51
|
Tian M, Chen W, Wu Y, An J, Hong G, Chen M, Song F, Zheng WH, Peng X. Liposome-Based Nanoencapsulation of a Mitochondria-Stapling Photosensitizer for Efficient Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12050-12058. [PMID: 35234031 DOI: 10.1021/acsami.1c23156] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria-targeting photodynamic therapy (PDT) can block mitochondrial function and trigger the inherent proapoptotic cascade signal of mitochondria, which has been considered to have the potential to amplify the efficiency of PDT. However, the dynamic change of mitochondrial membrane potential (MMP) makes most cationic photosensitizers easily fall off from the mitochondria, which greatly limits the efficiency of PDT. Here, we have developed a smart liposome encapsulation method based on a mitochondria-stapling photosensitizer for efficient theranostic photodynamic therapy. The stapling photosensitizer can be covalently bound inside mitochondria via two reaction sites without a falloff effect, regardless of the change of MMP. As a result, the liposome-based nanophotosensitizer showed a high efficiency of PDT (IC50 = 0.98 μM) under 630 nm light. At the same time, the nanophotosensitizer had fluorescence imaging-guided ability to monitor abnormal mitochondrial morphology during PDT. Importantly, the results of mice experiments also showed that the liposome-based nanophotosensitizer possessed excellent antitumor PDT activity because the released photosensitizer can stay inside mitochondria during the whole process of PDT.
Collapse
Affiliation(s)
- Mingyu Tian
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Jing An
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Miaomiao Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, People's Republic of China
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
52
|
Hei Y, Chen Y, Li Q, Mei Z, Pan J, Zhang S, Xiong C, Su X, Wei S. Multifunctional Immunoliposomes Enhance the Immunotherapeutic Effects of PD-L1 Antibodies against Melanoma by Reprogramming Immunosuppressive Tumor Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105118. [PMID: 34915595 DOI: 10.1002/smll.202105118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) can significantly limit the immunotherapeutic effects of the PD-L1 antibody (aPDL1) by inhibiting the infiltration of CD8+ cytotoxic T cells (CTLs) into the tumor tissues. However, how to reprogram the immunosuppressive TME and promote the infiltration of CTLs remains a huge challenge for aPDL1 to achieve the maximum benefits. Herein, the authors design a multifunctional immunoliposome that encapsulates the adrenergic receptor blocker carvedilol (CAR) and connects the "don't eat me" signal antibody (aCD47) and aPDL1 in series via a reactive oxygen species (ROS)-sensitive linker on the surface. In ROS-enriched immunosuppressive TME, the multifunctional immunoliposome (CAR@aCD47/aPDL1-SSL) can first release the outer aCD47 to block the "do not eat me" pathway, promote the phagocytosis of tumor cells by phagocytic cells, and activate CTLs. Then, the aPDL1 on the liposome surface is exposed to block the PD-1/PD-L1 signaling pathway, thereby inducing CTLs to kill tumor cells. CAR encapsulated in CAR@aCD47/aPDL1-SSL can block the adrenergic nerves in the tumor tissues and reduce their densities, thereby inhibiting angiogenesis in the tumor tissues and reprogramming the immunosuppressive TME. According to the results, CAR@aCD47/aPDL1-SSL holds an effective way to reprogram the immunosuppressive TME and significantly enhance immunotherapeutic efficiency of aPDL1 against the primary cancer and metastasis.
Collapse
Affiliation(s)
- Yu Hei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yang Chen
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Qian Li
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Zi Mei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
| | - Jijia Pan
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Siqi Zhang
- Institute of molecular medicine, Peking University, Beijing, 100871, P. R. China
| | - Chunyang Xiong
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, P. R. China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, P. R. China
| | - Xiaodong Su
- Biomedical Pioneering Innovation Center (BIOPIC), State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Shicheng Wei
- Central Laboratory, and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
- Laboratory of Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
53
|
Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines. Polymers (Basel) 2022; 14:polym14040687. [PMID: 35215600 PMCID: PMC8874672 DOI: 10.3390/polym14040687] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS)-sensitive drug delivery systems (DDS) specifically responding to altered levels of ROS in the pathological microenvironment have emerged as an effective means to enhance the pharmaceutical efficacy of conventional nanomedicines, while simultaneously reducing side effects. In particular, the use of the biocompatible, biodegradable, and non-toxic ROS-responsive thioketal (TK) functional group in the design of smart DDS has grown exponentially in recent years. In the design of TK-based DDS, different technological uses of TK have been proposed to overcome the major limitations of conventional DDS counterparts including uncontrolled drug release and off-target effects. This review will focus on the different technological uses of TK-based biomaterials in smart nanomedicines by using it as a linker to connect a drug on the surface of nanoparticles, form prodrugs, as a core component of the DDS to directly control its structure, to control the opening of drug-releasing gates or to change the conformation of the nano-systems. A comprehensive view of the various uses of TK may allow researchers to exploit this reactive linker more consciously while designing nanomedicines to be more effective with improved disease-targeting ability, providing novel therapeutic opportunities in the treatment of many diseases.
Collapse
|
54
|
Huang Z, Gao LX, Guo F, Li D, Tang Y, Hu H, Luo Y, Tang D, Wang B, zhang Y. Novel Prodrug Supramolecular Nanoparticles Capable of Rapid Mitochondrial-Targeted and ROS-Responsive for Pancreatic Cancer Therapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01157c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is a feature of cancer cells and targeting cancer mitochondria has emerged as a promising anticancer therapy. In this study, a novel mitochondria-targeted and ROS-responsive drug delivery nanoplatform...
Collapse
|
55
|
Wu L, Zhou W, Lin L, Chen A, Feng J, Qu X, Zhang H, Yue J. Delivery of therapeutic oligonucleotides in nanoscale. Bioact Mater 2022; 7:292-323. [PMID: 34466734 PMCID: PMC8379367 DOI: 10.1016/j.bioactmat.2021.05.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023] Open
Abstract
Therapeutic oligonucleotides (TOs) represent one of the most promising drug candidates in the targeted cancer treatment due to their high specificity and capability of modulating cellular pathways that are not readily druggable. However, efficiently delivering of TOs to cancer cellular targets is still the biggest challenge in promoting their clinical translations. Emerging as a significant drug delivery vector, nanoparticles (NPs) can not only protect TOs from nuclease degradation and enhance their tumor accumulation, but also can improve the cell uptake efficiency of TOs as well as the following endosomal escape to increase the therapeutic index. Furthermore, targeted and on-demand drug release of TOs can also be approached to minimize the risk of toxicity towards normal tissues using stimuli-responsive NPs. In the past decades, remarkable progresses have been made on the TOs delivery based on various NPs with specific purposes. In this review, we will first give a brief introduction on the basis of TOs as well as the action mechanisms of several typical TOs, and then describe the obstacles that prevent the clinical translation of TOs, followed by a comprehensive overview of the recent progresses on TOs delivery based on several various types of nanocarriers containing lipid-based nanoparticles, polymeric nanoparticles, gold nanoparticles, porous nanoparticles, DNA/RNA nanoassembly, extracellular vesicles, and imaging-guided drug delivery nanoparticles.
