51
|
Kunsel T, Tiwari V, Matutes YA, Gardiner AT, Cogdell RJ, Ogilvie JP, Jansen TLC. Simulating Fluorescence-Detected Two-Dimensional Electronic Spectroscopy of Multichromophoric Systems. J Phys Chem B 2019; 123:394-406. [PMID: 30543283 PMCID: PMC6345114 DOI: 10.1021/acs.jpcb.8b10176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/28/2022]
Abstract
We present a theory for modeling fluorescence-detected two-dimensional electronic spectroscopy of multichromophoric systems. The theory is tested by comparison of the predicted spectra of the light-harvesting complex LH2 with experimental data. A qualitative explanation of the strong cross-peaks as compared to conventional two-dimensional electronic spectra is given. The strong cross-peaks are attributed to the clean ground-state signal that is revealed when the annihilation of exciton pairs created on the same LH2 complex cancels oppositely signed signals from the doubly excited state. This annihilation process occurs much faster than the nonradiative relaxation. Furthermore, the line shape difference is attributed to slow dynamics, exciton delocalization within the bands, and intraband exciton-exciton annihilation. This is in line with existing theories presented for model systems. We further propose the use of time-resolved fluorescence-detected two-dimensional spectroscopy to study state-resolved exciton-exciton annihilation.
Collapse
Affiliation(s)
- Tenzin Kunsel
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vivek Tiwari
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yassel Acosta Matutes
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Richard J. Cogdell
- Institute
for Molecular Biology, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Jennifer P. Ogilvie
- Department
of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
52
|
Zhang Y, Zedler L, Karnahl M, Dietzek B. Excited-state dynamics of heteroleptic copper(i) photosensitizers and their electrochemically reduced forms containing a dipyridophenazine moiety – a spectroelectrochemical transient absorption study. Phys Chem Chem Phys 2019; 21:10716-10725. [DOI: 10.1039/c9cp00412b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heteroleptic copper(i) dipyridophenazine complexes were investigated by transient absorption spectroelectrochemistry to examine their multi-electron photoaccumulation properties.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| | - Linda Zedler
- Department Functional Interfaces
- Leibniz Institute of Photonic Technology Jena (IPHT)
- 07745 Jena
- Germany
| | - Michael Karnahl
- Institute of Organic Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Department Functional Interfaces
| |
Collapse
|
53
|
Dey A, Dana J, Aute S, Das A, Ghosh HN. Hydrogen bond assisted photoinduced intramolecular electron transfer and proton coupled electron transfer in an ultrafast time domain using a ruthenium-anthraquinone dyad. Photochem Photobiol Sci 2019; 18:2430-2441. [DOI: 10.1039/c9pp00135b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PCET kinetics for the formation of charge-separated states was explored by using femtosecond transient absorption spectroscopy. Hydrogen bonding between water and the reduced anthraquinone accounted for thermodynamic and kinetic stabilization.
Collapse
Affiliation(s)
- Ananta Dey
- CSIR-Central salt & Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| | - Jayanta Dana
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
| | - Sunil Aute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
- India
- dCSIR National chemical Laboratory
- Pune
| | - Amitava Das
- CSIR-Central salt & Marine Chemicals Research Institute
- Bhavnagar 364002
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| | - Hirendra N. Ghosh
- Radiation & Photochemistry Division
- Bhabha Atomic Research Centre
- Mumbai – 400085
- India
- Institute of Nano Science and Technology
| |
Collapse
|
54
|
The formation of dinuclear trichloro-bridged and mononuclear ruthenium complexes from the reactions of dichlorotris(p-tolylphosphine)ruthenium(II) with diazabutadiene ligands. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
55
|
Pettersson Rimgard B, Föhlinger J, Petersson J, Lundberg M, Zietz B, Woys AM, Miller SA, Wasielewski MR, Hammarström L. Ultrafast interligand electron transfer in cis-[Ru(4,4'-dicarboxylate-2,2'-bipyridine) 2(NCS) 2] 4- and implications for electron injection limitations in dye sensitized solar cells. Chem Sci 2018; 9:7958-7967. [PMID: 30430000 PMCID: PMC6201818 DOI: 10.1039/c8sc00274f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/13/2018] [Indexed: 11/22/2022] Open
Abstract
Interligand electron transfer (ILET) of the lowest metal-to-ligand charge transfer (MLCT) state of N712 (cis-[Ru(dcb)2(NCS)2]4-, where dcb = 4,4'-dicarboxylate-2,2'-bipyridine) in a deuterated acetonitrile solution has been studied by means of femtosecond transient absorption anisotropy in the mid-IR. Time-independent B3LYP density functional calculations were performed to assign vibrational bands and determine their respective transition dipole moments. The transient absorption spectral band at 1327 cm-1, assigned to a symmetric carboxylate stretch, showed significant anisotropy. A rapid anisotropy increase (τ 1 ≈ 2 ps) was tentatively assigned to vibrational and solvent relaxation, considering the excess energy available after the excited singlet-triplet conversion. Thereafter, the anisotropy decayed to zero with a time constant τ 2 ≈ 240 ps, which was assigned to the rotational correlation time of the complex in deuterated acetonitrile. No other distinctive changes to the anisotropy were observed and the amplitude of the slow component at time zero agrees well with that predicted for a random mixture of MLCT localization on either of the two dcb ligands. The results therefore suggest that MLCT randomization over the two dcb ligands occurs on the sub-ps time scale. This is much faster than proposed by previous reports on the related N3 complex [Benkö et al., J. Phys. Chem. B, 2004, 108, 2862, and Waterland et al., J. Phys. Chem. A, 2001, 105, 4019], but in agreement with that found by Wallin and co-workers [J. Phys. Chem. A, 2005, 109, 4697] for the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) complex. This suggests that electron injection from the excited dye into TiO2 in dye-sensitized solar cells is not limited by ILET.
Collapse
Affiliation(s)
- Belinda Pettersson Rimgard
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
| | - Jens Föhlinger
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
| | - Jonas Petersson
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
- Department of Biotechnology , Chemistry and Pharmacy , Università di Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Burkhard Zietz
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
| | - Ann Marie Woys
- Department of Chemistry , Argonne-Northwestern Solar Energy Research (ANSER) Center , Northwestern University , Evanston , Illinois 60208-3113 , USA .
| | - Stephen A Miller
- Department of Chemistry , Argonne-Northwestern Solar Energy Research (ANSER) Center , Northwestern University , Evanston , Illinois 60208-3113 , USA .
| | - Michael R Wasielewski
- Department of Chemistry , Argonne-Northwestern Solar Energy Research (ANSER) Center , Northwestern University , Evanston , Illinois 60208-3113 , USA .
