51
|
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 2014; 53:8840-69. [PMID: 24990531 PMCID: PMC4536949 DOI: 10.1002/anie.201310843] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 01/13/2023]
Abstract
The discovery and implementation of antibiotics in the early twentieth century transformed human health and wellbeing. Chemical synthesis enabled the development of the first antibacterial substances, organoarsenicals and sulfa drugs, but these were soon outshone by a host of more powerful and vastly more complex antibiotics from nature: penicillin, streptomycin, tetracycline, and erythromycin, among others. These primary defences are now significantly less effective as an unavoidable consequence of rapid evolution of resistance within pathogenic bacteria, made worse by widespread misuse of antibiotics. For decades medicinal chemists replenished the arsenal of antibiotics by semisynthetic and to a lesser degree fully synthetic routes, but economic factors have led to a subsidence of this effort, which places society on the precipice of a disaster. We believe that the strategic application of modern chemical synthesis to antibacterial drug discovery must play a critical role if a crisis of global proportions is to be averted.
Collapse
Affiliation(s)
- Peter M. Wright
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Ian B. Seiple
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| | - Andrew G. Myers
- Department of Chemistry and Chemical Biology, Harvard University Cambridge, MA 02138 (USA)
| |
Collapse
|
52
|
Wright PM, Seiple IB, Myers AG. Zur Rolle der chemischen Synthese in der Entwicklung antibakterieller Wirkstoffe. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310843] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Zhang Y, Luo T, Yang Z. Strategic innovation in the total synthesis of complex natural products using gold catalysis. Nat Prod Rep 2014; 31:489-503. [DOI: 10.1039/c3np70075e] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review has been organized from the perspective of synthetic target families, with emphasis on the use of gold-catalyzed transformations and cascade reactions that significantly increase molecular complexity.
Collapse
Affiliation(s)
- Yun Zhang
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and Beijing National Laboratory for Molecular Science (BNLMS)
- Peking-Tsinghua Center for Life Sciences
- Peking University
- Beijing 100871, China
| | - Zhen Yang
- Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University Shenzhen Graduate School
- Shenzhen 518055, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and Beijing National Laboratory for Molecular Science (BNLMS)
| |
Collapse
|
54
|
Bouanou H, Tapia R, Cano MJ, Ramos JM, Alvarez E, Boulifa E, Dahdouh A, Mansour AI, Alvarez-Manzaneda R, Chahboun R, Alvarez-Manzaneda E. The first synthesis of (−)-isoambreinolide, (+)-vitexifolin D and (+)-vitedoin B. Org Biomol Chem 2014; 12:667-72. [DOI: 10.1039/c3ob42122h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
55
|
Zask A, Murphy J, Ellestad GA. Biological Stereoselectivity of Atropisomeric Natural Products and Drugs. Chirality 2013; 25:265-74. [DOI: 10.1002/chir.22145] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/26/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Arie Zask
- Department of Chemistry; Columbia University; New York New York 10027
| | - John Murphy
- Department of Chemistry; Columbia University; New York New York 10027
| | | |
Collapse
|
56
|
Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Liu M, Piggott AM, Liu X, Capon RJ, Zhang L. Abyssomicins from the South China Sea deep-sea sediment Verrucosispora sp.: natural thioether Michael addition adducts as antitubercular prodrugs. Angew Chem Int Ed Engl 2013; 52:1231-4. [PMID: 23225604 PMCID: PMC3563217 DOI: 10.1002/anie.201208801] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Indexed: 12/03/2022]
Affiliation(s)
- Qian Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bihelovic F, Karadzic I, Matovic R, Saicic RN. Total synthesis and biological evaluation of (−)-atrop–abyssomicin C. Org Biomol Chem 2013; 11:5413-24. [DOI: 10.1039/c3ob40692j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Liu M, Piggott AM, Liu X, Capon RJ, Zhang L. Abyssomicins from the South China Sea Deep-Sea SedimentVerrucosisporasp.: Natural Thioether Michael Addition Adducts as Antitubercular Prodrugs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201208801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
59
|
