological intervention. Pathological TDP-43 phosphorylation appears to drive the onset and progression of ALS and may result from upregulation of the protein kinase CK-1 in affected neurons, resulting in postranslational TDP-43 modification. Consequently, brain penetrant specific CK-1 inhibitors may provide a new therapeutic strategy for treating ALS and other TDP-43 proteinopathies. Using a chemical genetic approach, we report the discovery and further optimization of a number of potent CK-1δ inhibitors. Moreover, these small heterocyclic molecules are able to prevent TDP-43 phosphorylation in cell cultures, to increase Drosophila lifespan by reduction of TDP-43 neurotoxicity, and are predicted to cross the blood-brain barrier. Thus, N-(benzothiazolyl)-2-phenyl-acetamides are valuable drug candidates for further studies and may be a new therapeutic approach for ALS and others pathologies in which TDP-43 is involved.
Collapse
Affiliation(s)
- Irene G Salado
- Instituto de Química Médica, CSIC , Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Janssen SF, Gorgels TG, Ramdas WD, Klaver CC, van Duijn CM, Jansonius NM, Bergen AA. The vast complexity of primary open angle glaucoma: Disease genes, risks, molecular mechanisms and pathobiology. Prog Retin Eye Res 2013; 37:31-67. [DOI: 10.1016/j.preteyeres.2013.09.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/26/2013] [Accepted: 09/03/2013] [Indexed: 12/21/2022]
|
86
|
Liu YC, Chiang PM, Tsai KJ. Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci 2013; 14:20079-111. [PMID: 24113586 PMCID: PMC3821604 DOI: 10.3390/ijms141020079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022] Open
Abstract
Frontotemperal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are two common neurodegenerative diseases. TDP-43 is considered to be a major disease protein in FTLD/ALS, but it’s exact role in the pathogenesis and the effective treatments remains unknown. To address this question and to determine a potential treatment for FTLD/ALS, the disease animal models of TDP-43 proteinopathy have been established. TDP-43 proteinopathy is the histologic feature of FTLD/ALS and is associated with disease progression. Studies on the disease animal models with TDP-43 proteinopathy and their pre-clinical applications are reviewed and summarized. Through these disease animal models, parts of TDP-43 functions in physiological and pathological conditions will be better understood and possible treatments for FTLD/ALS with TDP-43 proteinopathy may be identified for possible clinical applications in the future.
Collapse
Affiliation(s)
- Yu-Chih Liu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan; E-Mails: (Y.-C.L.); (P.-M.C.)
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan; E-Mails: (Y.-C.L.); (P.-M.C.)
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 704, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan 704, Taiwan; E-Mails: (Y.-C.L.); (P.-M.C.)
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 704, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-6-235-3535 (ext. 4254); Fax: +886-6-275-8731
| |
Collapse
|
87
|
Choksi DK, Roy B, Chatterjee S, Yusuff T, Bakhoum MF, Sengupta U, Ambegaokar S, Kayed R, Jackson GR. TDP-43 Phosphorylation by casein kinase Iε promotes oligomerization and enhances toxicity in vivo. Hum Mol Genet 2013; 23:1025-35. [PMID: 24105464 DOI: 10.1093/hmg/ddt498] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dominant mutations in transactive response DNA-binding protein-43 (TDP-43) cause amyotrophic lateral sclerosis. TDP-43 inclusions occur in neurons, glia and muscle in this disease and in sporadic and inherited forms of frontotemporal lobar degeneration. Cytoplasmic localization, cleavage, aggregation and phosphorylation of TDP-43 at the Ser409/410 epitope have been associated with disease pathogenesis. TDP-43 aggregation is not a common feature of mouse models of TDP-43 proteinopathy, and TDP-43 is generally not thought to acquire an amyloid conformation or form fibrils. A number of putative TDP-43 kinases have been identified, but whether any of these functions to regulate TDP-43 phosphorylation or toxicity in vivo is not known. Here, we demonstrate that human TDP-43(Q331K) undergoes cytoplasmic localization and aggregates when misexpressed in Drosophila when compared with wild-type and M337V forms. Coexpression of Q331K with doubletime (DBT), the fly homolog of casein kinase Iε (CKIε), enhances toxicity. There is at best modest basal phosphorylation of misexpressed human TDP-43 in Drosophila, but coexpression with DBT increases Ser409/410 phosphorylation of all TDP-43 isoforms tested. Phosphorylation of TDP-43 in the fly is specific for DBT, as it is not observed using the validated tau kinases GSK-3β, PAR-1/MARK2 or CDK5. Coexpression of DBT with TDP-43(Q331K) enhances the formation of high-molecular weight oligomeric species coincident with enhanced toxicity, and treatment of recombinant oligomeric TDP-43 with rat CKI strongly enhances its toxicity in mammalian cell culture. These data identify CKIε as a potent TDP-43 kinase in vivo and implicate oligomeric species as the toxic entities in TDP-43 proteinopathies.