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523 , SE75120 Uppsala , Sweden .
| |
Collapse
|
56
|
O'Reilly L, Pan Q, Das N, Wenderich K, Korterik JP, Vos JG, Pryce MT, Huijser A. Hydrogen-Generating Ru/Pt Bimetallic Photocatalysts Based on Phenyl-Phenanthroline Peripheral Ligands. Chemphyschem 2018; 19:3084-3091. [PMID: 30221834 DOI: 10.1002/cphc.201800658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Recent studies on hydrogen-generating supramolecular bimetallic photocatalysts indicate a more important role of the peripheral ligands than expected, motivating us to design a Ru/Pt complex with 4,7-diphenyl-1,10-phenanthroline peripheral ligands. Photoinduced intra- and inter-ligand internal conversion processes have been investigated using transient absorption spectroscopy, spanning the femto- to nanosecond timescale. After photoexcitation and ultrafast intersystem crossing, triplet states localised on either the peripheral ligands or on the bridging ligand/catalytic unit are populated in a non-equilibrated way. Time-resolved photoluminescence demonstrates that the lifetime for the Ru/Pt dinuclear species (795±8 ns) is significantly less than that of the mononuclear analogue (1375±20 ns). The photocatalytic studies show modest hydrogen turnover numbers, which is possibly caused by the absence of an excited state equilibrium. Finally, we identify challenges that must be overcome to further develop this class of photocatalysts and propose directions for future research.
Collapse
Affiliation(s)
- Laura O'Reilly
- SRC for Solar Energy Conversion, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Qing Pan
- Photocatalytic Synthesis and Optical Sciences groups, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Nivedita Das
- SRC for Solar Energy Conversion, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Kasper Wenderich
- Photocatalytic Synthesis and Optical Sciences groups, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Jeroen P Korterik
- Photocatalytic Synthesis and Optical Sciences groups, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Johannes G Vos
- SRC for Solar Energy Conversion, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Mary T Pryce
- SRC for Solar Energy Conversion, School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Ireland
| | - Annemarie Huijser
- Photocatalytic Synthesis and Optical Sciences groups, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
57
|
van Wonderen JH, Li D, Piper SEH, Lau CY, Jenner LP, Hall CR, Clarke TA, Watmough NJ, Butt JN. Photosensitised Multiheme Cytochromes as Light-Driven Molecular Wires and Resistors. Chembiochem 2018; 19:2206-2215. [DOI: 10.1002/cbic.201800313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Jessica H. van Wonderen
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Daobo Li
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
- Present address: Department of Chemistry; University of Science and Technology of China; Hefei 230026 China
- Present address: Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou 215123 China
| | - Samuel E. H. Piper
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Cheuk Y. Lau
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Leon P. Jenner
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Christopher R. Hall
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
- Present address: ARC Centre of Excellence in Exciton Science; School of Chemistry; The University of Melbourne; Parkville Victoria 3010 Australia
| | - Thomas A. Clarke
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Nicholas J. Watmough
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| | - Julea N. Butt
- School of Chemistry and School of Biology; University of East Anglia; Norwich Research Park Norfolk NR4 7TJ UK
| |
Collapse
|
58
|
Pomarico E, Pospíšil P, Bouduban MEF, Vestfrid J, Gross Z, Záliš S, Chergui M, Vlček A. Photophysical Heavy-Atom Effect in Iodinated Metallocorroles: Spin–Orbit Coupling and Density of States. J Phys Chem A 2018; 122:7256-7266. [DOI: 10.1021/acs.jpca.8b05311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Enrico Pomarico
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Petr Pospíšil
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Marine E. F. Bouduban
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC and Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, CZ-182 23 Prague, Czech Republic
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
59
|
Huijser A, Pan Q, van Duinen D, Laursen MG, El Nahhas A, Chabera P, Freitag L, González L, Kong Q, Zhang X, Haldrup K, Browne WR, Smolentsev G, Uhlig J. Shedding Light on the Nature of Photoinduced States Formed in a Hydrogen-Generating Supramolecular RuPt Photocatalyst by Ultrafast Spectroscopy. J Phys Chem A 2018; 122:6396-6406. [PMID: 30052048 DOI: 10.1021/acs.jpca.8b00916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photoinduced electronic and structural changes of a hydrogen-generating supramolecular RuPt photocatalyst are studied by a combination of time-resolved photoluminescence, optical transient absorption, and X-ray absorption spectroscopy. This work uses the element specificity of X-ray techniques to focus on the interplay between the photophysical and -chemical processes and the associated time scales at the catalytic Pt moiety. We observe very fast (<30 ps) photoreduction of the Pt catalytic site, followed by an ∼600 ps step into a strongly oxidized Pt center. The latter process is likely induced by oxidative addition of reactive iodine species. The oxidized Pt species is long-lived and fully recovers to the original ground state complex on a >10 μs time scale. However, the photosensitizing Ru moiety is fully restored on a much shorter ∼300 ns time scale. This reaction scheme implies that we may withdraw two electrons from a catalyst that is activated by a single photon.
Collapse
Affiliation(s)
- Annemarie Huijser
- Optical Sciences and PhotoCatalytic Synthesis Groups, MESA+ Institute , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Qing Pan
- Optical Sciences and PhotoCatalytic Synthesis Groups, MESA+ Institute , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - David van Duinen
- Optical Sciences and PhotoCatalytic Synthesis Groups, MESA+ Institute , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Mads G Laursen
- Department of Physics , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Amal El Nahhas
- Department of Chemical Physics , Lund University , Getingevägen 60 , Lund 22100 , Sweden
| | - Pavel Chabera
- Department of Chemical Physics , Lund University , Getingevägen 60 , Lund 22100 , Sweden
| | - Leon Freitag
- Institute of Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry , University of Vienna , Währinger Str. 17 , 1090 Vienna , Austria
| | - Qingyu Kong
- X-ray Sciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Xiaoyi Zhang
- X-ray Sciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Kristoffer Haldrup
- Department of Physics , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Wesley R Browne
- Molecular Inorganic Chemistry Group, Stratingh Institute for Chemistry , University of Groningen , 9747 AG Groningen , The Netherlands
| | - Grigory Smolentsev
- Paul Scherrer Institute , Villigen 5232 , Switzerland.,Smart Materials International Research Center , Southern Federal University of Russia , Rostov-on-Don 344090 , Russian Federation
| | - Jens Uhlig
- Department of Chemical Physics , Lund University , Getingevägen 60 , Lund 22100 , Sweden
| |
Collapse
|
60
|
Loftus LM, Al‐Afyouni KF, Turro C. New Ru
II
Scaffold for Photoinduced Ligand Release with Red Light in the Photodynamic Therapy (PDT) Window. Chemistry 2018; 24:11550-11553. [DOI: 10.1002/chem.201802405] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lauren M. Loftus
- Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 USA
| | - Kathlyn F. Al‐Afyouni
- Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
61
|
Penfold TJ, Gindensperger E, Daniel C, Marian CM. Spin-Vibronic Mechanism for Intersystem Crossing. Chem Rev 2018; 118:6975-7025. [DOI: 10.1021/acs.chemrev.7b00617] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, United Kingdom
| | - Etienne Gindensperger
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique, Institut de Chimie UMR-7177, CNRS - Université de Strasbourg, 1 Rue Blaise Pascal 67008 Strasbourg, France
| | - Christel M. Marian
- Institut für Theoretische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
62
|
Soupart A, Dixon IM, Alary F, Heully JL. DFT rationalization of the room-temperature luminescence properties of Ru(bpy)
3
2+
and Ru(tpy)
2
2+
: 3MLCT–3MC minimum energy path from NEB calculations and emission spectra from VRES calculations. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2216-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
63
|
Schneider KRA, Traber P, Reichardt C, Weiss H, Kupfer S, Görls H, Gräfe S, Weigand W, Dietzek B. Unusually Short-Lived Solvent-Dependent Excited State in a Half-Sandwich Ru(II) Complex Induced by Low-Lying 3MC States. J Phys Chem A 2018; 122:1550-1559. [PMID: 29369626 DOI: 10.1021/acs.jpca.7b11470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A ruthenium complex with a half-sandwich geometry ([(p-cymene)Ru(Cl)(curcuminoid)]) was synthesized, characterized, and investigated regarding its ultrafast photophysics. These photophysical investigations of the complex revealed a weak and short-lived emission from the initially populated 1MLCT state and solvent-dependent photoinduced dynamics, where the secondarily populated 3MC state is stabilized by nonpolar solvents. Overall the decay of the 3dd-MC state to the ground state is completed within picoseconds. This short excited-state lifetime is in stark contrast to the typically observed long-lived 3MLCT states with lifetimes of nanoseconds or microseconds in unstrained, octahedral ruthenium complexes but is in good agreement with the findings for distorted octahedral complexes. This is pointing to the half-sandwich geometry as a new and easy approach to study these otherwise often concealed dd states.