Collapse
Affiliation(s)
- Lei Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Lihua Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Anhong Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jing Feng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, 201499, China
| | - Xiangmeng Qu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience Centre, Åbo Akademi University, Turku, 20520, Finland
| | - Jun Yue
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
56
|
Li Y, Pei Q, Cui B, Zhang H, Han L, Li W, Zhu W, Feng X, Xie Z. A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. J Nanobiotechnology 2021; 19:441. [PMID: 34930288 PMCID: PMC8686335 DOI: 10.1186/s12951-021-01200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Redox-responsive drug delivery system emerges as a hopeful platform for tumor treatment. Dihydroartemisinin (DHA) has been investigated as an innovative tumor therapeutic agent. Herein, a DHA dimeric prodrug bridged with disulfide bond as linker (DHA2-SS) has been designed and synthesized. The prepared prodrugs could self-assemble into nanoparticles (SS NPs) with high DHA content (> 90%) and robust stability. These SS NPs display sensitive redox responsive capability and can release DHA under the tumor heterogeneity microenvironment. SS NPs possess preferable antitumor therapeutic activity in contrast with free DHA. Moreover, the possible anti-cancer mechanism of SS NPs was investigated through RNA-seq analysis, bioinformatics and molecular biological method. SS NPs could induce apoptosis via mitochondrial apoptosis pathway, as well as glycolysis inhibition associate with the regulation of PI3K/AKT/HIF-1α signal path, which may offer an underlying therapeutic target for liver cancer. Our study highlights the potential of using redox responsive prodrug nanoparticles to treat cancer, meanwhile provides insights into the anti-cancer mechanism of DHA prodrug.
Collapse
Affiliation(s)
- Yawei Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Baiji Cui
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Hongmei Zhang
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Liu Han
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenqing Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenhe Zhu
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Xianmin Feng
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
57
|
Reactive Oxygen Species-Responsive Miktoarm Amphiphile for Triggered Intracellular Release of Anti-Cancer Therapeutics. Polymers (Basel) 2021; 13:polym13244418. [PMID: 34960969 PMCID: PMC8705129 DOI: 10.3390/polym13244418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 μg/mL (4.18 × 10−4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.
Collapse
|
58
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
59
|
Liang J, Yang B, Zhou X, Han Q, Zou J, Cheng L. Stimuli-responsive drug delivery systems for head and neck cancer therapy. Drug Deliv 2021; 28:272-284. [PMID: 33501883 PMCID: PMC7850355 DOI: 10.1080/10717544.2021.1876182] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) is among the most common malignancy that has a profound impact on human health and life quality. The treatment for HNC, especially for the advanced cancer is stage-dependent and in need of combined therapies. Various forms of adjuvant treatments such as chemotherapy, phototherapy, hyperthermia, gene therapy have been included in the HNC therapy. However, there are still restrictions with traditional administration such as limited in situ therapeutic effect, systemic toxicity, drug resistance, etc. In recent years, stimuli-responsive drug delivery systems (DDSs) have attracted the great attention in HNC therapy. These intelligent DDSs could respond to unique tumor microenvironment, external triggers or dual/multi stimulus with more specific drug delivery and release, leading to enhanced treatment efficiency and less reduced side effects. In this article, recent studies on stimuli-responsive DDSs for HNC therapy were summarized, which could respond to endogenous and exogenous triggers including pH, matrix metalloproteinases (MMPs), reactive oxygen species (ROS), redox condition, light, magnetic field and multi stimuli. Their therapeutic remarks, current limits and future prospect for these intelligent DDSs were discussed. Furthermore, multifunctional stimuli-responsive DDSs have also been reviewed. With the modification of drug carriers or co-loading with therapeutic agents. Those intelligent DDSs showed more biofunctions such as combined therapeutic effects or integration of diagnosis and treatment for HNC. It is believed that stimuli-responsive drug delivery systems showed great potential for future clinic translation and application for the treatment of HNC.
Collapse
Affiliation(s)
- Jingou Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Bina Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
61
|
Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021; 22:ijms222212510. [PMID: 34830392 PMCID: PMC8625613 DOI: 10.3390/ijms222212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
- Correspondence:
| |
Collapse
|
62
|
An Z, Zhang L, Liu Y, Zhao H, Zhang Y, Cao Y, Zhang Y, Pei R. Injectable thioketal-containing hydrogel dressing accelerates skin wound healing with the incorporation of reactive oxygen species scavenging and growth factor release. Biomater Sci 2021; 10:100-113. [PMID: 34792044 DOI: 10.1039/d1bm01179k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing is a complex dynamic process. During the occurrence of skin injury, the excessive reactive oxygen species (ROS) level is associated with sustained inflammatory response, which limits efficient wound repair. Although multifunctional hydrogels are considered ideal wound dressings due to their unique advantages, the development of hydrogel dressings with rapid gelling rates, shape adaptation, and antioxidant function is still a vital challenge. In this work, a ROS-responsive injectable polyethylene glycol hydrogel containing thioketal bonds (PEG-TK hydrogel) was synthesized and utilized to deliver epidermal growth factor (EGF). We adopted bio-orthogonal click chemistry for crosslinking the polymer chains to obtain the EGF@PEG-TK hydrogel with fast gelation time, injectability and shape-adaptability. More interestingly, the thioketal bonds in the PEG-TK hydrogel not only scavenged excessive ROS in the wound sites but also achieved responsive and controlled EGF release to facilitate regeneration. The EGF@PEG-TK hydrogel treatment offered the benefits of protecting cells from oxidative stress, accelerating wound closure, and reducing scar formation in the full-thickness skin defect model. This work provides a promising strategy for developing antioxidant hydrogel dressing for facilitating the repair of wounds.
Collapse
Affiliation(s)
- Zhen An
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Liwei Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuanshan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hongbo Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yi Cao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ye Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
63
|
Smirnova VV, Chausov DN, Serov DA, Kozlov VA, Ivashkin PI, Pishchalnikov RY, Uvarov OV, Vedunova MV, Semenova AA, Lisitsyn AB, Simakin AV. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6915. [PMID: 34832317 PMCID: PMC8620072 DOI: 10.3390/ma14226915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.