Collapse
|
88
|
Li J, Le W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 2013; 250:94-103. [PMID: 24095843 DOI: 10.1016/j.expneurol.2013.09.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington disease (HD), and others are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Despite the research progress in identification of several disease-related genes, the mechanisms underlying the neurodegeneration in these diseases remain unclear. Given the molecular conservation in neuronal signaling between Caenorhabditis elegans and vertebrates, an increasing number of research scientists have used the nematode to study this group of diseases. This review paper will focus on the model system that has been established in C. elegans to investigate the pathogenetic roles of those reported disease-related genes in AD, PD, ALS, HD and others. The progress in C. elegans provides useful information of the genetic interactions and molecular pathways that are critical in the disease process, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Jia Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | | |
Collapse
|
89
|
Boyd JD, Lee P, Feiler MS, Zauur N, Liu M, Concannon J, Ebata A, Wolozin B, Glicksman MA. A high-content screen identifies novel compounds that inhibit stress-induced TDP-43 cellular aggregation and associated cytotoxicity. ACTA ACUST UNITED AC 2013; 19:44-56. [PMID: 24019256 DOI: 10.1177/1087057113501553] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TDP-43 is an RNA binding protein found to accumulate in the cytoplasm of brain and spinal cord from patients affected with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Nuclear TDP-43 protein regulates transcription through several mechanisms, and under stressed conditions, it forms cytoplasmic aggregates that co-localize with stress granule (SG) proteins in cell culture. These granules are also found in the brain and spinal cord of patients affected with ALS and FTLD. The mechanism through which TDP-43 might contribute to neurodegenerative diseases is poorly understood. To investigate the pathophysiology of TDP-43 aggregation and to isolate potential therapeutic targets, we screened a chemical library of 75,000 compounds using high-content analysis with PC12 cells that inducibly express human TDP-43 tagged with green fluorescent protein (GFP). The screen identified 16 compounds that dose-dependently decreased the TDP-43 inclusions without significant cellular toxicity or changes in total TDP-43 expression levels. To validate the effect, we tested compounds by Western blot analysis and in a Caenorhabditis elegans model that replicates some of the relevant disease phenotypes. The hits from this assay will be useful for elucidating regulation of TDP-43, stress granule response, and possible ALS therapeutics.
Collapse
Affiliation(s)
- Justin D Boyd
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - Peter Lee
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Marisa S Feiler
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Nava Zauur
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA
| | - Min Liu
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - John Concannon
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| | - Atsushi Ebata
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA.,Department of Neurology, Boston University School of Medicine, Boston, MA
| | - Marcie A Glicksman
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA
| |
Collapse
|
90
|
Moujalled D, James JL, Parker SJ, Lidgerwood GE, Duncan C, Meyerowitz J, Nonaka T, Hasegawa M, Kanninen KM, Grubman A, Liddell JR, Crouch PJ, White AR. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress. PLoS One 2013; 8:e67433. [PMID: 23840699 PMCID: PMC3694067 DOI: 10.1371/journal.pone.0067433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219–414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities for kinase modulation-based therapeutic intervention in ALS and FTLD.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Janine L. James
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sarah J. Parker
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Grace E. Lidgerwood
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Clare Duncan
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jodi Meyerowitz
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, Laboratory of Molecular Brain Research, University of Eastern Finland, Kuopio, Finland
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Jeffrey R. Liddell
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Peter J. Crouch
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Anthony R. White
- Department of Pathology, The University of Melbourne, Victoria, Australia and Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
91
|
Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125:777-94. [PMID: 23673820 PMCID: PMC3661910 DOI: 10.1007/s00401-013-1125-6] [Citation(s) in RCA: 406] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the aggregation of ubiquitinated proteins in affected motor neurons. Recent studies have identified several new molecular constituents of ALS-linked cellular aggregates, including FUS, TDP-43, OPTN, UBQLN2 and the translational product of intronic repeats in the gene C9ORF72. Mutations in the genes encoding these proteins are found in a subgroup of ALS patients and segregate with disease in familial cases, indicating a causal relationship with disease pathogenesis. Furthermore, these proteins are often detected in aggregates of non-mutation carriers and those observed in other neurodegenerative disorders, supporting a widespread role in neuronal degeneration. The molecular characteristics and distribution of different types of protein aggregates in ALS can be linked to specific genetic alterations and shows a remarkable overlap hinting at a convergence of underlying cellular processes and pathological effects. Thus far, self-aggregating properties of prion-like domains, altered RNA granule formation and dysfunction of the protein quality control system have been suggested to contribute to protein aggregation in ALS. The precise pathological effects of protein aggregation remain largely unknown, but experimental evidence hints at both gain- and loss-of-function mechanisms. Here, we discuss recent advances in our understanding of the molecular make-up, formation, and mechanism-of-action of protein aggregates in ALS. Further insight into protein aggregation will not only deepen our understanding of ALS pathogenesis but also may provide novel avenues for therapeutic intervention.
Collapse
|