51
|
He X, Matte CD, Kwok TH. Folding photopolymerized origami sheets by post-curing. SN APPLIED SCIENCES 2021; 3:133. [PMID: 33490875 PMCID: PMC7806536 DOI: 10.1007/s42452-020-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/21/2020] [Indexed: 11/24/2022] Open
Abstract
The paper presents a novel manufacturing approach to fabricate origami based on 3D printing utilizing digital light processing. Specifically, we propose to leave part of the model uncured during the printing step, and then cure it in the post-processing step to set the shape in a folded configuration. While the cured regions in the first step try to regain their unfolded shape, the regions cured in the second step attempt to keep their folded shape. As a result, the final shape is obtained when both regions’ stresses reach equilibrium. Finite element analysis is performed in ANSYS to obtain the stress distribution on common hinge designs, demonstrating that the square-hinge has a lower maximum principal stress than elliptical and triangle hinges. Based on the square-hinge and rectangular cavity, two variables—the hinge width and the cavity height—are selected as principal variables to construct an empirical model with the final folding angle. In the end, experimental verification shows that the developed method is valid and reliable to realize the proposed deformation and 3D development of 2D hinges.
Collapse
Affiliation(s)
- Xiaodong He
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| | - Christopher-Denny Matte
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| | - Tsz-Ho Kwok
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
52
|
Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers. Nat Commun 2021; 12:112. [PMID: 33397969 PMCID: PMC7782480 DOI: 10.1038/s41467-020-20300-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
Four-dimensional (4D) printing of shape memory polymer (SMP) imparts time responsive properties to 3D structures. Here, we explore 4D printing of a SMP in the submicron length scale, extending its applications to nanophononics. We report a new SMP photoresist based on Vero Clear achieving print features at a resolution of ~300 nm half pitch using two-photon polymerization lithography (TPL). Prints consisting of grids with size-tunable multi-colours enabled the study of shape memory effects to achieve large visual shifts through nanoscale structure deformation. As the nanostructures are flattened, the colours and printed information become invisible. Remarkably, the shape memory effect recovers the original surface morphology of the nanostructures along with its structural colour within seconds of heating above its glass transition temperature. The high-resolution printing and excellent reversibility in both microtopography and optical properties promises a platform for temperature-sensitive labels, information hiding for anti-counterfeiting, and tunable photonic devices.
Collapse
|
53
|
|
54
|
Koo JW, Ho JS, An J, Zhang Y, Chua CK, Chong TH. A review on spacers and membranes: Conventional or hybrid additive manufacturing? WATER RESEARCH 2021; 188:116497. [PMID: 33075598 DOI: 10.1016/j.watres.2020.116497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 05/27/2023]
Abstract
Over the past decade, 3D printing or additive manufacturing (AM) technology has seen great advancement in many aspects such as printing resolution, speed and cost. Membranes for water treatment experienced significant breakthroughs owing to the unique benefits of additive manufacturing. In particular, 3D printing's high degree of freedom in various aspects such as material and prototype design has helped to fabricate innovative spacers and membranes. However, there were conflicting reports on the feasibility of 3D printing, especially for membranes. Some research groups stated that technology limitations today made it impossible to 3D print membranes, but others showed that it was possible by successfully fabricating prototypes. This paper will provide a critical and comprehensive discussion on 3D printing specifically for spacers and membranes. Various 3D printing techniques will be introduced, and their suitability for membrane and spacer fabrication will be discussed. It will be followed by a review of past studies associated with 3D-printed spacers and membranes. A new category of additive manufacturing in the membrane water industry will be introduced here, known as hybrid additive manufacturing, to address the controversies of 3D printing for membrane. As AM technology continues to advance, its possibilities in the water treatment is limitless. Some insightful future trends will be provided at the end of the paper.