Wang Q, Song F, Xiao X, Huang P, Li L, Monte A, Abdel-Mageed WM, Wang J, Guo H, He W, Xie F, Dai H, Liu M, Chen C, Xu H, Liu M, Piggott AM, Liu X, Capon RJ, Zhang L. Abyssomicins from the South China Sea Deep-Sea SedimentVerrucosisporasp.: Natural Thioether Michael Addition Adducts as Antitubercular Prodrugs. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/anie.201208801 pmid: 2322560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
60
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
61
|
Vynne NG, Mansson M, Gram L. Gene sequence based clustering assists in dereplication of Pseudoalteromonas luteoviolacea strains with identical inhibitory activity and antibiotic production. Mar Drugs 2012; 10:1729-1740. [PMID: 23015771 PMCID: PMC3447336 DOI: 10.3390/md10081729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022] Open
Abstract
Some microbial species are chemically homogenous, and the same secondary metabolites are found in all strains. In contrast, we previously found that five strains of P. luteoviolacea were closely related by 16S rRNA gene sequence but produced two different antibiotic profiles. The purpose of the present study was to determine whether such bioactivity differences could be linked to genotypes allowing methods from phylogenetic analysis to aid in selection of strains for biodiscovery. Thirteen P. luteoviolacea strains divided into three chemotypes based on production of known antibiotics and four antibacterial profiles based on inhibition assays against Vibrio anguillarum and Staphylococcus aureus. To determine whether chemotype and inhibition profile are reflected by phylogenetic clustering we sequenced 16S rRNA, gyrB and recA genes. Clustering based on 16S rRNA gene sequences alone showed little correlation to chemotypes and inhibition profiles, while clustering based on concatenated 16S rRNA, gyrB, and recA gene sequences resulted in three clusters, two of which uniformly consisted of strains of identical chemotype and inhibition profile. A major time sink in natural products discovery is the effort spent rediscovering known compounds, and this study indicates that phylogeny clustering of bioactive species has the potential to be a useful dereplication tool in biodiscovery efforts.
Collapse
Affiliation(s)
- Nikolaj G. Vynne
- National Food Institute, Technical University of Denmark, Søltofts Plads bldg 221, DK-2800 Kgs. Lyngby, Denmark;
| | - Maria Mansson
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Søltofts Plads bldg 221, DK-2800 Kgs. Lyngby, Denmark;
| | - Lone Gram
- National Food Institute, Technical University of Denmark, Søltofts Plads bldg 221, DK-2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
62
|
Bihelovic F, Saicic RN. Total Synthesis of (−)-atrop-Abyssomicin C. Angew Chem Int Ed Engl 2012; 51:5687-91. [DOI: 10.1002/anie.201108223] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/05/2012] [Indexed: 11/10/2022]
|
63
|
|
64
|
Gottardi EM, Krawczyk JM, von Suchodoletz H, Schadt S, Mühlenweg A, Uguru GC, Pelzer S, Fiedler HP, Bibb MJ, Stach JEM, Süssmuth RD. Abyssomicin biosynthesis: formation of an unusual polyketide, antibiotic-feeding studies and genetic analysis. Chembiochem 2011; 12:1401-10. [PMID: 21656887 PMCID: PMC3625739 DOI: 10.1002/cbic.201100172] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/24/2022]
Affiliation(s)
- Elvira M Gottardi
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Joanna M Krawczyk
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Hanna von Suchodoletz
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Simone Schadt
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Agnes Mühlenweg
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| | - Gabriel C Uguru
- School of Biology, Newcastle UniversityNewcastle-upon-Tyne, NE1 7RU (UK)
| | - Stefan Pelzer
- B.R.A.I.N. AktiengesellschaftDarmstädter Strasse 34, 64673 Zwingenberg (Germany)
| | - Hans-Peter Fiedler
- Dept. of Microbiology/Biotechnology, Universität TübingenAuf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Mervyn J Bibb
- Department of Molecular Microbiology, John Innes CentreNorwich, NR4 7UH (UK)
| | - James E M Stach
- School of Biology, Newcastle UniversityNewcastle-upon-Tyne, NE1 7RU (UK)
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 Berlin (Germany), Fax: (+49) 30-314-79651
| |
Collapse
|
65
|
Abstract
Organohypervalent iodine reagents have attracted significant recent interest as versatile and environmentally benign oxidants with numerous applications in organic synthesis. This Perspective summarizes synthetic applications of hypervalent iodine(V) reagents: 2-iodoxybenzoic acid (IBX), Dess-Martin periodinane (DMP), pseudocyclic iodylarenes, and their recyclable polymer-supported analogues. Recent advances in the development of new catalytic systems based on the generation of hypervalent iodine species in situ are also overviewed.
