51
|
Hovhannisyan AH, Son H, Mecklenburg J, Barba-Escobedo PA, Tram M, Gomez R, Shannonhouse J, Zou Y, Weldon K, Ruparel S, Lai Z, Tumanov AV, Kim YS, Akopian AN. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci Rep 2021; 11:17813. [PMID: 34497285 PMCID: PMC8426369 DOI: 10.1038/s41598-021-97084-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Hyeonwi Son
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Priscilla Ann Barba-Escobedo
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Ruben Gomez
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - John Shannonhouse
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology and Molecular Genetics, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yu Shin Kim
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| |
Collapse
|
52
|
Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology 2021; 162:bqab109. [PMID: 34049389 PMCID: PMC8237991 DOI: 10.1210/endocr/bqab109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Amanda Avona
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Katherine M Garner
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
53
|
Avona A, Price TJ, Dussor G. Interleukin-6 induces spatially dependent whole-body hypersensitivity in rats: implications for extracephalic hypersensitivity in migraine. J Headache Pain 2021; 22:70. [PMID: 34256692 PMCID: PMC8278737 DOI: 10.1186/s10194-021-01286-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/05/2021] [Indexed: 01/07/2023] Open
Abstract
Background Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, primary pain conditions in the lower parts of the body are less commonly associated with cephalic hypersensitivity. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations. Methods Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.
Collapse
Affiliation(s)
- Amanda Avona
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|