Collapse
Affiliation(s)
- Jing Wee Koo
- Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141; Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jia Shin Ho
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yi Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Chee Kai Chua
- Engineering Product Development Pillar, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One #06-08, Singapore 637141; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.
| |
Collapse
|
55
|
Thermally triggered soft actuators based on a bilayer hydrogel synthesized by gamma ray irradiation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
56
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
57
|
Song Y, He J, Zhang Y. Controllable, Bidirectional Water/Organic Vapors Responsive Actuators Fabricated by One-Step Thiol-Ene Click Polymerization. Macromol Rapid Commun 2020; 41:e2000456. [PMID: 33196123 DOI: 10.1002/marc.202000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
It is challenging to synthesize stimuli-responsive materials with the well-balanced performance of fast stimulus-response speed, good mechanical strength, multi-functionality, and deformation diversity as well. This work reports a facile, one-step thiol-ene click polymerization strategy for preparation of water/acetone vapor-responsive hierarchical films, by using diallyl terephthalate (P) as hydrophobic ene-monomer, 1,4-diallyl-1,4-diazabicyclo [2.2.2]octane-1,4-diium bromide (B) as hydrophilic ene-monomer, and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as thiol monomer. Besides, by taking advantage of the specific hydrophilic/hydrophobic induction effect of substrate and adjusting the molar ratio of P to B, P60 B40 -HPI film is fabricated on hydrophilic substrate "with plasma treatment" whereas P80 B20 -HPO film is obtained on hydrophobic substrate "without plasma treatment". Their "upper-dense and lower-porous" structural feature ensured the excellent combination of fast stimuli-response speed endowed by the porous structure and good mechanical strength enhanced by the upper dense surface. Both films are bidirectional water/acetone vapor-responsive materials, but their bending directions responding to the stimuli factors are completely opposite. This strategy showed great potential in the development of smart stimuli-responsive materials.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
58
|
Abstract
Hybrid stimuli-responsive soft robots have been extensively developed by incorporating multi-functional materials, such as carbon-based nanoparticles, nanowires, low-dimensional materials, and liquid crystals. In addition to the general functions of conventional soft robots, hybrid stimuli-responsive soft robots have displayed significantly advanced multi-mechanical, electrical, or/and optical properties accompanied with smart shape transformation in response to external stimuli, such as heat, light, and even biomaterials. This review surveys the current enhanced scientific methods to synthesize the integration of multi-functional materials within stimuli-responsive soft robots. Furthermore, this review focuses on the applications of hybrid stimuli-responsive soft robots in the forms of actuators and sensors that display multi-responsive and highly sensitive properties. Finally, it highlights the current challenges of stimuli-responsive soft robots and suggests perspectives on future directions for achieving intelligent hybrid stimuli-responsive soft robots applicable in real environments.
Collapse
|
59
|
Ghosh A, Li L, Xu L, Dash RP, Gupta N, Lam J, Jin Q, Akshintala V, Pahapale G, Liu W, Sarkar A, Rais R, Gracias DH, Selaru FM. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. SCIENCE ADVANCES 2020; 6:6/44/eabb4133. [PMID: 33115736 PMCID: PMC7608789 DOI: 10.1126/sciadv.abb4133] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 09/11/2020] [Indexed: 05/05/2023]
Abstract
Extended-release gastrointestinal (GI) luminal delivery substantially increases the ease of administration of drugs and consequently the adherence to therapeutic regimens. However, because of clearance by intrinsic GI motility, device gastroretention and extended drug release over a prolonged duration are very challenging. Here, we report that GI parasite-inspired active mechanochemical therapeutic grippers, or theragrippers, can reside within the GI tract of live animals for 24 hours by autonomously latching onto the mucosal tissue. We also observe a notable sixfold increase in the elimination half-life using theragripper-mediated delivery of a model analgesic ketorolac tromethamine. These results provide first-in-class evidence that shape-changing and self-latching microdevices enhance the efficacy of extended drug delivery.
Collapse
Affiliation(s)
- Arijit Ghosh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Liyi Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Neha Gupta
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jenny Lam
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qianru Jin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkata Akshintala
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gayatri Pahapale
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjishnu Sarkar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
60
|
Chu H, Yang W, Sun L, Cai S, Yang R, Liang W, Yu H, Liu L. 4D Printing: A Review on Recent Progresses. MICROMACHINES 2020; 11:E796. [PMID: 32842588 PMCID: PMC7570144 DOI: 10.3390/mi11090796] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.
Collapse
Affiliation(s)
- Honghui Chu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Lujing Sun
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Rendi Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.C.); (L.S.); (R.Y.)