Collapse
Affiliation(s)
- Kilian R A Schneider
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e. V. , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | - Christian Reichardt
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e. V. , Albert-Einstein-Straße 9, 07745 Jena, Germany
| | | | | | | | | | | | - Benjamin Dietzek
- Department Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT) e. V. , Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
64
|
Sánchez-Murcia PA, Nogueira JJ, González L. Exciton Localization on Ru-Based Photosensitizers Induced by Binding to Lipid Membranes. J Phys Chem Lett 2018; 9:683-688. [PMID: 29363982 DOI: 10.1021/acs.jpclett.7b03357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The characterization of electronic properties of metal complexes embedded in membrane environments is of paramount importance to develop efficient photosensitizers in optogenetic applications. Molecular dynamics and QM/MM simulations together with quantitative wave function analysis reveal a directional electronic redistribution of the exciton formed upon excitation of [Ru(bpy)2(bpy-C17)]2+ when going from water to a lipid bilayer, despite the fact that the media influence neither the metal-to-ligand charge-transfer character nor the excitation energy of the absorption spectra. When the photosensitizer is embedded into the DOPC lipid membrane, exciton population is mainly located in the bypyridyl sites proximal to the positively charged surface of the bilayer due to electrostatic interactions. This behavior shows that the electronic structure of metal complexes can be controlled through the binding to external species, underscoring the crucial role of the environment in directing the electronic flow upon excitation and thus helping rational tuning of optogenetic agents.
Collapse
Affiliation(s)
- Pedro A Sánchez-Murcia
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| | - Juan J Nogueira
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna , Währinger Str. 17, A-1090 Vienna, Austria
| |
Collapse
|
65
|
Nastasi F, La Ganga G, Campagna S, Syrgiannis Z, Rigodanza F, Vitale S, Licciardello A, Prato M. Multichromophoric hybrid species made of perylene bisimide derivatives and Ru(ii) and Os(ii) polypyridine subunits. Phys Chem Chem Phys 2018; 19:14055-14065. [PMID: 28518200 DOI: 10.1039/c7cp01597f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, the synthesis and the photophysical and redox properties of a new perylene bisimide (PBI) species (L), bearing two 1,10-phenanthroline (phen) ligands at the two imide positions of the PBI, and its dinuclear Ru(ii) and Os(ii) complexes, [(bpy)2Ru(μ-L)Ru(bpy)2](PF6)4 (Ru2; bpy = 2,2'-bipyridine) and [(Me2-bpy)2Os(μ-L)Os(Me2-bpy)2](PF6)4 (Os2; Me2-bpy = (4,4'-dimethyl)-2,2'-bipyridine), are reported. The absorption spectra of the compounds are dominated by the structured bands of the PBI subunit due to the lowest-energy spin-allowed π-π* transition. The spin-allowed MLCT transitions in Ru2 and Os2 are inferred by the absorption at 350-470 nm, where the PBI absorption is negligible. The absorption band extends towards the red region for Os2 due to the spin-forbidden MLCT transitions, intensified by the heavy osmium center. The reduction processes of the compounds are dominated by two successive mono-electronic PBI-based processes, which in the metal complexes are slightly shifted compared to the free ligand. On oxidation, both metal complexes undergo an apparent bi-electronic process (at 1.31 V vs. SCE for Ru2 and 0.77 V for Os2), attributed to the simultaneous one-electron oxidation of the two weakly-interacting metal centers. In Ru2 and Os2, the intense fluorescence of L subunit (λmax, 535 nm; τ, 4.3 ns; Φ, 0.91) is fully quenched, mainly by photoinduced electron transfer from the metal centers, on the ps timescale (time constant, 11 ps in Ru2 and 3 ps in Os2). Such photoinduced electron transfer leads to the formation of a charge-separated state, which directly decays to the ground state in about 70 ps in Os2, but produces the triplet π-π* state of the PBI subunit in 35 ps in Ru2. The results provide information on the excited-state processes of the hybrid species combining two dominant classes of chromophore/luminophore species, the PBI and the metal polypyridine complexes, and can be used for future design on new hybrid species with made-to-order properties.