Collapse
Affiliation(s)
- Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Department of Fundamental Science, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| |
Collapse
|
64
|
Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, Liu J. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 2021; 339:114-129. [PMID: 34536448 DOI: 10.1016/j.jconrel.2021.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023]
Abstract
NIR-activated therapies based on light-responsive drug delivery systems are emerging as a remote-controlled method for cancer precise therapy. In this work, fluorescent dye indocyanine green (ICG)-conjugated and bioactive compound gambogic acid (GA)-loaded polymeric micelles (GA@PEG-TK-ICG PMs) were smoothly fabricated via the self-assembly of the reactive oxygen species (ROS)-responsive thioketal (TK)-linked amphiphilic polymer poly(ethyleneglycol)-thioketal-(indocyanine green) (PEG-TK-ICG). The resultant micelles demonstrated increased resistance to photobleaching, enhanced photothermal conversion efficiency, NIR-controlled drug release behavior, preferable biocompatibility, and excellent tumor accumulation performance. Moreover, upon an 808 nm laser irradiation, the micellar photoactive chromophore ICG converted the absorbed optical energy to both hyperthermia for photothermal therapy (PTT) and ROS as the feedback trigger to the micelles for the tumor-specific release of GA, which could serve as not only a chemotherapeutic drug to directly kill tumor cells but also a heat shock protein 90 (HSP90) inhibitor to realize the photothermal sensitization. As a result, an extremely high tumor inhibition rate (97.9%) of mouse 4 T1 breast cancer models was achieved with negligible side effects after the chemo-photothermal synergistic therapy. This NIR-activated nanosystem with photothermal self-sensitization function may provide a feasible option for the effective treatment of aggressive breast cancers.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
65
|
Su Y, Tu Y, Lin H, Wang MM, Zhang GD, Yang J, Liu HK, Su Z. Mitochondria-targeted Pt(IV) prodrugs conjugated with an aggregation-induced emission luminogen against breast cancer cells by dual modulation of apoptosis and autophagy inhibition. J Inorg Biochem 2021; 226:111653. [PMID: 34740039 DOI: 10.1016/j.jinorgbio.2021.111653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023]
Abstract
Theranostic anticancer agents with dual functions of diagnosis and therapy are in highly demand for breast cancer. Herein, a triphenylphosphonium (TPP)-decorated aggregation-induced emission (AIE)-based Pt(IV) prodrug ACPt was developed, which exhibited superior anticancer performance with novel anticancer mechanism of dual modulation of apoptosis and autophagy inhibition. The experimental data showed that ACPt induced increased reactive oxygen species (ROS), and decreased mitochondrial membrane potential (MMP). The morphology and function of mitochondria were also severely damaged and ACPt showed strong inhibition to both mitochondrial and glycolytic bioenergetics. Moreover, DNA damage and cell cycle arrest in the S-phase were also observed after the ACPt treatment, eventually leading to the apoptosis and autophagy inhibition of cancer cells. Furthermore, ACPt also indicated excellent anti-proliferation activity in 3D multicellular tumor spheroids (MCTSs), suggesting the potential to inhibit solid tumors in vivo. Our observation demonstrated that ACPt could serve as a promising anticancer theranostic agent toward breast cancers for prodrug activation monitoring and image-guided chemotherapy.
Collapse
Affiliation(s)
- Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ying Tu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jin Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China..
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China..
| |
Collapse
|
66
|
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021; 29:665-680. [PMID: 34754286 PMCID: PMC8568687 DOI: 10.1007/s13233-021-9093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
The potential of oligonucleotides is exceptional in therapeutics because of their high safety, potency, and specificity compared to conventional therapeutic agents. However, many obstacles, such as low in vivo stability and poor cellular uptake, have hampered their clinical success. Use of polymeric carriers can be an effective approach for overcoming the biological barriers and thereby maximizing the therapeutic efficacy of the oligonucleotides due to the availability of highly tunable synthesis and functional modification of various polymers. As loaded in the polymeric carriers, the therapeutic oligonucleotides, such as antisense oligonucleotides, small interfering RNAs, microRNAs, and even messenger RNAs, become nuclease-resistant by bypassing renal filtration and can be efficiently internalized into disease cells. In this review, we introduced a variety of systematic combinations between the therapeutic oligonucleotides and the synthetic polymers, including the uses of highly functionalized polymers responding to a wide range of endogenous and exogenous stimuli for spatiotemporal control of oligonucleotide release. We also presented intriguing characteristics of oligonucleotides suitable for targeted therapy and immunotherapy, which can be fully supported by versatile polymeric carriers.
Collapse
Affiliation(s)
- Moohyun Han
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429 Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| |
Collapse
|
67
|
Huang J, Zheng C, Xiao H, Huang H, Wang Y, Lin M, Pang J, Wang Y, Yuan Y, Shuai X. A polymer‑calcium phosphate nanocapsule for RNAi-induced oxidative stress and cascaded chemotherapy. J Control Release 2021; 340:259-270. [PMID: 34740724 DOI: 10.1016/j.jconrel.2021.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022]
Abstract
As most of intracellular reactive oxygen species (ROS) is produced in the mitochondria, mitochondrial modulation of cancer cell is a promising strategy for maximizing the in situ-activable combination therapy of oxidative catastrophe and cascaded chemotherapy. Herein, a serum-stable polymer‑calcium phosphate (CaP) hybrid nanocapsule carrying siRNA against ADP-ribosylation factor 6 (Arf6) overexpressed in cancer cells and parent drug camptothecin (CPT), designated as PTkCPT/siRNA, was developed for the RNAi-induced oxidative catastrophe and cascaded chemotherapy. A copolymer of mPEG-P(Asp-co-TkCPT), covalently tethered with chemotherapeutic CPT via a ROS-labile dithioketal (Tk) linker, was synthesized and self-assembled into a PTkCPT micelle as a nanotemplate for the CaP mineralization. The as-prepared PTkCPT/siRNA nanoparticle showed a core-shell-distinct nanocapsule which was consisted of a spherical polymeric core enclosed within a CaP shell capable of releasing siRNA in response to lysosomal acidity. Blocking Arf6 signal pathway of cancer cells led to their mitochondrial aggregation and subsequently induced a burst of ROS for oxidative catastrophe, which further triggered the cascaded CPT chemotherapy via the breakage of ROS-labile dithioketal linker. This strategy of RNAi-induced oxidative catastrophe and cascaded chemotherapy resulted in a significant combination effect on cancer cell killing and tumor growth inhibition in mice with low side effects, and provided a promising paradigm for precise cancer therapy.
Collapse
Affiliation(s)
- Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chujie Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Hong Xiao
- Department of Medical Ultrasonic, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Huiling Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
68
|
Smart Design of Mitochondria-Targeted and ROS-Responsive CPI-613 Delivery Nanoplatform for Bioenergetic Pancreatic Cancer Therapy. NANOMATERIALS 2021; 11:nano11112875. [PMID: 34835640 PMCID: PMC8617807 DOI: 10.3390/nano11112875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.