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110016, China;
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
61
|
Dai C, Li L, Wratkowski D, Cho JH. Electron Irradiation Driven Nanohands for Sequential Origami. NANO LETTERS 2020; 20:4975-4984. [PMID: 32502353 DOI: 10.1021/acs.nanolett.0c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sequence plays an important role in self-assembly of 3D complex structures, particularly for those with overlap, intersection, and asymmetry. However, it remains challenging to program the sequence of self-assembly, resulting in geometric and topological constrains. In this work, a nanoscale, programmable, self-assembly technique is reported, which uses electron irradiation as "hands" to manipulate the motion of nanostructures with the desired order. By assigning each single assembly step in a particular order, localized motion can be selectively triggered with perfect timing, making a component accurately integrate into the complex 3D structure without disturbing other parts of the assembly process. The features of localized motion, real-time monitoring, and surface patterning open the possibility for the further innovation of nanomachines, nanoscale test platforms, and advanced optical devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lianbi Li
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Science, Xi'an Polytechnic University, Xi'an 710000, People's Republic of China
| | - Daniel Wratkowski
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
62
|
|
63
|
Le Fer G, Becker ML. 4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22444-22452. [PMID: 32337967 DOI: 10.1021/acsami.0c01444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D/4D printing is enabling transformative advances in device manufacturing and medicine but remains limited by the lack of printable resorbable materials with advanced properties and functions. Herein, we report the rapid and precise 4D printing of shape-memory scaffolds based on poly(propylene fumarate) (PPF) star polymers. Scaffolds with tunable and distinguishable properties can be produced with identical polymer formulation and stoichiometry. The resulting scaffold glass transition temperatures and Young's moduli increase with the postcuring time. Significantly, both the extent and rate of shape recovery following compression can be tuned by varying the strut design, the postcuring step duration, and/or the temperature applied for the recovery step. Finally, accelerated degradation studies confirmed the resorbability of the PPF star polymer gyroid scaffolds.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L Becker
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
64
|
Chen S, Chen J, Zhang X, Li ZY, Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding". LIGHT, SCIENCE & APPLICATIONS 2020; 9:75. [PMID: 32377337 PMCID: PMC7193558 DOI: 10.1038/s41377-020-0309-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
Advanced kirigami/origami provides an automated technique for modulating the mechanical, electrical, magnetic and optical properties of existing materials, with remarkable flexibility, diversity, functionality, generality, and reconfigurability. In this paper, we review the latest progress in kirigami/origami on the microscale/nanoscale as a new platform for advanced 3D microfabrication/nanofabrication. Various stimuli of kirigami/origami, including capillary forces, residual stress, mechanical stress, responsive forces, and focussed-ion-beam irradiation-induced stress, are introduced in the microscale/nanoscale region. These stimuli enable direct 2D-to-3D transformations through folding, bending, and twisting of microstructures/nanostructures, with which the occupied spatial volume can vary by several orders of magnitude compared to the 2D precursors. As an instant and direct method, ion-beam irradiation-based tree-type and close-loop nano-kirigami is highlighted in particular. The progress in microscale/nanoscale kirigami/origami for reshaping the emerging 2D materials, as well as the potential for biological, optical and reconfigurable applications, is briefly discussed. With the unprecedented physical characteristics and applicable functionalities generated by kirigami/origami, a wide range of applications in the fields of optics, physics, biology, chemistry and engineering can be envisioned.
Collapse
Affiliation(s)
- Shanshan Chen
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Jianfeng Chen
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Xiangdong Zhang
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Zhi-Yuan Li
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jiafang Li
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
65
|
Tetsuka H, Shin SR. Materials and technical innovations in 3D printing in biomedical applications. J Mater Chem B 2020; 8:2930-2950. [PMID: 32239017 PMCID: PMC8092991 DOI: 10.1039/d0tb00034e] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
3D printing is a rapidly growing research area, which significantly contributes to major innovations in various fields of engineering, science, and medicine. Although the scientific advancement of 3D printing technologies has enabled the development of complex geometries, there is still an increasing demand for innovative 3D printing techniques and materials to address the challenges in building speed and accuracy, surface finish, stability, and functionality. In this review, we introduce and review the recent developments in novel materials and 3D printing techniques to address the needs of the conventional 3D printing methodologies, especially in biomedical applications, such as printing speed, cell growth feasibility, and complex shape achievement. A comparative study of these materials and technologies with respect to the 3D printing parameters will be provided for selecting a suitable application-based 3D printing methodology. Discussion of the prospects of 3D printing materials and technologies will be finally covered.