Collapse
Affiliation(s)
- Francesco Nastasi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, e Centro di ricerca Interuniversitario per la Conversione Chimica dell'Energia Solare (SOLAR-CHEM), 98166 Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Kawamoto K, Tamiya Y, Storr T, Cogdell RJ, Kinoshita I, Hashimoto H. Disentangling the 1MLCT transition of [Ru(bpy)3]2+ by Stark absorption spectroscopy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
67
|
Alcover-Fortuny G, Wu J, Caballol R, de Graaf C. Quantum Chemical Study of the Interligand Electron Transfer in Ru Polypyridyl Complexes. J Phys Chem A 2018; 122:1114-1123. [PMID: 29272128 DOI: 10.1021/acs.jpca.7b11422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gerard Alcover-Fortuny
- Departament
de Química Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Jianfang Wu
- Departament
de Química Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Rosa Caballol
- Departament
de Química Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Coen de Graaf
- Departament
de Química Fı́sica i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
68
|
Loftus LM, Li A, Fillman KL, Martin PD, Kodanko JJ, Turro C. Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. J Am Chem Soc 2017; 139:18295-18306. [PMID: 29226680 PMCID: PMC5901749 DOI: 10.1021/jacs.7b09937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Four Ru(II) complexes were prepared bearing two new tetradentate ligands, cyTPA and 1-isocyTPQA, which feature a piperidine ring that provides a structurally rigid backbone and facilitates the installation of other donors as the fourth chelating arm, while avoiding the formation of stereoisomers. The photophysical properties and photochemistry of [Ru(cyTPA)(CH3CN)2]2+ (1), [Ru(1-isocyTPQA)(CH3CN)2]2+ (2), [Ru(cyTPA)(py)2]2+ (3), and [Ru(1-isocyTPQA)(py)2]2+ (4) were compared. The quantum yield for the CH3CN/H2O ligand exchange of 2 was measured to be Φ400 = 0.033(3), 5-fold greater than that of 1, Φ400 = 0.0066(3). The quantum yields for the py/H2O ligand exchange of 3 and 4 were lower, 0.0012(1) and 0.0013(1), respectively. DFT and related calculations show the presence of a highly mixed 3MLCT/3ππ* excited state as the lowest triplet state in 2, whereas the lowest energy triplet states in 1, 3, and 4 were calculated to be 3LF in nature. The mixed 3MLCT/3ππ* excited state places significant spin density on the quinoline moiety of the 1-isocyTPQA ligand positioned trans to the photolabile CH3CN ligand in 2, suggesting the presence of a trans-type influence in the excited state that enhances ligand exchange. Ultrafast spectroscopy was used to probe the excited states of 1-4, which confirmed that the mixed 3MLCT/3ππ* excited state in 2 promotes ligand dissociation, representing a new manner to effect photoinduced ligand exchange. The findings from this work can be used to design improved complexes for applications that require efficient ligand dissociation, as well as for those that require minimal deactivation of the 3MLCT state through low-lying metal-centered states.
Collapse
Affiliation(s)
- Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kathlyn L. Fillman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philip D. Martin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
69
|
Whittemore TJ, White TA, Turro C. New Ligand Design Provides Delocalization and Promotes Strong Absorption throughout the Visible Region in a Ru(II) Complex. J Am Chem Soc 2017; 140:229-234. [PMID: 29260869 DOI: 10.1021/jacs.7b09389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The new Ru(II)-anthraquinone complex [Ru(bpy)2(qdpq)](PF6)2 (Ru-qdpq; bpy = 2,2'-bipyridine; qdpq = 2,3-di(2-pyridyl)naphtho[2,3-f]quinoxaline-7,12-quinone) possesses a strong 1MLCT Ru → qdpq absorption with a maximum at 546 nm that tails into the near-IR and is significantly red-shifted relative to that of the related complex [Ru(bpy)2(qdppz)](PF6)2 (Ru-qdppz; qdppz = naphtho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione), with λmax = 450 nm. Ru-qdppz possesses electronically isolated proximal and distal qdppz-based excited states; the former is initially generated and decays to the latter, which repopulates the ground state with τ = 362 ps. In contrast, excitation of Ru-qdpq results in the population of a relatively long-lived (τ = 19 ns) Ru(dπ) → qdpq(π*) 3MLCT excited state where the promoted electron is delocalized throughout the qdpq ligand. Ultrafast spectroscopy, used together with steady-state absorption, electrochemistry, and DFT calculations, indicates that the unique coordination modes of the qdpq and qdppz ligands impart substantially different electronic communication throughout the quinone-containing ligand, affecting the excited state and electron transfer properties of these molecules. These observations create a pathway to synthesize complexes with red-shifted absorptions that possess long-lived, redox-active excited states that are useful for various applications, including solar energy conversion and photochemotherapy.
Collapse
Affiliation(s)
- Tyler J Whittemore
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Travis A White
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
70
|
Das AK, Meuwly M. Hydration Control Through Intramolecular Degrees of Freedom: Molecular Dynamics of [Cu(II)(Imidazole)4]. J Phys Chem B 2017; 121:9024-9031. [DOI: 10.1021/acs.jpcb.7b05949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akshaya K. Das
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4001 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4001 Basel, Switzerland
| |
Collapse
|
71
|
Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
72
|
|
73
|
|
74
|
Xu S, Smith JET, Gozem S, Krylov AI, Weber JM. Electronic Spectra of Tris(2,2′-bipyridine)-M(II) Complex Ions in Vacuo (M = Fe and Os). Inorg Chem 2017; 56:7029-7037. [DOI: 10.1021/acs.inorgchem.7b00620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Samer Gozem
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Anna I. Krylov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | | |
Collapse
|
75
|
Manbeck GF, Fujita E, Brewer KJ. Tetra- and Heptametallic Ru(II),Rh(III) Supramolecular Hydrogen Production Photocatalysts. J Am Chem Soc 2017; 139:7843-7854. [DOI: 10.1021/jacs.7b02142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gerald F. Manbeck
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Etsuko Fujita
- Chemistry
Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Karen J. Brewer
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
76
|
Luo Y, Barthelmes K, Wächtler M, Winter A, Schubert US, Dietzek B. Energy versus Electron Transfer: Controlling the Excitation Transfer in Molecular Triads. Chemistry 2017; 23:4917-4922. [PMID: 28198051 DOI: 10.1002/chem.201700413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 01/23/2023]
Abstract
The photochemistry of RuII coordination compounds is generally discussed to originate from the lowest lying triplet metal-to-ligand charge-transfer state (3 MLCT). However, when heteroleptic complexes are considered, for example, in the design of molecular triads for efficient photoinduced charge separation, a complex structure of 1 MLCT states, which can be populated in a rather narrow spectral window (typically around 450 nm) is to be considered. In this contribution we show that the localization of MLCT excited states on different ligands can affect the following ps to ns decay pathways to an extent that by tuning the excitation wavelength, intermolecular energy transfer from a RuII -terpyridine unit to a fullerene acceptor can be favored over electron transfer within the molecular triad. These results might have important implications for the design of molecular dyads, triads, pentads and so forth with respect to a specifically targeted response of these complexes to photoexcitation.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Kevin Barthelmes
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Andreas Winter
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
77
|
Deraedt Q, Marcélis L, Loiseau F, Elias B. Towards mismatched DNA photoprobes and photoreagents: “elbow-shaped” Ru(ii) complexes. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their potentially harmful consequences, the detection of mismatched DNA is a subject of high interest. In order to probe these DNA mismatches, we report new Ru(ii) complexes, bearing “elbow-shaped” extended planar ligands based on an acridine or a phenazine core.