Collapse
|
69
|
Chausov DN, Burmistrov DE, Kurilov AD, Bunkin NF, Astashev ME, Simakin AV, Vedunova MV, Gudkov SV. New Organosilicon Composite Based on Borosiloxane and Zinc Oxide Nanoparticles Inhibits Bacterial Growth, but Does Not Have a Toxic Effect on the Development of Animal Eukaryotic Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6281. [PMID: 34771805 PMCID: PMC8585151 DOI: 10.3390/ma14216281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
The present study a comprehensive analysis of the antibacterial properties of a composite material based on borosiloxane and zinc oxide nanoparticles (ZnO NPs). The effect of the polymer matrix and ZnO NPs on the generation of reactive oxygen species, hydroxyl radicals, and long-lived oxidized forms of biomolecules has been studied. All variants of the composites significantly inhibited the division of E. coli bacteria and caused them to detach from the substrate. It was revealed that the surfaces of a composite material based on borosiloxane and ZnO NPs do not inhibit the growth and division of mammalians cells. It is shown in the work that the positive effect of the incorporation of ZnO NPs into borosiloxane can reach 100% or more, provided that the viscoelastic properties of borosiloxane with nanoparticles are retained.
Collapse
Affiliation(s)
- Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Dmitriy E. Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander D. Kurilov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Nikolai F. Bunkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Bauman Moscow State Technical University, Vtoraya Baumanskaya ul. 5, 105005 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova St. 38, 119991 Moscow, Russia; (D.N.C.); (D.E.B.); (A.D.K.); (N.F.B.); (M.E.A.); (A.V.S.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
70
|
Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biocompatible nanosystems based on polymeric materials are promising drug delivery nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications due to their controllable drug release properties. In this review, various polymers and external stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed, and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the therapeutic efficacy.
Collapse
|
71
|
Wang Y, Hu LF, Cui PF, Qi LY, Xing L, Jiang HL. Pathologically Responsive Mitochondrial Gene Therapy in an Allotopic Expression-Independent Manner Cures Leber's Hereditary Optic Neuropathy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103307. [PMID: 34431574 DOI: 10.1002/adma.202103307] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a rare inherited blindness caused by mutations in the mitochondrial DNA (mtDNA). The disorder is untreatable and tricky, as the existing chemotherapeutic agent Idebenone alleviates symptoms rather than overcoming the underlying cause. Although some studies have made progress on allotopic expression for LHON, in situ mitochondrial gene therapy remains challenging, which may simplify delivery procedures to be a promising therapeutic for LHON. LHON becomes more difficult to manage in the changed mitochondrial microenvironment, including increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP). Herein, a pathologically responsive mitochondrial gene delivery vector named [triphenylphosphine-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine) and Ide-terminated poly(sulfur-containing thioketal undecafluorohexylamine histamine)] (TISUH) is reported to facilitate commendable in situ mitochondrial gene therapy for LHON. TISUH directly targets diseased mitochondria via triphenylphosphine and fluorination addressing the decreasing MMP. In addition, TISUH can be disassembled by high mitochondrial ROS levels to release functional genes for enhancing gene transfection efficiency and fundamentally correcting genetic abnormalities. In both traditional and gene-mutation-induced LHON mouse models, TISUH-mediated gene therapy shows satisfactory curative effect through the sustained therapeutic protein expression in vivo. This work proposes a novel pathologically responsive in situ mitochondrial delivery platform and provides a promising approach for refractory LHON as well as other mtDNA mutated diseases treatments.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng-Fei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
72
|
Wu X, Ding J, Xu P, Feng X, Wang Z, Zhou T, Tu C, Cao W, Xie J, Deng L, Shen L, Zhu Y, Gou Z, Gao C. A cell-free ROS-responsive hydrogel/oriented poly(lactide-co-glycolide) hybrid scaffold for reducing inflammation and restoring full-thickness cartilage defects in vivo. Biomed Mater 2021; 16. [PMID: 34450597 DOI: 10.1088/1748-605x/ac21dd] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023]
Abstract
The modulation of inflammation in tissue microenvironment takes an important role in cartilage repair and regeneration. In this study, a novel hybrid scaffold was designed and fabricated by filling a reactive oxygen species (ROS)-scavenging hydrogel (RS Gel) into a radially oriented poly(lactide-co-glycolide) (PLGA) scaffold. The radially oriented PLGA scaffolds were fabricated through a temperature gradient-guided phase separation and freeze-drying method. The RS Gel was formed by crosslinking the mixture of ROS-responsive hyperbranched polymers and biocompatible methacrylated hyaluronic acid (HA-MA). The hybrid scaffolds exhibited a proper compressive modulus, good ROS-scavenging capability, and cell compatibility.In vivotests showed that the hybrid scaffolds significantly regulated inflammation and promoted regeneration of hyaline cartilage after they were implanted into full-thickness cartilage defects in rabbits for 12 w. In comparison with the PLGA scaffolds, the neo-cartilage in the hybrid scaffolds group possessed more deposition of glycosaminoglycans and collagen type II, and were well integrated with the surrounding tissue.
Collapse
Affiliation(s)
- Xinyu Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou 310009, People's Republic of China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Chenxi Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Wangbei Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Liwen Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
73
|
Li W, Li M, Qi J. Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules 2021; 26:5567. [PMID: 34577040 PMCID: PMC8469141 DOI: 10.3390/molecules26185567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) is involved in and regulates important physiological functions of the body as an essential antioxidant. GSH plays an important role in anti-oxidation, detoxification, anti-aging, enhancing immunity and anti-tumor activity. Herein, based on the physiological properties of GSH in different diseases, mainly including the strong reducibility of GSH, high GSH content in tumor cells, and the NADPH depletion when GSSH is reduced to GSH, we extensively report the design principles, effect, and potential problems of various nano-drugs in diabetes, cancer, nervous system diseases, fluorescent probes, imaging, and food. These studies make full use of the physiological and pathological value of GSH and develop excellent design methods of nano-drugs related to GSH, which shows important scientific significance and prominent application value for the related diseases research that GSH participates in or responds to.