Collapse
Affiliation(s)
- Hiroyuki Tetsuka
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Lansdowne Street, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
66
|
Zhou W, Qiao Z, Nazarzadeh Zare E, Huang J, Zheng X, Sun X, Shao M, Wang H, Wang X, Chen D, Zheng J, Fang S, Li YM, Zhang X, Yang L, Makvandi P, Wu A. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. J Med Chem 2020; 63:8003-8024. [PMID: 32255358 DOI: 10.1021/acs.jmedchem.9b02115] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wenxian Zhou
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhiguang Qiao
- Medical 3D Printing Center, Shanghai Jiaotong University, Shanghai 200011, China
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | | | - Jinfeng Huang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xuanqi Zheng
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaolei Sun
- Department of Orthopaedics, Tianjin Hospital, Tianjin 300210, China
| | - Minmin Shao
- Department of ENT and Neck Surgery, Wenzhou Center Hospital, Dingli Hospital of Wenzhou Medical University, Wenzhou Institute of Medical Sciences, Wenzhou 325000, China
| | - Hui Wang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyan Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dong Chen
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Zheng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Yan Michael Li
- Department of Neurosurgery and Oncology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Xiaolei Zhang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Yang
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples 80125, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Aimin Wu
- Department of Orthopaedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
67
|
Lee S, Kim J, Kim J, Hoshiar AK, Park J, Lee S, Kim J, Pané S, Nelson BJ, Choi H. A Needle-Type Microrobot for Targeted Drug Delivery by Affixing to a Microtissue. Adv Healthc Mater 2020; 9:e1901697. [PMID: 32129011 DOI: 10.1002/adhm.201901697] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/10/2020] [Indexed: 11/09/2022]
Abstract
A needle-type microrobot (MR) for targeted drug delivery is developed to stably deliver drugs to a target microtissue (MT) for a given period time without the need for an external force after affixing. The MRs are fabricatedby 3D laser lithography and nickel (Ni)/titanium oxide (TiO2 ) layers are coated by physical vapor deposition. The translational velocity of the MR is 714 µm s-1 at 20 mT and affixed to the target MT under the control of a rotating magnetic field. The manipulability of the MR is shown by using both manual and automatic controls. Finally, drug release from the paclitaxel-loaded MR is characterized to determine the efficiency of targeted drug delivery. This study demonstrates the utility of the proposed needle-type MR for targeted drug delivery to MT with various flow rates in vitro physiological fluidic environments.
Collapse
Affiliation(s)
- Seungmin Lee
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Junyoung Kim
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Ali Kafash Hoshiar
- School of Computer Science and Electronic EngineeringUniversity of Essex Colchester CO4 3SQ UK
| | - Jongeon Park
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Sunkey Lee
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| | - Jonghyun Kim
- School of Mechanical EngineeringSungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon‐si Gyeonggi‐do 16419 South Korea
| | - Salvador Pané
- Institute of Robotics and Intelligent SystemsETH Zurich Zurich CH‐8092 Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH Zurich Zurich CH‐8092 Switzerland
| | - Hongsoo Choi
- Department of Robotics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science & Technology (DGIST) 333 Techno jungang‐daero, Hyeonpung‐eup, Dalseong‐Gun Daegu 42988 Republic of Korea
| |
Collapse
|
68
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
69
|
Guo H, Zhang Q, Liu W, Nie Z. Light-Mediated Shape Transformation of a Self-Rolling Nanocomposite Hydrogel Tube. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13521-13528. [PMID: 32096403 DOI: 10.1021/acsami.9b23195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-rolling of a planar hydrogel sheet represents an advanced approach for fabricating a tubular construct, which is of significant interest in biomedicine. However, the self-rolling tube is usually lacking in remote controllability and requires a relatively tedious fabrication procedure. Herein, we present an easy and controllable approach for fabricating self-rolling tubes that can respond to both magnetic field and light. With the introduction of magnetic nanorods in a hydrogel precursor, a strain gradient is created across the thickness of the formed hydrogel sheet during the photopolymerization process. After the removal of the strain constraint, the nanocomposite sheet rolls up spontaneously. The self-rolling scenario of the sheet can be tuned by varying the sheet geometry and the magnetic nanorod concentration in the hydrogel precursor. The nanocomposite hydrogel tube translates in the presence of a magnetic field and produces heat upon a near-infrared (NIR) light illumination by virtue of the magnetic and photo-thermal properties of the magnetic nanorods. The self-rolling tube either opens up or expands its diameter under NIR light irradiation depending on the number of rolls in the tube. With the use of a thermo-responsive hydrogel material, we demonstrate the magnetically guided motion of the chemical-bearing nanocomposite hydrogel tube and its controlled chemical release through its light-mediated deformation. The approach reported herein is expected to be applicable to other self-rolling polymer-based dry materials, and the nanocomposite hydrogel tube presented in this work may find potential applications in soft robot and controlled release of drug.