Collapse
Affiliation(s)
- Q. Deraedt
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| | - L. Marcélis
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| | - F. Loiseau
- Département de Chimie Moléculaire
- Université Grenoble-Alpes
- BP53 38041 Grenoble
- France
| | - B. Elias
- Institute of Condensed Matter and Nanosciences
- Molecules
- Solids and Reactivity (IMCN/MOST)
- Université catholique de Louvain
- 1348 Louvain-la-Neuve
| |
Collapse
|
78
|
Chan KT, Tong GSM, To WP, Yang C, Du L, Phillips DL, Che CM. The interplay between fluorescence and phosphorescence with luminescent gold(i) and gold(iii) complexes bearing heterocyclic arylacetylide ligands. Chem Sci 2016; 8:2352-2364. [PMID: 28451340 PMCID: PMC5365001 DOI: 10.1039/c6sc03775e] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/03/2016] [Indexed: 01/02/2023] Open
Abstract
The photophysical properties of a series of gold(i) [LAu(C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CR)] (L = PCy3 (1a-4a), RNC (5a), NHC (6a)) and gold(iii) complexes [Au(C^N^C)(CCR)] (1b-4b) bearing heterocyclic arylacetylide ligands with narrow band-gap are compared. The luminescence of both series are derived from an intraligand transition localized on the arylacetylide ligand (ππ*(CCR)) but 1a-3a displayed prompt fluorescence (τPF = 2.7-12.0 ns) while 1b-3b showed mainly phosphorescence (τPh = 104-205 μs). The experimentally determined intersystem crossing (ISC) rate constants (kISC) are on the order of 106 to 108 s-1 for the gold(i) series (1a-3a) but 1010 to 1011 s-1 for the gold(iii) analogues (1b-3b). DFT/TDDFT calculations have been performed to help understand the difference in the kISC between the two series of complexes. Owing to the different oxidation states of the gold ion, the Au(i) complexes have linear coordination geometry while the Au(iii) complexes are square planar. It was found from DFT/TDDFT calculations that due to this difference in coordination geometries, the energy gap between the singlet and triplet excited states (ΔEST) with effective spin-orbit coupling (SOC) for Au(i) systems is much larger than that for the Au(iii) counterparts, thus resulting in the poor ISC efficiency for the former. Time-resolved spectroscopies revealed a minor contribution (<2.9%) of a long-lived delayed fluorescence (DF) (τDF = 4.6-12.5 μs) to the total fluorescence in 1a-3a. Attempts have been made to elucidate the mechanism for the origins of the DF: the dependence of the DF intensity with the power of excitation light reveals that triplet-triplet annihilation (TTA) is the most probable mechanism for the DF of 1a while germinate electron-hole pair (GP) recombination accounts for the DF of 2a in 77 K glassy solution (MeOH/EtOH = 4 : 1). Both 4a and 4b contain a BODIPY moiety at the acetylide ligand and display only 1IL(ππ*) fluorescence with negligible phosphorescence being observed. Computational analyses attributed this observation to the lack of low-lying triplet excited states that could have effective SOC with the S1 excited state.
Collapse
Affiliation(s)
- Kaai Tung Chan
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Glenna So Ming Tong
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Chen Yang
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ;
| | - Lili Du
- Department of Chemistry , The University of Hong Kong , Hong Kong , China
| | - David Lee Phillips
- Department of Chemistry , The University of Hong Kong , Hong Kong , China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry , Institute of Molecular Functional Materials , Department of Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , China . ; .,Department of Chemistry , HKU Shenzhen Institute of Research and Innovation , Shenzhen 518053 , China
| |
Collapse
|
79
|
A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production. Nat Commun 2016; 7:13169. [PMID: 27827376 PMCID: PMC5105156 DOI: 10.1038/ncomms13169] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023] Open
Abstract
Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium–palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h−1 and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications. Photocatalytic water splitting is a promising route to hydrogen generation from renewable solar power. Here, the authors report a hydrogen-evolving photochemical molecular device based on a self-assembled coordination cage, which simultaneously incorporates multiple photosensitizing and catalytic metal centres.
Collapse
|
80
|
Deraedt Q, Loiseau F, Elias B. Photochemical Tuning of Tris-Bidentate Acridine- and Phenazine-Based Ir(III) Complexes. J Fluoresc 2016; 26:2095-2103. [DOI: 10.1007/s10895-016-1904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
81
|
Sun Q, Dereka B, Vauthey E, Lawson Daku LM, Hauser A. Ultrafast transient IR spectroscopy and DFT calculations of ruthenium(ii) polypyridyl complexes. Chem Sci 2016; 8:223-230. [PMID: 28451169 PMCID: PMC5308284 DOI: 10.1039/c6sc01220e] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
Ultrafast time-resolved infrared spectroscopy of [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine), [Ru(mbpy)3]2+ (mbpy = 6-methyl-2,2'-bipyridine) and [Ru(mphen)3]2+ (mphen = 2-methyl-1,10'-phenanthroline) in deuterated acetonitrile serves to elucidate the evolution of the system following pulsed excitation into the 1MLCT band at 400 nm. While for [Ru(bpy)3]2+ no intermediate state can be evidenced for the relaxation of the corresponding 3MLCT state back to the ground state, for [Ru(mbpy)3]2+ and [Ru(mphen)3]2+ an intermediate state with a lifetime of about 400 ps is observed. The species associated IR difference spectra of this state are in good agreement with the calculated difference spectra of the lowest energy 3dd state using DFT. The calculated potential energy curves for all the complexes in the triplet manifold along the metal-ligand distance show that for [Ru(bpy)3]2+ the 3dd state is at a higher energy than the 3MLCT state and that there is a substantial barrier between the two minima. For [Ru(mbpy)3]2+ and [Ru(mphen)3]2+, the 3dd state is at a lower energy than the 3MLCT state.
Collapse
Affiliation(s)
- Qinchao Sun
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Bogdan Dereka
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Eric Vauthey
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Latévi M Lawson Daku
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| | - Andreas Hauser
- Département de Chimie Physique , Université de Genève , 30 Quai Ernest-Ansermet , 1211 Genève , Switzerland .