Collapse
Affiliation(s)
| | - Minghui Li
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| | - Jing Qi
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| |
Collapse
|
74
|
Pottanam Chali S, Hüwel S, Rentmeister A, Ravoo BJ. Self-Assembled Cationic Polypeptide Supramolecular Nanogels for Intracellular DNA Delivery. Chemistry 2021; 27:12198-12206. [PMID: 34125454 PMCID: PMC8457085 DOI: 10.1002/chem.202101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 12/14/2022]
Abstract
Supramolecular nanogels are an emerging class of polymer nanocarriers for intracellular delivery, due to their straightforward preparation, biocompatibility, and capability to spontaneously encapsulate biologically active components such as DNA. A completely biodegradable three-component cationic supramolecular nanogel was designed exploiting the multivalent host-guest interaction of cyclodextrin and adamantane attached to a polypeptide backbone. While cyclodextrin was conjugated to linear poly-L-lysine, adamantane was grafted to linear as well as star shaped poly-L-lysine. Size control of nanogels was obtained with the increase in the length of the host and guest polymer. Moreover, smaller nanogels were obtained using the star shaped polymers because of the compact nature of star polymers compared to linear polymers. Nanogels were loaded with anionic model cargoes, pyranine and carboxyfluorescein, and their enzyme responsive release was studied using protease trypsin. Confocal microscopy revealed successful transfection of mammalian HeLa cells and intracellular release of pyranine and plasmid DNA, as quantified using a luciferase assay, showing that supramolecular polypeptide nanogels have significant potential in gene therapy applications.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Sabine Hüwel
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Andrea Rentmeister
- Institute of BiochemistryWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft NanoscienceWestfälische Wilhelms-Universität MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
75
|
Yadav P, Jain J, Sherje AP. Recent advances in nanocarriers-based drug delivery for cancer therapeutics: A review. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
76
|
Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater 2021; 130:17-31. [PMID: 34058390 DOI: 10.1016/j.actbio.2021.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS)-responsive nanocarriers have aroused widespread interest in recent years. On the one hand, a high ROS level has been detected in many types of tumor cells. On the other hand, ROS generation is also induced during photodynamic, sonodynamic, or chemodynamic therapy. In addition, multiple types of polymers are sensitive to ROS. Therefore, numerous ROS-responsive polymeric nanocarriers with unique ROS-responsive characteristics have been developed. This review discusses ROS-sensitive polymeric nanocarriers to improve drug delivery efficacy. In particular, ROS-responsive nanocarriers for synergistic cancer therapy are highlighted. The development of novel ROS-sensitive nanocarriers holds great potential for combining ROS-mediated therapy, such as photodynamic therapy, and other therapies to achieve synergistic anticancer efficacy. STATEMENT OF SIGNIFICANCE: Reactive oxygen species (ROS)-responsive nanocarriers aroused widespread interest in recent years. On the one hand, a high level of ROS has been found in many types of tumor cells. On the other hand, the ROS generation can also be induced during the photodynamic, sonodynamic, or chemodynamic therapy. Besides, multiple types of polymers were sensitive to the ROS. Therefore, numerous ROS-responsive polymeric nanocarriers with unique ROS responsive characteristics have been developed. This review focuses on the ROS-sensitive polymeric nanocarriers to improve drug delivery efficacy for synergistic cancer therapy.
Collapse
|
77
|
Huang L, Asghar S, Zhu T, Ye P, Hu Z, Chen Z, Xiao Y. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv 2021; 18:1473-1500. [PMID: 34253129 DOI: 10.1080/17425247.2021.1950685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: The treatment of tumors is one of the most difficult problems in the medical field at present. Patients often use a comprehensive therapy that combines surgery, radiotherapy, and chemotherapy. Photodynamic therapy (PDT) has prominent potential for eradicating various cancers. Chlorin-based photosensitizers (PSs), as one of the most utilized photosensitizers, have many advantages over conventional photosensitizers; however, a successful chlorin-based PDT needs multi-functional nano-carriers for selective photosensitizer delivery. The number of researches about nanoparticles designed for improved chlorin-based PSs is increasing in the current era. In this article, we give a brief review focused on the recent research progress in design of chlorin-based nanoparticles for the treatment of malignant tumors with photodynamic therapy.Areas covered: This review focuses on the current nanoparticle platforms for PDT, and describes different strategies to achieve controllable PDT by chlorin-nano-delivery systems. The challenges and prospects of PDT in clinical applications are also discussed.Expert opinions: The requirement for PDT to eradicate cancers has increased exponentially in recent years. The major clinically used photosensitizers are hydrophobic. The main obstacles in effective delivery of PSs are associated with this intrinsic nature. The design of nano-delivery systems to load PSs is pivotal for PSs' widespread use.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ting Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Panting Ye
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Ziyi Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| | - Zhipeng Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China.,Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR, China
| |
Collapse
|
78
|
Yang J, Li Z, Shen M, Wang Y, Wang L, Li J, Yang W, Li J, Li H, Wang X, Wu Q, Gong C. Programmable Unlocking Nano-Matryoshka-CRISPR Precisely Reverses Immunosuppression to Unleash Cascade Amplified Adaptive Immune Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100292. [PMID: 34258164 PMCID: PMC8261501 DOI: 10.1002/advs.202100292] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Indexed: 02/05/2023]
Abstract
Immune checkpoint blockade (ICB) is an attractive option in cancer therapy, but its efficacy is still less than expected due to the transient and incomplete blocking and the low responsiveness. Herein, an unprecedented programmable unlocking nano-matryoshka-CRISPR system (PUN) targeting programmed cell death ligand 1 (PD-L1) and protein tyrosine phosphatase N2 (PTPN2) is fabricated for permanent and complete and highly responsive immunotherapy. While PUN is inert at normal physiological conditions, enzyme-abundant tumor microenvironment and preternatural intracellular oxidative stress sequentially trigger programmable unlocking of PUN to realize a nano-matryoshka-like release of CRISPR/Cas9. The successful nucleus localization of CRISPR/Cas9 ensures the highly efficient disruption of PD-L1 and PTPN2 to unleash cascade amplified adaptive immune response via revoking the immune checkpoint effect. PD-L1 downregulation in tumor cells not only disrupts PD-1/PD-L1 interaction to attenuate the immunosurveillance evasion but also spurs potent immune T cell responses to enhance adaptive immunity. Synchronously, inhibition of JAK/STAT pathway is relieved by deleting PTPN2, which promotes tumor susceptibility to CD8+ T cells depending on IFN-γ, thus further amplifying adaptive immune responses. Combining these advances together, PUN exhibits optimal antitumor efficiency and long-term immune memory with negligible toxicity, which provides a promising alternative to current ICB therapy.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhike Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Meiling Shen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jiamiao Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jie Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haijun Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xinxin Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
79
|
Zhu D, Chen W, Lin W, Li Y, Liu X. Reactive oxygen species-responsive nanoplatforms for nucleic acid-based gene therapy of cancer and inflammatory diseases. Biomed Mater 2021; 16. [PMID: 34116517 DOI: 10.1088/1748-605x/ac0a8f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
Nucleic acid-based gene therapy has recently made important progress toward clinical implementation, and holds tremendous promise for the treatment of some life-threatening diseases, such as cancer and inflammation. However, the on-demand delivery of nucleic acid therapeutics in target cells remains highly challenging. The development of delivery systems responsive to specific pathological cues of diseases is expected to offer promising alternatives for overcoming this problem. Among them, the reactive oxygen species (ROS)-responsive delivery systems, which in response to elevated ROS in cancer cells or activated inflammatory cells, can deliver nucleic acid therapeutics on-demand via ROS-induced structural and assembly behavior changes, constitute a promising approach for cancer and anti-inflammation therapies. In this short review, we briefly introduce the ROS-responsive chemical structures, ROS-induced release mechanisms and some representative examples to highlight the current progress in constructing ROS-responsive delivery systems. We aim to provide new insights into the rational design of on-demand gene delivery vectors.