Collapse
Affiliation(s)
- Hongyu Guo
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Qian Zhang
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Wei Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R. China
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| |
Collapse
|
70
|
Recent Advances in Anti-inflammatory Strategies for Implantable Biosensors and Medical Implants. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4105-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
71
|
Zhou LY, Ye JH, Fu JZ, Gao Q, He Y. 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12068-12074. [PMID: 32066245 DOI: 10.1021/acsami.9b22433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Four-dimensional (4D) printing of swellable materials have been viewed as an ideal approach to build shape morphing architectures. However, there is less variety in high-performance swellable materials, limiting its development. To address this challenge, we proposed a new strategy for designing high-performance thermal-responsive swellable materials. The reversible liquid-vapor phase change of embedded low boiling point liquid chambers and functional liquid metal fillers endows the designed elastomer with the reversible thermal-responsive swellable property with high stability, fast response speed, and large equilibrium deformation. Notably, liquid metal fillers play a crucial role in improving the thermal-responsive property via improving the thermal conductivity and fracture toughness and decreasing the stiffness. To demonstrate the feasibility of constructing shape morphing architectures with proposed thermal-responsive liquid metal elastomers, typical bilayer structures were printed and investigated. By altering the key design parameters, the response speed and equilibrium deformation can be adjusted as needed. Therefore, complex shape morphing architectures can be printed. This study could provide a new avenue to design swellable material systems for 4D printing of shape morphing architectures.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiang-Hao Ye
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-Zhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
72
|
Cezan SD, Baytekin HT, Baytekin B. Self-Regulating Plant Robots: Bioinspired Heliotropism and Nyctinasty. Soft Robot 2020; 7:444-450. [PMID: 31990639 DOI: 10.1089/soro.2019.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Self-regulation (or so-called homeostasis) is a property of all living organisms to maintain an internal stable state through specialized biofeedback mechanisms under varying external and internal conditions. Although these feedback mechanisms in living organisms are complex networks and hard to implement one-to-one in artificial systems, the new approaches in soft robotics may benefit from the concept of self-regulation-especially in the new endeavors of making untethered, autonomous soft robots. In this study, we show a simple system, in which plant robots display heliotropism (sun tracking) and nyctinasty (leaf opening) through artificial self-regulation attained through a bioinspired transpiration mechanism. The feedback involves dehydration/hydration and transpiration events that keep the stem continuously in a metastable position, which maximizes light on plant leaves and the efficiency of light harvesting when solar panels are attached on leaves. We also demonstrate that this artificial feedback can be regulated by doping with light-absorbing chemicals or by changing the geometry of the system, and it can further be expanded to other lightweight systems. Implementing self-regulation into (soft) robots through bioinspired material feedback is beneficial not only for energy efficiency and harvesting but also for achieving embodied intelligence in autonomous soft robots.