| |
Collapse
|
82
|
Vu AT, Santos DA, Hale JG, Garner RN. Tuning the excited state properties of ruthenium(II) complexes with a 4-substituted pyridine ligand. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Mukuta T, Tanaka S, Inagaki A, Koshihara SY, Onda K. Direct Observation of the Triplet Metal-Centered State in [Ru(bpy)3]2+Using Time-Resolved Infrared Spectroscopy. ChemistrySelect 2016. [DOI: 10.1002/slct.201600747] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tatsuhiko Mukuta
- Department of Chemistry; School of Science; Tokyo Institute of Technology, O-okayama, Meguro-ku; Tokyo 152-8551 Japan
| | - Sei'ichi Tanaka
- Department of Chemistry; School of Science; Tokyo Institute of Technology, O-okayama, Meguro-ku; Tokyo 152-8551 Japan
| | - Akiko Inagaki
- Graduate School of Science and Engineering; Tokyo Metropolitan University; 1-1 Minami-Osawa, Hachioji Tokyo 192-0397 Japan
| | - Shin-ya Koshihara
- Department of Chemistry; School of Science; Tokyo Institute of Technology, O-okayama, Meguro-ku; Tokyo 152-8551 Japan
| | - Ken Onda
- Interactive Research Center of Science; Tokyo Institute of Technology; S1-8, 4259 Nagatsuta, Midori-ku, Yokohama Kanagawa 226-8502 Japan
- PRESTO; Japan Science and Technology Agency (JST); 4-1-8 Honcho, Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
84
|
Deraedt Q, Marcélis L, Auvray T, Hanan GS, Loiseau F, Elias B. Design and Photophysical Studies of Acridine-Based RuIIComplexes for Applications as DNA Photoprobes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Quentin Deraedt
- Institute of Condensed Matter and Nanosciences; Molecules, Solids and Reactivity (IMCN/MOST); Université Catholique de Louvain; Place Louis Pasteur 1/L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Lionel Marcélis
- Institute of Condensed Matter and Nanosciences; Molecules, Solids and Reactivity (IMCN/MOST); Université Catholique de Louvain; Place Louis Pasteur 1/L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Thomas Auvray
- Département de Chimie; Université de Montréal; 2900 Edouard-Montpetit H3T-1J4 Montréal Québec Canada
| | - Garry S. Hanan
- Département de Chimie; Université de Montréal; 2900 Edouard-Montpetit H3T-1J4 Montréal Québec Canada
| | - Frédérique Loiseau
- Département de Chimie Moléculaire; Université Grenoble-Alpes; CNRS UMR 5250; BP53 38041 Grenoble France
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences; Molecules, Solids and Reactivity (IMCN/MOST); Université Catholique de Louvain; Place Louis Pasteur 1/L4.01.02 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
85
|
Pan Q, Mecozzi F, Korterik JP, Vos JG, Browne WR, Huijser A. The Critical Role Played by the Catalytic Moiety in the Early-Time Photodynamics of Hydrogen-Generating Bimetallic Photocatalysts. Chemphyschem 2016; 17:2654-9. [DOI: 10.1002/cphc.201600458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Qing Pan
- MESA+Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Francesco Mecozzi
- Molecular Inorganic Chemistry; Stratingh Institute for Chemistry; University of Groningen; 9747 AG, Groningen The Netherlands
| | - Jeroen P. Korterik
- MESA+Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Johannes G. Vos
- SRC for Solar Energy Conversion; School of Chemical Sciences; Dublin City University; Glasnevin Dublin 9 Ireland
| | - Wesley R. Browne
- Molecular Inorganic Chemistry; Stratingh Institute for Chemistry; University of Groningen; 9747 AG, Groningen The Netherlands
| | - Annemarie Huijser
- MESA+Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
86
|
Hofbeck T, Lam YC, Kalbáč M, Záliš S, Vlček A, Yersin H. Thermally Tunable Dual Emission of the d(8)-d(8) Dimer [Pt2(μ-P2O5(BF2)2)4](4). Inorg Chem 2016; 55:2441-9. [PMID: 26909653 DOI: 10.1021/acs.inorgchem.5b02839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-resolution fluorescence, phosphorescence, as well as related excitation spectra, and, in particular, the emission decay behavior of solid [Bu4N]4[Pt2(μ-P2O5(BF2)2)4], abbreviated Pt(pop-BF2), have been investigated over a wide temperature range, 1.3-310 K. We focus on the lowest excited states that result from dσ*pσ (5dz(2)-6pz) excitations, i.e., the singlet state S1 (of (1)A2u symmetry in D4h) and the lowest triplet T1, which splits into spin-orbit substates A1u((3)A2u) and Eu((3)A2u). After optical excitation, an unusually slow intersystem crossing (ISC) is observed. As a consequence, the compound shows efficient dual emission, consisting of blue fluorescence and green phosphorescence with an overall emission quantum yield of ∼ 100% over the investigated temperature range. Our investigation sheds light on this extraordinary dual emission behavior, which is unique for a heavy-atom transition metal compound. Direct ISC processes in Pt(pop-BF2) are largely forbidden due to spin-, symmetry-, and Franck-Condon overlap-restrictions and, therefore, the ISC time is as long as 29 ns for T < 100 K. With temperature increase, two different thermally activated pathways, albeit still relatively slow, are promoted by spin-vibronic and vibronic mechanisms, respectively. Thus, distinct temperature dependence of the ISC processes results and, as a consequence, also of the fluorescence/phosphorescence intensity ratio. The phosphorescence lifetime also is temperature-dependent, reflecting the relative population of the triplet T1 substates Eu and A1u. The highly resolved phosphorescence shows a ∼ 220 cm(-1) red shift below 10 K, attributable to zero-field splitting of 40 cm(-1) plus a promoting vibration of 180 cm(-1).
Collapse
Affiliation(s)
- Thomas Hofbeck
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg , Universitätstrasse 31, D-93040 Regensburg, Germany
| | - Yan Choi Lam
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Martin Kalbáč
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | - Hartmut Yersin
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg , Universitätstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|
87
|
La Mazza E, Puntoriero F, Nastasi F, Laramée-Milette B, Hanan GS, Campagna S. A heptanuclear light-harvesting metal-based antenna dendrimer with six Ru(ii)-based chromophores directly powering a single Os(ii)-based energy trap. Dalton Trans 2016; 45:19238-19241. [DOI: 10.1039/c6dt02405j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantitative Dexter energy transfer occurs in a novel metal dendrimer 1, from the peripheral Ru(ii) centres to the Os(ii) core, at a rate constant of 9.1 × 1010 s−1.
Collapse
Affiliation(s)
- Emanuele La Mazza
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- and Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM)
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- and Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM)
| | - Francesco Nastasi
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- and Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM)
| | | | - Garry S. Hanan
- Département de Chimie
- Université de Montréal
- Montréal
- Canada
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- and Centro di ricerca interuniversitario per la conversione chimica dell'energia solare (SOLAR-CHEM)
| |
Collapse
|
88
|
Ramos LD, Sampaio RN, de Assis FF, de Oliveira KT, Homem-de-Mello P, Patrocinio AOT, Frin KPM. Contrasting photophysical properties of rhenium(i) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand. Dalton Trans 2016; 45:11688-98. [DOI: 10.1039/c6dt01112h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fac-[Re(CO)3(cbz2phen)(L)]0/+1 complexes showed a remarkable presence of the ILCTcbz2phen fluorescence in addition to the usually observed 3MLCTRe→cbz2phen. In PMMA films the emission is completely turned into a triplet excited state manifold.