Collapse
Affiliation(s)
- Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
66
|
Bartoli A, Rodier F, Commeiras L, Parrain JL, Chouraqui G. Construction of spirolactones with concomitant formation of the fused quaternary centre – application to the synthesis of natural products. Nat Prod Rep 2011; 28:763-82. [DOI: 10.1039/c0np00053a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Abstract
The ocean contains a host of macroscopic life in a great microbial soup. Unlike the terrestrial environment, an aqueous environment provides perpetual propinquity and blurs spatial distinctions. Marine organisms are under a persistent threat of infection by resident pathogenic microbes including bacteria, and in response they have engineered complex organic compounds with antibacterial activity from a diverse set of biological precursors. The diluting effect of the ocean drives the construction of potent molecules that are stable to harsh salty conditions. Members of each class of metabolite-ribosomal and non-ribosomal peptides, alkaloids, polyketides, and terpenes-have been shown to exhibit antibacterial activity. The sophistication and diversity of these metabolites points to the ingenuity and flexibility of biosynthetic processes in Nature. Compared with their terrestrial counterparts, antibacterial marine natural products have received much less attention. Thus, a concerted effort to discover new antibacterials from marine sources has the potential to contribute significantly to the treatment of the ever increasing drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr. La Jolla, CA 92093-0204 (USA)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr. La Jolla, CA 92093-0204 (USA)
| |
Collapse
|
68
|
Beingessner RL, Farand JA, Barriault L. Progress toward the Total Synthesis of (±)-Havellockate. J Org Chem 2010; 75:6337-46. [DOI: 10.1021/jo101279z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel L. Beingessner
- Department of Chemistry, 10 Marie Curie, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Julie A. Farand
- Department of Chemistry, 10 Marie Curie, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Louis Barriault
- Department of Chemistry, 10 Marie Curie, University of Ottawa, Ottawa, Canada K1N 6N5
| |
Collapse
|
69
|
Freundlich JS, Lalgondar M, Wei JR, Swanson S, Sorensen EJ, Rubin EJ, Sacchettini JC. The abyssomicin C family as in vitro inhibitors of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010; 90:298-300. [PMID: 20739223 DOI: 10.1016/j.tube.2010.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
The antimycobacterial efficacy of the abyssomicin C family of natural products, in addition to a key synthetic intermediate, has been investigated given their reported inhibition of Bacillus subtilis p-aminobenzoate biosynthesis. The naturally occurring (-)-abyssomicin C and its atropisomer were found to exhibit low micromolar growth inhibition against the relatively fast-growing and non-virulent Mycobacterium smegmatis and the vaccine strain Mycobacterium bovis BCG, while their antipodes were slightly less active. (-)-abyssomicin C and its atropisomer were particularly efficacious against Mycobacterium tuberculosis H37Rv, exhibiting MIC values of 3.6 and 7.2 μM, respectively. More specifically, (-)-abyssomicin C was bactericidal. This complex natural product and its analogs, thus, hold promise as chemical tools in the study of M. tuberculosis metabolism.
Collapse
Affiliation(s)
- Joel S Freundlich
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-8128, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Wenyi Zhao
- Shasun Pharma Solutions, Incorporated, 10 Knightsbridge Road, Pistcataway, New Jersey 08854, USA
| |
Collapse
|
71
|
Rahman H, Austin B, Mitchell WJ, Morris PC, Jamieson DJ, Adams DR, Spragg AM, Schweizer M. Novel anti-infective compounds from marine bacteria. Mar Drugs 2010; 8:498-518. [PMID: 20411112 PMCID: PMC2857357 DOI: 10.3390/md8030498] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/16/2022] Open
Abstract
As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.
Collapse
Affiliation(s)
- Hafizur Rahman
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
| | - Brian Austin
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Wilfrid J. Mitchell
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
| | - Peter C. Morris
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
| | - Derek J. Jamieson
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
| | - David R. Adams
- Department of Chemistry, School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mail:
(D.R.A.)
| | - Andrew Mearns Spragg
- Aquapharm Biodiscovery Limited, European Centre for Marine Biotechnology, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland, UK; E-Mail:
(A.M.S.)
| | - Michael Schweizer
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, UK; E-Mails:
(H.R.);
(W.J.M.);
(P.C.M.);
(D.J.J.);
(M.S.)
| |
Collapse
|
72
|
Bauer RA, Wurst JM, Tan DS. Expanding the range of 'druggable' targets with natural product-based libraries: an academic perspective. Curr Opin Chem Biol 2010; 14:308-14. [PMID: 20202892 DOI: 10.1016/j.cbpa.2010.02.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 02/02/2010] [Indexed: 01/25/2023]
Abstract
Existing drugs address a relatively narrow range of biological targets. As a result, libraries of drug-like molecules have proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. In contrast, natural products are known to be effective at modulating such targets, and new libraries are being developed based on underrepresented scaffolds and regions of chemical space associated with natural products. This has led to several recent successes in identifying new chemical probes that address these challenging targets.