Collapse
Affiliation(s)
| | | | - Bilge Baytekin
- Department of Chemistry, Bilkent University, Ankara, Turkey.,UNAM-Materials Science and Nanotechnology Institute, Bilkent University, Ankara, Turkey
| |
Collapse
|
73
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
74
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020. [PMID: 32728669 DOI: 10.1155/2020/7659749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
75
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7659749. [PMID: 32728669 PMCID: PMC7368969 DOI: 10.34133/2020/7659749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
76
|
Eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent photonic colloidal crystal hydrogel microbeads. Sci Rep 2019; 9:17059. [PMID: 31745154 PMCID: PMC6863886 DOI: 10.1038/s41598-019-53499-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022] Open
Abstract
This paper presents eye-recognizable and repeatable biochemical flexible sensors using low angle-dependent stimuli-responsive photonic colloidal crystal hydrogel (PCCG) microbeads. Thanks to the stimuli-responsive PCCG microbeads exhibiting structural color, users can obtain sensing information without depending on the viewing angle and the mechanical deformation of the flexible sensor. Temperature-responsive PCCG microbeads and ethanol-responsive PCCG microbeads were fabricated from a pre-gel solution of N-isopropylacrylamide (NIPAM) and N-methylolacrylamide (NMAM) by using a centrifuge-based droplet shooting device (CDSD). As a proof-of-concept of thin and flexible biochemical sensors, temperature- and ethanol-sensing devices were demonstrated. By comparing the structural color of the stimuli-responsive PCCG microbeads and the color chart of the device, sensing information, including skin temperature of the human body and ethanol concentration in alcoholic beverages, was obtained successively. We expect that our device design using low angle-dependent stimuli-responsive PCCG microbeads would contribute to the development of user-friendly biochemical sensor devices for monitoring environmental and healthcare targets.
Collapse
|
77
|
Shie MY, Shen YF, Astuti SD, Lee AKX, Lin SH, Dwijaksara NLB, Chen YW. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers (Basel) 2019; 11:E1864. [PMID: 31726652 PMCID: PMC6918275 DOI: 10.3390/polym11111864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.
Collapse
Affiliation(s)
- Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 404, Taiwan;
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
| | - Suryani Dyah Astuti
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- School of Medicine, China Medical University, Taichung City 404, Taiwan
| | - Shu-Hsien Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
| | - Ni Luh Bella Dwijaksara
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Yi-Wen Chen
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
78
|
Sonntag L, Simmchen J, Magdanz V. Nano-and Micromotors Designed for Cancer Therapy. Molecules 2019; 24:E3410. [PMID: 31546857 PMCID: PMC6767050 DOI: 10.3390/molecules24183410] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
Research on nano- and micromotors has evolved into a frequently cited research area with innovative technology envisioned for one of current humanities' most deadly problems: cancer. The development of cancer targeting drug delivery strategies involving nano-and micromotors has been a vibrant field of study over the past few years. This review aims at categorizing recent significant results, classifying them according to the employed propulsion mechanisms starting from chemically driven micromotors, to field driven and biohybrid approaches. In concluding remarks of section 2, we give an insight into shape changing micromotors that are envisioned to have a significant contribution. Finally, we critically discuss which important aspects still have to be addressed and which challenges still lie ahead of us.
Collapse
Affiliation(s)
- Luisa Sonntag
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062 Dresden, Germany.
| | | |
Collapse
|
79
|
Shi D, Kang Y, Zhang G, Gao C, Lu W, Zou H, Jiang H. Biodegradable atrial septal defect occluders: A current review. Acta Biomater 2019; 96:68-80. [PMID: 31158496 DOI: 10.1016/j.actbio.2019.05.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 01/11/2023]
Abstract
Atrial septal defect (ASD) is a common structural congenital heart disease. With the development of interventional closure devices and transcatheter techniques, interventional closure therapy has become the most well-accepted therapeutic alternative worldwide, as it offers a number of advantages over conventional therapies such as improved safety, easier operation, lower complication rates and invasiveness, and shorter anesthetic time and hospitalizations. During the past decades, various types of occluders based on nondegradable shape memory alloys have been used in clinical applications. Considering that the permanent existence of foreign nondegradable materials in vivo can cause many potential complications in the long term, the research and development of biodegradable occluders has emerged as a crucial issue for interventional treatment of ASD. This review aims to summarize partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices. STATEMENT OF SIGNIFICANCE: Although occlusion devices based on nondegradable alloys have been widely used in clinical applications and saved numerouspatients, biodegradable occlusion devices may offer some advantages such as fewer complications, acceptable biocompatibility, and particularly temporary existence, thereby leaving "native" tissue behind, which will certainly become the development trend in the long term. This review summarizes almost all partially or fully biodegradable occlusion devices currently reported in the literature from the aspects of design, construction, and evaluation of animal experiments. Furthermore, a comparison is made on the advantages and disadvantages of the materials used in biodegradable ASD occlusion devices, followed by an analysis of the problems and limitations of the occlusion devices. Finally, several strategies are proposed for future development of biodegradable cardiac septal defect occlusion devices.