Collapse
Affiliation(s)
- Dandan Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wang Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenyi Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
80
|
Fang R, Pi J, Wei T, Ali A, Guo L. Stimulus-Responsive Polymers Based on Polypeptoid Skeletons. Polymers (Basel) 2021; 13:2089. [PMID: 34202869 PMCID: PMC8271857 DOI: 10.3390/polym13132089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Polypeptoids have attracted a lot of atteSDntion because of their unique structural characteristics and special properties. Polypeptoids have the same main chain structures to polypeptides, making them have low cytotoxicity and excellent biocompatibility. Polypeptoids can also respond to external environmental changes by modifying the configurations of the side chains. The external stimuli can be heat, pH, ions, ultraviolet/visible light and active oxygen or their combinations. This review paper discussed the recent research progress in the field of stimulus-responsive polypeptoids, including the design of new stimulus-responsive polypeptoid structures, controlled actuation factors in response to external stimuli and the application of responsive polypeptoid biomaterials in various biomedical and biological nanotechnology, such as drug delivery, tissue engineering and biosensing.
Collapse
Affiliation(s)
| | | | | | - Amjad Ali
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China; (R.F.); (J.P.); (T.W.)
| |
Collapse
|
81
|
Alkanawati MS, Machtakova M, Landfester K, Thérien-Aubin H. Bio-Orthogonal Nanogels for Multiresponsive Release. Biomacromolecules 2021; 22:2976-2984. [PMID: 34129319 PMCID: PMC8278386 DOI: 10.1021/acs.biomac.1c00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Responsive nanogel
systems are interesting for the drug delivery
of bioactive molecules due to their high stability in aqueous media.
The development of nanogels that are able to respond to biochemical
cues and compatible with the encapsulation and the release of large
and sensitive payloads remains challenging. Here, multistimuli-responsive
nanogels were synthesized using a bio-orthogonal and reversible reaction
and were designed for the selective release of encapsulated cargos
in a spatiotemporally controlled manner. The nanogels were composed
of a functionalized polysaccharide cross-linked with pH-responsive
hydrazone linkages. The effect of the pH value of the environment
on the nanogels was fully reversible, leading to a reversible control
of the release of the payloads and a “stop-and-go” release
profile. In addition to the pH-sensitive nature of the hydrazone network,
the dextran backbone can be degraded through enzymatic cleavage. Furthermore,
the cross-linkers were designed to be responsive to oxidoreductive
cues.
Disulfide groups, responsive to reducing environments, and thioketal
groups, responsive to oxidative environments, were integrated into
the nanogel network. The release of model payloads was investigated
in response to changes in the pH value of the environment or to the
presence of reducing or oxidizing agents.
Collapse
Affiliation(s)
| | - Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Department of Chemistry, Memorial University of Newfoundland, 283 Prince Philip Dr, St. John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
82
|
Yang C, Chen Y, Huang H, Fan S, Yang C, Wang L, Li W, Niu W, Liao J. ROS-Eliminating Carboxymethyl Chitosan Hydrogel to Enhance Burn Wound-Healing Efficacy. Front Pharmacol 2021; 12:679580. [PMID: 34194330 PMCID: PMC8238405 DOI: 10.3389/fphar.2021.679580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Overexpression of reactive oxygen species (ROS) can lead to chronic inflammation, which limits skin wound healing. Therefore, it is of great significance to develop materials that can locally control the adverse reactions caused by excessive ROS. In this research, an ROS-sensitive hydrogel with strong free radical scavenging ability was prepared by introducing the thione (Tk) group into carboxymethyl chitosan (CMCTS) hydrogel. CMCTS hydrogel was cross-linked by NH2-Tk-NH2 agent and loaded curcumin (Cur), which possessed favorable nontoxicity, water absorption, mechanical property, biodegradability, drug release behavior, the M2 phenotype, and inflammatory factor regulating the capacity of macrophages. It is worth noting that Cur@CMCTS-Tk hydrogel can significantly inhibit oxidative damage of human fibroblasts in the H2O2-induced microenvironment and protect their viability by reducing the production of intracellular ROS. In vivo, ROS-removing hydrogel effectively accelerated the process of wound healing and possessed good regenerative properties, including hair follicle formation, promotion of new blood vessel formation, and highly orderly arrangement of collagen fibers in the full-thickness skin burn defect rat model. Hence, we expect that the Cur@CMCTS-Tk hydrogel could be used for wound treatment and tissue regeneration due to the ability to scavenge excess ROS.
Collapse
Affiliation(s)
- Cheng Yang
- Center for Orthopaedic Surgery, Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuhui Chen
- Center for Orthopaedic Surgery, Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hai Huang
- Center for Orthopaedic Surgery, Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shicai Fan
- Center for Orthopaedic Surgery, Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Chengliang Yang
- Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Liping Wang
- UniSA Clinical & Health Science, UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Wenqiang Li
- Gungdong Provincial Engineering Technology Research Center for Sports Assistive Devices, Guangzhou Sport University, Guangzhou, China
| | - Wenxin Niu
- Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianwen Liao
- Center for Orthopaedic Surgery, Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
83
|
Men Y, Brevé TG, Liu H, Denkova AG, Eelkema R. Photo cleavable thioacetal block copolymers for controlled release. Polym Chem 2021; 12:3612-3618. [PMID: 34262625 PMCID: PMC8240465 DOI: 10.1039/d1py00514f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023]
Abstract
We present a new light cleavable polymer containing o-nitrobenzene thioacetal groups in the main chain. By conjugation to a PEG block, we synthesized block copolymers capable of forming nanoparticles in aqueous solution. We studied drug encapsulation and release using the model drug Nile Red. Irradiation with UV-A light (365 nm) leads to efficient degradation of the polymers and associated burst release of the payload. Unlike other thioacetal and thioketal polymers, these polymers are stable to reactive oxygen species (ROS), preventing non-triggered release. Moreover, the nanocarriers showed low cytotoxicity in cell viability experiments. The o-nitrobenzene thioacetal group selectively cleaves upon UV-A irradiation. When incorporated in a block-copolymer, these photoactive groups can be used for controlled release of molecular cargo from polymer nanoparticles.![]()
Collapse
Affiliation(s)
- Yongjun Men
- Department of Chemical Engineering, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Tobias G Brevé
- Department of Chemical Engineering, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Huanhuan Liu
- Department of Chemical Engineering, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands .,Department of Radiation Science and Technology, Delft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Antonia G Denkova
- Department of Radiation Science and Technology, Delft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
84
|
Mendes BB, Sousa DP, Conniot J, Conde J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 2021; 7:847-862. [PMID: 34090865 DOI: 10.1016/j.trecan.2021.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
The interest in nanomedicine for cancer theranostics has grown significantly over the past few decades. However, these nanomedicines need to overcome several physiological barriers intrinsic to the tumor microenvironment (TME) before reaching their target. Intrinsic tumor genetic/phenotypic variations, along with intratumor heterogeneity, provide different cues to each cancer type, making each patient with cancer unique. This brings additional challenges in translating nanotechnology-based systems into clinically reliable therapies. To develop efficient therapeutic strategies, it is important to understand the dynamic interactions between TME players and the complex mechanisms involved, because they constitute invaluable targets to dismantle tumor progression. In this review, we discuss the latest nanotechnology-based strategies for cancer diagnosis and therapy as well as the potential targets for the design of future anticancer nanomedicines.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diana P Sousa
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology, and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
85
|
Lin X, Wu X, Chen X, Wang B, Xu W. Intellective and stimuli-responsive drug delivery systems in eyes. Int J Pharm 2021; 602:120591. [PMID: 33845152 DOI: 10.1016/j.ijpharm.2021.120591] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Stimuli-responsive drug delivery systems have attracted widespread attention in recent years since they can control drug release in a spatiotemporal manner and can achieve tunable drug release according to patient's physiological or pathological condition. In this review, we briefly introduce the drug delivery barriers and drug delivery systems in the anterior and posterior segment of eyes, and collect the recent advances in stimuli-responsive drug delivery systems in eyes for controlled drug release in response to exogenous stimuli (ultrasound, magnetic stimulus, electrical stimulus, and light) or endogenous stimuli (enzyme, active oxygen species, temperature, ions, and pH). In addition, the design and mechanisms of the stimuli-responsive drug delivery systems have been summarized in this review, and the advantages and limitations are also briefly discussed.