Collapse
Affiliation(s)
- L. D. Ramos
- Universidade Federal do ABC - UFABC
- Santo Andre
- 09210-170 Brazil
| | - R. N. Sampaio
- Universidade Federal de Uberlândia – UFU
- Uberlândia
- 38400-902 Brazil
| | - F. F. de Assis
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- 13565-905 Brazil
| | - K. T. de Oliveira
- Universidade Federal de São Carlos – UFSCar
- São Carlos
- 13565-905 Brazil
| | | | | | - K. P. M. Frin
- Universidade Federal do ABC - UFABC
- Santo Andre
- 09210-170 Brazil
| |
Collapse
|
89
|
Borgwardt M, Wilke M, Kiyan IY, Aziz EF. Ultrafast excited states dynamics of [Ru(bpy)3]2+ dissolved in ionic liquids. Phys Chem Chem Phys 2016; 18:28893-28900. [DOI: 10.1039/c6cp05655e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, we demonstrate the potential of room-temperature ionic liquids as solvents to investigate the excited states dynamics of [Ru(bpy)3]2+ by means of time-resolved photoelectron spectroscopy.
Collapse
Affiliation(s)
- Mario Borgwardt
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Martin Wilke
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Igor Yu. Kiyan
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| | - Emad F. Aziz
- Joint Laboratory for Ultrafast Dynamics in Solutions and at Interfaces (JULiq)
- Institute of Methods for Material Development
- Helmholtz-Zentrum Berlin
- D-12489 Berlin
- Germany
| |
Collapse
|
90
|
Pan Q, Freitag L, Kowacs T, Falgenhauer JC, Korterik JP, Schlettwein D, Browne WR, Pryce MT, Rau S, González L, Vos JG, Huijser A. Peripheral ligands as electron storage reservoirs and their role in enhancement of photocatalytic hydrogen generation. Chem Commun (Camb) 2016; 52:9371-4. [DOI: 10.1039/c6cc05222c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The contrasting early-time photodynamics of two related Ru/Pt photocatalysts are reported.
Collapse
|
91
|
Ma F, Jarenmark M, Hedström S, Persson P, Nordlander E, Yartsev A. Ultrafast excited state dynamics of [Cr(CO)4(bpy)]: revealing the relaxation between triplet charge-transfer states. RSC Adv 2016. [DOI: 10.1039/c5ra25670d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultrafast excited state dynamics of [Cr(CO)4(bpy)] upon metal-to-ligand charge-transfer (1MLCT) transition have been studied by pump-probe absorption spectroscopy and DFT calculation.
Collapse
Affiliation(s)
- Fei Ma
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Martin Jarenmark
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Svante Hedström
- Theoretical Chemistry
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Petter Persson
- Theoretical Chemistry
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Ebbe Nordlander
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Arkady Yartsev
- Chemical Physics
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| |
Collapse
|
92
|
Ding L, Chung LW, Morokuma K. Excited-State Proton Transfer Controls Irreversibility of Photoisomerization in Mononuclear Ruthenium(II) Monoaquo Complexes: A DFT Study. J Chem Theory Comput 2015; 10:668-75. [PMID: 26580044 DOI: 10.1021/ct400982r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed DFT investigation clears the working mechanism of the irreversible photoisomerization of trans-[Ru(tpy)(pynp)(OH2)](2+) (TA) and cis-[Ru(tpy)(pynp)(OH2)](2+) (CA) complexes. Both TA and CA complexes present two types of low lying triplet states, one resulting from a triplet metal-ligand charge-transfer (TMLCT) and the other from a triplet metal-centered d-d transition (TMC). The vertical excitation of the singlet ground state of the complexes leads to a singlet excited state, which undergoes ultrafast decay to the corresponding TMLCT. For TA, this TMLCT transforms with a low barrier to a TMC state. The dissociative nature of the TMC state leads to easy water removal to produce a five-coordinate intermediate that can isomerize via rotation of a pynp ligand and proceed towards the CA product. For CA, however, during this excitation and intersystem crossing process, an excited-state proton transfer (ESPT) occurs and the resultant TMLCT is very much stabilized with a very strong Ru(II)-OH bond; the high barrier from this TMLCT blocks conversion to a TMC state and thus prevents isomerization from the cis to the trans isomer. This high barrier also prevents the possibility of the isomerization process from TA to CA solely on the adiabatic triplet pathway. Instead, crossing points (XMC-CB, XMC-CA) near the minimum of the triplet metal-centered state of the cis isomer provide nonadiabatic decay channels to the ground-state S0--CA, which completes the photoisomerization pathway from TA to CA.
Collapse
Affiliation(s)
- Lina Ding
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan.,School of Pharmaceutical Sciences, Zhengzhou University , 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| |
Collapse
|
93
|
Ultrafast Spectroscopy of Photonic Materials. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2015. [DOI: 10.1007/s40010-015-0253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Cui X, Zhao J, Mohmood Z, Zhang C. Accessing the Long-Lived Triplet Excited States in Transition-Metal Complexes: Molecular Design Rationales and Applications. CHEM REC 2015; 16:173-88. [PMID: 26617399 DOI: 10.1002/tcr.201500237] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 01/22/2023]
Abstract
Transition-metal complex triplet photosensitizers are versatile compounds that have been widely used in photocatalysis, photovoltaics, photodynamic therapy (PDT) and triplet-triplet annihilation (TTA) upconversion. The principal photophysical processes in these applications are the intermolecular energy transfer or electron transfer. One of the major challenges facing these triplet photosensitizers is the short triplet-state lifetime, which is detrimental to the above-mentioned photophysical processes. In order to address this challenge, transition-metal complexes showing long-lived triplet excited states are highly desired. This review article summarizes the development of this fascinating area, including the molecular design rationales, the principal photophysical properties, and the applications of these complexes in PDT and TTA upconversion.
Collapse
Affiliation(s)
- Xiaoneng Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 Western Campus, 2 Ling-Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 Western Campus, 2 Ling-Gong Road, Dalian, 116024, P. R. China
| | - Zafar Mohmood
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 Western Campus, 2 Ling-Gong Road, Dalian, 116024, P. R. China
| | - Caishun Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 Western Campus, 2 Ling-Gong Road, Dalian, 116024, P. R. China
| |
Collapse
|
95
|
Messina F, Pomarico E, Silatani M, Baranoff E, Chergui M. Ligand-centred fluorescence and electronic relaxation cascade at vibrational time scales in transition-metal complexes. J Phys Chem Lett 2015; 6:4475-4480. [PMID: 26509329 DOI: 10.1021/acs.jpclett.5b02146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using femtosecond-resolved photoluminescence up-conversion, we report the observation of the fluorescence of the high-lying ligand-centered (LC) electronic state upon 266 nm excitation of an iridium complex, Ir(ppy)3, with a lifetime of 70 ± 10 fs. It is accompanied by a simultaneous emission of all lower-lying electronic states, except the lowest triplet metal-to-ligand charge-transfer ((3)MLCT) state that shows a rise on the same time scale. Thus, we observe the departure, the intermediate steps, and the arrival of the relaxation cascade spanning ∼1.6 eV from the (1)LC state to the lowest (3)MLCT state, which then yields the long-lived luminescence of the molecule. This represents the first measurement of the total relaxation time over an entire cascade of electronic states in a polyatomic molecule. We find that the relaxation cascade proceeds in ≤10 fs, which is faster than some of the highest-frequency modes of the system. We invoke the participation of the latter modes in conical intersections and their overdamping to low-frequency intramolecular modes. On the basis of literature, we also conclude that this behavior is not specific to transition-metal complexes but also applies to organic molecules.