Collapse
|
80
|
Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv 2019; 16:1081-1094. [PMID: 31478752 DOI: 10.1080/17425247.2019.1660318] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: Three-dimensional (3D) printing is a relatively new, rapid manufacturing technology that has found promising applications in the drug delivery and medical sectors. Arguably, never before has the healthcare industry experienced such a transformative technology. This review aims to discuss the state of the art of 3D printing technology in healthcare and drug delivery. Areas covered: The current and future applications of printing technologies within drug delivery and medicine have been discussed. The latest innovations in 3D printing of customized medical devices, drug-eluting implants, and printlets (3D-printed tablets) with a tailored dose, shape, size, and release characteristics have been covered. The review also covers the state of the art of 3D printing in healthcare (covering topics such as dentistry, surgical and bioprinting of patient-specific organs), as well as the potential of recent innovations, such as 4D printing, to shape the future of drug delivery and to improve treatment pathways for patients. Expert opinion: A future perspective is provided on the potential for 3D printing in healthcare, covering strategies to overcome the major barriers to integration that are faced today.
Collapse
Affiliation(s)
| | - Atheer Awad
- UCL School of Pharmacy, University College London , London , UK
| | | | - Grace B Hatton
- UCL School of Pharmacy, University College London , London , UK
| | - Jack Firth
- Department of Biochemical Engineering, University College London, London, UK
| | - Alvaro Goyanes
- FabRx Ltd , Ashford , TN24 0RW , UK.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R + D Pharma Group (GI-1645), Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Simon Gaisford
- UCL School of Pharmacy, University College London , London , UK.,FabRx Ltd , Ashford , TN24 0RW , UK
| | - Abdul W Basit
- UCL School of Pharmacy, University College London , London , UK.,FabRx Ltd , Ashford , TN24 0RW , UK
| |
Collapse
|
81
|
Yin C, Wei F, Zhan Z, Zheng J, Yao L, Yang W, Li M. Untethered microgripper-the dexterous hand at microscale. Biomed Microdevices 2019; 21:82. [PMID: 31418070 DOI: 10.1007/s10544-019-0430-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Untethered microgrippers that can navigate in hard-to-reach and unpredictable environments are significantly important for biomedical applications such as targeted drug delivery, micromanipulation, minimally invasive surgery and in vivo biopsy. Compared with the traditional tethered microgrippers, the wireless microgrippers, due to the exceptional characteristics such as miniaturized size, untethered actuation, dexterous and autonomous motion, are projected to be promising microtools in various future applications. In this review, we categorize the untethered microgrippers into five major classes, i.e. microgrippers responsive to thermal, microgrippers actuated by magnetic fields, microgrippers responsive to chemicals, light-driven microgrippers and hybrid actuated microgrippers. Firstly, the actuation mechanisms of these microgrippers are introduced. The challenges faced by these microgrippers are also covered in this part. With that, the fabrication methods of these microgrippers are summarized. Subsequently, the applications of microgrippers are presented. Additionally, we conduct a comparison among different actuation mechanisms to explore the advantages and potential challenges of various types of microgrippers. In the end of this review, conclusions and outlook of the development and potential applications of the microgrippers are discussed.