Collapse
Affiliation(s)
- Xueqi Lin
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingdi Wu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiang Chen
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China.
| | - Wen Xu
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
86
|
Wang J, Liu J, Huang F, Wang H, Wang X, Liu F, Yang H, Xun Y, Jiao WQ, Liu D. Logic gate nanocarriers based on pH and ROS dual sensitive poly(orthoester-thioether) for enhanced anticancer drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Abstract
Stimuli-responsive materials that exhibit a mechanical response to specific biological conditions are of considerable interest for responsive, implantable medical devices. Herein, we report the synthesis, processing and characterization of oxidation-responsive liquid crystal elastomers that demonstrate programmable shape changes in response to reactive oxygen species. Direct ink writing (DIW) is used to fabricate Liquid Crystal Elastomers (LCEs) with programmed molecular orientation and anisotropic mechanical properties. LCE structures were immersed in different media (oxidative, basic and saline) at body temperature to measure in vitro degradation. Oxidation-sensitive hydrophobic thioether linkages transition to hydrophilic sulfoxide and sulfone groups. The introduction of these polar moieties brings about anisotropic swelling of the polymer network in an aqueous environment, inducing complex shape changes. 3D-printed uniaxial strips exhibit 8% contraction along the nematic director and 16% orthogonal expansion in oxidative media, while printed LCEs azimuthally deform into cones 19 times their original thickness. Ultimately, these LCEs degrade completely. In contrast, LCEs subjected to basic and saline solutions showed no apparent response. These oxidation-responsive LCEs with programmable shape changes may enable a wide range of applications in target specific drug delivery systems and other diagnostic and therapeutic tools.
Collapse
|
88
|
Martin JR, Howard MT, Wang S, Berger AG, Hammond PT. Oxidation-Responsive, Tunable Growth Factor Delivery from Polyelectrolyte-Coated Implants. Adv Healthc Mater 2021; 10:e2001941. [PMID: 33738985 DOI: 10.1002/adhm.202001941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte multilayer (PEM) coatings, constructed on the surfaces of tissue engineering scaffolds using layer-by-layer assembly (LbL), promote sustained release of therapeutic molecules and have enabled regeneration of large-scale, pre-clinical bone defects. However, these systems primarily rely on non-specific hydrolysis of PEM components to foster drug release, and their pre-determined drug delivery schedules potentially limit future translation into innately heterogeneous patient populations. To trigger therapeutic delivery directly in response to local environmental stimuli, an LbL-compatible polycation solely degraded by cell-generated reactive oxygen species (ROS) was synthesized. These thioketal-based polymers were selectively cleaved by physiologic doses of ROS, stably incorporated into PEM films alongside growth factors, and facilitated tunable release of therapeutic bone morphogenetic protein-2 (BMP-2) upon oxidation. These coatings' sensitivity to oxidation was also dependent on the polyanions used in film construction, providing a simple method for enhancing ROS-mediated protein delivery in vitro. Correspondingly, when implanted in critically-sized rat calvarial defects, the most sensitive ROS-responsive coatings generated a 50% increase in bone regeneration compared with less sensitive formulations and demonstrated a nearly threefold extension in BMP-2 delivery half-life over conventional hydrolytically-sensitive coatings. These combined results highlight the potential of environmentally-responsive PEM coatings as tunable drug delivery systems for regenerative medicine.
Collapse
Affiliation(s)
- John R. Martin
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - MayLin T. Howard
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Adam G. Berger
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
89
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
90
|
Geven M, d'Arcy R, Turhan ZY, El-Mohtadi F, Alshamsan A, Tirelli N. Sulfur-based oxidation-responsive polymers. Chemistry, (chemically selective) responsiveness and biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110387] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Kim J, Kim JS, Min KH, Kim YH, Chen X. Bombesin-Tethered Reactive Oxygen Species (ROS)-Responsive Nanoparticles for Monomethyl Auristatin F (MMAF) Delivery. Bioengineering (Basel) 2021; 8:bioengineering8040043. [PMID: 33805342 PMCID: PMC8066503 DOI: 10.3390/bioengineering8040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Dolastatin derivatives, represented by monomethylauristatin E (MMAE), have been translated in clinic with a form of antibody–drug conjugate; however, their potential in nanoparticle systems has not been well established due to the potential risk of immature release of extremely high cytotoxic dolastatin drugs during blood circulation. Herein, we rationally propose monomethylauristatin F (MMAF), a dolastatin-derived, loaded nanoparticle system composed of bombesin (BBN)-tethered ROS-responsive micelle system (BBN-PEG-PPADT) to achieve efficient anticancer therapy with targeted and efficient delivery of MMAF. The developed MMAF-loaded BBN-PEG-PPADT micelles (MMAF@BBN-PEG-PPADT) exhibited improved cellular uptake via interactions between BBN and gastrin-releasing peptide receptors on the cancer cells and the intracellular burst release of MMAF, owing to the ROS-responsive disruption, which allowed the efficient anticancer effects of MMAF in vitro. This study suggests the potential of nanoparticle systems in the delivery of dolastatin drugs.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
- Correspondence: (J.K.); (X.C.)
| | | | - Kyung Hyun Min
- Department of Pharmacy, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea;
| | - Young-Hwa Kim
- Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (J.K.); (X.C.)
| |
Collapse
|
92
|
Xu G, Zhang HX, Li XQ, Yang DC, Liu JY. Red light triggered photodynamic-chemo combination therapy using a prodrug caged by photosensitizer. Eur J Med Chem 2021; 215:113251. [PMID: 33611187 DOI: 10.1016/j.ejmech.2021.113251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/10/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Development of the drug with high therapeutic efficacy and low toxicity is crucial to cancer ablation. In this study, we have demonstrated a red light-responsive prodrug BDP-TK-CPT by connecting the chemotherapeutic agent camptothecin with a boron dipyrromethene (BDP)-based photosensitizer via a reactive oxygen species (ROS)-labile thioketal chain. Since camptothecin is modified by a BDP-based macrocycle at the active site, the formed prodrug displays an extremely low toxicity in dark. However, upon illumination by red light, it can efficiently generate ROS leading to cell death by photodynamic therapy. Meanwhile, the ROS generated can destroy thioketal group to release free camptothecin which further results in local cell death by chemotherapy. The combined antitumor effects of the prodrug have been verified in HepG2, EC109, and HeLa cancer cells and mice bearing H22 tumors. This study may provide an alternative strategy for stimuli-responsive combination treatment of tumors by conjugation of ROS-activatable prodrugs with photosensitizing agents.