Collapse
Affiliation(s)
- Renato A Bauer
- Tri-Institutional Training Program in Chemical Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Box 422, New York, NY 10065, USA
| | | | | |
Collapse
|
73
|
Affiliation(s)
- Takahiro Koshiba
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tohru Fukuyama
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
74
|
Burns NZ, Krylova IN, Hannoush RN, Baran PS. Scalable total synthesis and biological evaluation of haouamine A and its atropisomer. J Am Chem Soc 2009; 131:9172-3. [PMID: 19530671 DOI: 10.1021/ja903745s] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A total synthesis of the complex, bent aromatic ring-containing marine alkaloid haouamine A is achieved through a route in which every step (with the exception of the final deprotection) is performed on a gram-scale. This is accomplished through the development of a method for the dehydrogenation of cyclohexenones that allows for point-to-planar chirality transfer. This strategy makes it possible to program the desired atropisomeric outcome from a simple chiral cyclohexenone. By synthesizing atrop-haouamine A, this work has firmly established that natural haouamine exists as a single, nonequilibrating atropisomer. Finally, biological investigations demonstrate that the bent aromatic ring of this natural product is critical for anticancer activity against PC3 cells.
Collapse
Affiliation(s)
- Noah Z Burns
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
75
|
Nicolaou K, Chen J, Edmonds D, Estrada A. Fortschritte in der Chemie und Biologie natürlicher Antibiotika. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200801695] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
76
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2009; 26:170-244. [PMID: 19177222 DOI: 10.1039/b805113p] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
77
|
Nicolaou KC, Chen JS, Edmonds DJ, Estrada AA. Recent advances in the chemistry and biology of naturally occurring antibiotics. Angew Chem Int Ed Engl 2009; 48:660-719. [PMID: 19130444 PMCID: PMC2730216 DOI: 10.1002/anie.200801695] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ever since the world-shaping discovery of penicillin, nature's molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug-development stories, the overwhelming majority of which have their origin in natural products. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on total synthesis, analogue design, and biological evaluation of molecules with novel mechanisms of action.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
78
|
Nicolaou KC, Harrison ST, Chen JS. Discoveries from the Abyss: The Abyssomicins and Their Total Synthesis. SYNTHESIS-STUTTGART 2008; 2009:33-42. [PMID: 20047014 DOI: 10.1055/s-0028-1083259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abyssomicin C is a recently discovered antibiotic with promising antibacterial activity, high structural complexity, and a novel mechanism of action. We give an account of our abyssomicin campaign and some of the discoveries that were borne of our total synthesis efforts, including a new Lewis acid-templated Diels-Alder reaction, the previously undescribed atrop-abyssomicin C, a facile Brønsted acid-catalyzed isomerization of abyssomicin C, and clarification of the likely biosynthetic origin of abyssomicin D.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 & Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | | |
Collapse
|
79
|
Affiliation(s)
- Viktor V Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| | | |
Collapse
|
80
|
Williams PG. Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 2008; 27:45-52. [PMID: 19022511 DOI: 10.1016/j.tibtech.2008.10.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/01/2008] [Accepted: 10/13/2008] [Indexed: 11/30/2022]
Abstract
Marine bacteria are emerging as an exciting resource for the discovery of new classes of therapeutics. The promising anticancer clinical candidates salinosporamide A and bryostatin only hint at the incredible wealth of drug leads hidden just beneath the ocean surface. For example, if properly developed, marine bacteria could provide the drugs needed to sustain us for the next 100 years in our battle against drug-resistant infectious diseases. This review will focus on several recently discovered compounds, primarily from cyanobacteria and actinobacteria, that illustrate the tremendous potential of marine bacteria as a source of new therapeutics within the areas of oncology and infectious diseases.