Collapse
Affiliation(s)
- Fabrizio Messina
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo , Via Archirafi 36, 90123 Palermo, Italy
| | - Enrico Pomarico
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Mahsa Silatani
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| | - Etienne Baranoff
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB , CH-1015 Lausanne, Switzerland
| |
Collapse
|
96
|
Kokošková M, Štěpánek M, Šloufová I, Vlčková B. Steady-state and time-resolved luminescence of Ru(II) polypyridine complexes attached to Ag nanoparticles: Effect of chemisorption in comparison with electrostatic bonding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:657-663. [PMID: 26093115 DOI: 10.1016/j.saa.2015.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Steady state and nanosecond time resolved luminescence (namely, (3)MLCT phosphorescence) of [Ru(bpy)3](2+) and of [Ru(bpy)2(dcbpy)](2+)/bpy=2,2'-bipyridine; dcbpy=2,2'-bipyridyl-4,4'-dicarboxylic acid/attached to Ag NPs (the former by the electrostatic bonding, the latter by chemisorption) in non-aggregated Ag NP hydrosol systems has been investigated, and compared to the luminescence characteristics of the complexes in aqueous solutions. The intensity decrease of the 452 nm (and/or 455 nm, respectively) main band and elimination of the short wavelength shoulders in the excitation spectra and the intensity decrease of the emission spectra observed for both complexes upon their attachment to Ag NPs is attributed to the overlap of the excitation spectra with the surface plasmon extinction (SPE) of Ag NPs. The overlap leads to a loss of excitation energy by SPE as well as to a decrease of the (1)MLCT to (3)MLCT intersystem crossing efficiency. The time-resolved luminescence study shows that the (3)MLCT phosphorescence lifetimes of both complexes are markedly (by 3 and 4 orders of magnitude, respectively) shortened upon their attachment to Ag NPs. Nevertheless, the (3)MLCT lifetime of the chemisorbed [Ru(bpy)2(dcbpy)](2+) is by at least one order of magnitude shorter than that of the electrostatically bonded [Ru(bpy)3](2+), which indicates, that the phosphorescence lifetimes of these luminophores are strongly affected by the type of Ag NP surface-luminophore bonding.
Collapse
Affiliation(s)
- Markéta Kokošková
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 2, 128 40, Czech Republic.
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 2, 128 40, Czech Republic
| | - Ivana Šloufová
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 2, 128 40, Czech Republic
| | - Blanka Vlčková
- Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 8, Prague 2, 128 40, Czech Republic.
| |
Collapse
|
97
|
Knoll JD, Albani BA, Turro C. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation. Acc Chem Res 2015; 48:2280-7. [PMID: 26186416 DOI: 10.1021/acs.accounts.5b00227] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces low-lying, long-lived dppn/Me2dppn (3)ππ* excited states that generate (1)O2. Similar to [Ru(bpy)2(CH3CN)2](2+), photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2](2+), although with lower efficiency because of the presence of the (3)ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)](2+) is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)](2+) produces (1)O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)-polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines.
Collapse
Affiliation(s)
- Jessica D. Knoll
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Bryan A. Albani
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department
of Chemistry and
Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
98
|
Kvapilová H, Sattler W, Sattler A, Sazanovich IV, Clark IP, Towrie M, Gray HB, Záliš S, Vlček A. Electronic Excited States of Tungsten(0) Arylisocyanides. Inorg Chem 2015; 54:8518-28. [PMID: 26267759 DOI: 10.1021/acs.inorgchem.5b01203] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
W(CNAryl)6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh(OMe2))6; CNdippPh(OMe2) = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198-1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)6 at 460 nm and that of W(CNdippPh(OMe2))6 at 500 nm originate from transitions of mixed ππ*(C≡N-C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e(-) and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)6 to W(CNdippPh(OMe2))6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300-320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)6 triplet state combines ππ* excitation of a trans pair of C≡N-C moieties with MLCT (0.21 e(-)) and ligand-to-ligand charge transfer (LLCT, 0.24-0.27 e(-)) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl-N≡C-W-C≡N-Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh(OMe2))6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient upshifted by 60-65 cm(-1), and a weak down-shifted feature due to antisymmetric C≡N stretch along the axis of high spin density. The TRIR spectral pattern remains unchanged on the femtosecond-nanosecond time scale, indicating that intersystem crossing and electron-density localization are ultrafast (<100 fs).
Collapse
Affiliation(s)
- Hana Kvapilová
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,Department of Inorganic Chemistry, University of Chemistry and Technology, Prague , Technická 5, CZ-166 28 Prague, Czech Republic
| | - Wesley Sattler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Aaron Sattler
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Ian P Clark
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Harry B Gray
- Beckman Institute, California Institute of Technology , Pasadena, California 91125, United States
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Antonín Vlček
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, CZ-182 23 Prague, Czech Republic.,Queen Mary University of London , School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
99
|
Capano G, Rothlisberger U, Tavernelli I, Penfold TJ. Theoretical Rationalization of the Emission Properties of Prototypical Cu(I)–Phenanthroline Complexes. J Phys Chem A 2015; 119:7026-37. [DOI: 10.1021/acs.jpca.5b03842] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Capano
- École Polytechnique
Fédérale de Lausanne (EPFL), Laboratoire de spectroscopie
ultrarapide, ISIC, FSB Station
6, CH-1015 Lausanne, Switzerland
- École Polytechnique
Fédérale de Lausanne (EPFL), Laboratoire de chimie et
biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne, Switzerland
| | - U. Rothlisberger
- École Polytechnique
Fédérale de Lausanne (EPFL), Laboratoire de chimie et
biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne, Switzerland
| | - I. Tavernelli
- École Polytechnique
Fédérale de Lausanne (EPFL), Laboratoire de chimie et
biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne, Switzerland
| | - T. J. Penfold
- SwissFEL, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
100
|
Chergui M. Empirical rules of molecular photophysics in the light of ultrafast spectroscopy. PURE APPL CHEM 2015. [DOI: 10.1515/pac-2014-0939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe advent of ultrafast laser spectroscopy has allowed entirely new possibilities for the investigation of the ultrafast photophysics of inorganic metal-based molecular complexes. In this review we show different regimes where non-Kasha behavior shows up. We also demonstrate that while ultrafast intersystem crossing is a common observation in metal complexes, the ISC rates do not scale with the magnitude of the spin-orbit coupling constant. Structural dynamics and density of states play a crucial role in such ultrafast ISC processes, which are not limited to molecules containing heavy atoms.
Collapse
Affiliation(s)
- Majed Chergui
- 1Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Faculté des Sciences de Base, Station 6, CH-1015 Lausanne, Switzerland
| |
Collapse
|