Collapse
Affiliation(s)
- Gan Xu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies & Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hong-Xia Zhang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies & Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiao-Qiang Li
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies & Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies & Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies & Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
93
|
Han X, Zhang L, Zhang Q, Sui X, Qian M, Chen Q, Wang J. Construction of a Novel Reactive Oxygen Species-responsive Cationic Copolymer and Its Performance in Gene Delivery. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
94
|
Dong S, Liu L, Zhao H. Copper-coordination induced fabrication of stimuli-responsive polymersomes from amphiphilic block copolymer containing pendant thioethers. Polym Chem 2021. [DOI: 10.1039/d1py00371b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cu2+-Containing hybrid polymersomes were fabricated via a co-assembly approach. The polymersomes exhibited stimuli-responsiveness to the competitive ligand and H2O2/GSH and mediated a Fenton-like reaction to produce ˙OH.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
95
|
Hsu PH, Almutairi A. Recent progress of redox-responsive polymeric nanomaterials for controlled release. J Mater Chem B 2021; 9:2179-2188. [DOI: 10.1039/d0tb02190c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This perspective focuses on the development of redox-responsive polymeric nanomaterials for controlled payload release within the last four years.
Collapse
Affiliation(s)
- Peng-Hao Hsu
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences
- University of California San Diego
- La Jolla
- USA
| |
Collapse
|
96
|
Li J, Kataoka K. Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation. J Am Chem Soc 2020; 143:538-559. [PMID: 33370092 DOI: 10.1021/jacs.0c09029] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past few decades have witnessed an evolution of nanomedicine from biologically inert entities to more smart systems, aimed at advancing in vivo functionality. However, we should recognize that most systems still rely on reasonable explanation-including some over-explanation-rather than definitive evidence, which is a watershed radically determining the speed and extent of advancing nanomedicine. Probing nano-bio interactions and desirable functionality at the tissue, cellular, and molecular levels is most frequently overlooked. Progress toward answering these questions will provide instructive insight guiding more effective chemo-physical strategies. Thus, in the next generation, we argue that much effort should be made to provide definitive evidence for proof-of-mechanism, in lieu of creating many new and complicated systems for similar proof-of-concept.
Collapse
Affiliation(s)
- Junjie Li
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicne, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.,Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
97
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
98
|
Jiang M, Mu J, Jacobson O, Wang Z, He L, Zhang F, Yang W, Lin Q, Zhou Z, Ma Y, Lin J, Qu J, Huang P, Chen X. Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS NANO 2020; 14:16875-16886. [PMID: 33206522 DOI: 10.1021/acsnano.0c05722] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotheranostics based on tumor-selective small molecular prodrugs could be more advantageous in clinical translation for cancer treatment, given its defined chemical structure, high drug loading efficiency, controlled drug release, and reduced side effects. To this end, we have designed and synthesized a reactive oxygen species (ROS)-activatable heterodimeric prodrug, namely, HRC, and nanoformulated it for tumor-selective imaging and synergistic chemo- and photodynamic therapy. The prodrug consists of the chemodrug camptothecin (CPT), the photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), and a thioketal linker. Compared to CPT- or HPPH-loaded polymeric nanoparticles (NPs), HRC-loaded NPs possess higher drug loading capacity, better colloidal stability, and less premature drug leakage. Interestingly, HRC NPs were almost nonfluorescent due to the strong π-π stacking and could be effectively activated by endogenous ROS once entering cells. Thanks to the higher ROS levels in cancer cells than normal cells, HRC NPs could selectively light up the cancer cells and exhibit much more potent cytotoxicity to cancer cells. Moreover, HRC NPs demonstrated highly effective tumor accumulation and synergistic tumor inhibition with reduced side effects on mice.
Collapse
Affiliation(s)
- Meijuan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Mu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiaoya Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland 20892, United States
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
99
|
Feng J, Gao JL, Zhang RY, Ren WX, Dong YB. Polydopamine-Based Multifunctional Antitumor Nanoagent for Phototherapy and Photodiagnosis by Regulating Redox Balance. ACS APPLIED BIO MATERIALS 2020; 3:8667-8675. [PMID: 35019637 DOI: 10.1021/acsabm.0c01057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The development of multifunctional nanoagents for the simultaneous achievement of high diagnostic and therapeutic performances is significant for precise cancer treatment. Herein, we report on a polydopamine (PDA)-based multifunctional nanoagent, PML, in which the methylene blue (MB) photosensitizer (PS) and l-arginine (l-Arg) tumor-targeting species are equipped. After selectively accumulating in tumor sites, glutathione (GSH)-responsive PML degradation can controllably release loaded MB to produce singlet oxygen (1O2) under near-infrared (NIR) photoirradiation. This GSH-depleted PS release process can not only weaken the body's antioxidant defence ability but also synergistically increase the 1O2 concentration. Therefore, GSH depletion-enhanced photodynamic therapy (PDT) efficiency is logically achieved by regulating the intracellular redox balance. In addition, our nanoagent can guide photoacoustic/NIR thermal dual-modal imaging and convert light into heat for cooperative cancer phototherapy because of the inherent photothermal conversion nature of PDA. As a result, excellent in vivo antitumor phototherapy (PDT + PTT) is achieved under the precise guidance of dual-modal imaging. This work not only realizes the integration of cancer diagnosis and treatment through PDA-based nanocarriers but also delivers dimensions in designing the next generation of multifunctional antitumor nanoagents for enhanced phototherapy and photodiagnosis by regulating the redox balance.
Collapse
Affiliation(s)
- Jie Feng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Jia-Lin Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruo-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Xiu Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
100
|
Park EJ, Song JW, Kim HJ, Kim CS, Song YJ, Yang DH, Yoo H, Kim JW, Park K. In vivo imaging of reactive oxygen species (ROS)-producing pro-inflammatory macrophages in murine carotid atheromas using a CD44-targetable and ROS-responsive nanosensor. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|