Collapse
Affiliation(s)
- Philip G Williams
- Department of Chemistry, University of Hawai'i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA.
| |
Collapse
|
81
|
Nicolaou KC, Chen JS, Dalby SM. From nature to the laboratory and into the clinic. Bioorg Med Chem 2008; 17:2290-303. [PMID: 19028103 DOI: 10.1016/j.bmc.2008.10.089] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 10/31/2008] [Indexed: 01/17/2023]
Abstract
Natural products possess a broad diversity of structure and function, and they provide inspiration for chemistry, biology, and medicine. In this review article, we highlight and place in context our laboratory's total syntheses of, and related studies on, complex secondary metabolites that were clinically important drugs, or have since been developed into useful medicines, namely amphotericin B (1), calicheamicin gamma(1)(I) (2), rapamycin (3), Taxol (4), the epothilones [e.g., epothilones A (5) and B (6)], and vancomycin (7). We also briefly highlight our research with other selected inspirational natural products possessing interesting biological activities [i.e., dynemicin A (8), uncialamycin (9), eleutherobin (10), sarcodictyin A (11), azaspiracid-1 (12), thiostrepton (13), abyssomicin C (14), platensimycin (15), platencin (16), and palmerolide A (17)].
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC408, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
82
|
Tekavec TN, Louie J. Nickel-Catalyzed Cycloisomerization of Enynes: Catalyst Generation via C-H Activation of Carbene Ligands. Tetrahedron 2008; 64:6870-6875. [PMID: 22039310 PMCID: PMC3203641 DOI: 10.1016/j.tet.2008.03.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combination of Ni(0) and an N-heterocyclic carbene act as a precatalyst for the cycloisomerization of enynes to afford 1,3-dienes. During the course of the reaction, a nickel hydride is formed from oxidative addition of the ortho C-H on the carbene ligand. Deuteriumn labeling studies are presented.
Collapse
Affiliation(s)
| | - Janis Louie
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850
| |
Collapse
|
83
|
Clément R, Grisé CM, Barriault L. Stereocontrolled synthesis of carbocycles via four successive pericyclic reactions. Chem Commun (Camb) 2008:3004-6. [DOI: 10.1039/b803898h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
84
|
Abstract
Total synthesis campaigns toward complex heterocyclic natural products are a prime source of inspiration for the design and execution of complex cascade sequences, powerful reactions, and efficient synthetic strategies. We highlight selected examples of such innovations in the course of our total syntheses of diazonamide A, azaspiracid-1, thiostrepton, 2,2'-epi-cytoskyrin A and rugulosin, abyssomycin C, platensimycin, and uncialamycin.
Collapse
Affiliation(s)
- K. C. Nicolaou
- 1Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA and the Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jason S. Chen
- 1Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA and the Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
85
|
Keller S, Schadt HS, Ortel I, Süssmuth RD. Action of atrop-Abyssomicin C as an Inhibitor of 4-Amino-4-deoxychorismate Synthase PabB. Angew Chem Int Ed Engl 2007; 46:8284-6. [PMID: 17886307 DOI: 10.1002/anie.200701836] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simone Keller
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | | | | | | |
Collapse
|
86
|
Keller S, Schadt H, Ortel I, Süssmuth R. atrop-Abyssomicin C als Inhibitor der 4-Amino-4-desoxychorismat-Synthase PabB. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
87
|
Wan X, Doridot G, Joullié MM. Progress Towards the Total Synthesis of Trichodermamides A and B: Construction of the Oxazine Ring Moiety. Org Lett 2007; 9:977-80. [PMID: 17309269 DOI: 10.1021/ol062993x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trichodermamides are modified heterocyclic dipeptides that possess a unique 4H-5,6-dihydro-1,2-oxazine ring. Starting from affordable, easily available (-)-quinic acid, the enantioselective synthesis of this oxazine moiety was achieved by an intramolecular epoxide ring-opening reaction by an oxime. [structure: see text]
Collapse
Affiliation(s)
- Xiaobo Wan
- Chemistry Department, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
88
|
Virolleaud MA, Piva O. Selective formation of dihydropyran derivatives by a tandem domino ring-closing metathesis/cross-metathesis. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2006.12.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
89
|
Peters R, Fischer DF. Total syntheses of the antibacterial natural product abyssomicin C. Angew Chem Int Ed Engl 2006; 45:5736-9. [PMID: 16906621 DOI: 10.1002/anie.200602409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- René Peters
- Laboratory of Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, Hönggerberg HCI E 111, 8093 Zürich, Switzerland.
| | | |
Collapse
|
90
|
Peters R, Fischer DF. Totalsynthesen des antibakteriellen Naturstoffes Abyssomicin C. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|