Collapse
Affiliation(s)
- Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China. .,State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Ziheng Zhan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Jianghong Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, China
| | - Minglin Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
82
|
Yoon C. Advances in biomimetic stimuli responsive soft grippers. NANO CONVERGENCE 2019; 6:20. [PMID: 31257552 PMCID: PMC6599812 DOI: 10.1186/s40580-019-0191-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 05/28/2023]
Abstract
A variety of biomimetic stimuli-responsive soft grippers that can be utilized as intelligent actuators, sensors, or biomedical tools have been developed. This review covers stimuli-responsive materials, fabrication methods, and applications of soft grippers. This review specifically describes the current research progress in stimuli-responsive grippers composed of N-isopropylacrylamide hydrogel, thermal and light-responding liquid crystalline and/or pneumatic-driven shape-morphing elastomers. Furthermore, this article provides a brief overview of high-throughput assembly methods, such as photolithography and direct printing approaches, to create stimuli-responsive soft grippers. This review primarily focuses on stimuli-responsive soft gripping robots that can be utilized as tethered/untethered multiscale smart soft actuators, manipulators, or biomedical devices.
Collapse
Affiliation(s)
- ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
83
|
Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 2019; 92:19-36. [PMID: 31071476 DOI: 10.1016/j.actbio.2019.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
Three-dimensional (3D) printing has revolutionized the world manufacturing production. In biomedical applications, however, 3D printed constructs fell short of expectations mainly due to their inability to adequately mimic the dynamic human tissues. To date, most of the 3D printed biomedical structures are largely static and inanimate as they lack the time-dependant dimension. To adequately address the dynamic healing and regeneration process of human tissues, 4D printing emerges as an important development where "time" is incorporated into the conventional concept of 3D printing as the fourth dimension. As such, additive manufacturing (AM) evolves from 3D to 4D printing and in the process putting stimulus-responsive materials in the limelight. In this review, the state-of-the-art efforts in integrating the time-dependent behaviour of stimulus-responsive materials in 4D printing will be discussed. In addition, current literatures on the interactions between various types of stimuli (categorized under physical, chemical and biological signals) with the associated stimulus-responsive materials will be the major focus in this review. Lastly, potential usage of 4D printing in biomedical applications will also be discussed, followed by technical considerations as well as outlook for future discoveries. STATEMENT OF SIGNIFICANCE: In this Review, we have demonstrated the significance of 4D printing in biomedical applications, in which "time" has been incorporated into the conventional concept of 3D printing as the 4th dimension. As such, 4D printing differentiates and evolves from 3D printing using stimulus-responsive materials which can actively respond to external stimuli and more sophisticated "hardware"-printer which can achieve multi-printing via mathematical-predicted designs that are programmed to consider the transformation of 3D constructs over time. The emphasize will be on the interactions between various types of stimuli (categorized under physical, chemical and biological signals) with the associated stimulus-responsive materials, followed by technical considerations as well as outlook for future discoveries.
Collapse
Affiliation(s)
- Yuan Siang Lui
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore
| | - Wan Ting Sow
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yunlong Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province 361002, PR China
| | - Yuekun Lai
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China
| | - Huaqiong Li
- School of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province 325011, PR China.
| |
Collapse
|
84
|
Tu Y, Peng F, Heuvelmans JM, Liu S, Nolte RJM, Wilson DA. Motion Control of Polymeric Nanomotors Based on Host–Guest Interactions. Angew Chem Int Ed Engl 2019; 58:8687-8691. [DOI: 10.1002/anie.201900917] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-Sen University Guangzhou 510275 China
| | - Josje M. Heuvelmans
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| | - Shuwen Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Roeland J. M. Nolte
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| |
Collapse
|
85
|
Tu Y, Peng F, Heuvelmans JM, Liu S, Nolte RJM, Wilson DA. Motion Control of Polymeric Nanomotors Based on Host–Guest Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-Sen University Guangzhou 510275 China
| | - Josje M. Heuvelmans
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| | - Shuwen Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Roeland J. M. Nolte
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and MaterialsRadboud University Nijmegen 6525 AJ The Netherlands
| |
Collapse
|
86
|
Song YY, Liu Y, Jiang HB, Xue JZ, Yu ZP, Li SY, Han ZW, Ren LQ. Janus Soft Actuators with On-Off Switchable Behaviors for Controllable Manipulation Driven by Oil. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13742-13751. [PMID: 30848595 DOI: 10.1021/acsami.8b20061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soft actuators have tremendous applications in diverse fields. Facile preparation, rapid actuation, and versatile actions are always pursued when developing new types of soft actuators. In this paper, we present a facile method integrating laser etching and mechanical cutting to prepare Janus actuators driven by oil. A Janus film with superhydrophobic and hydrophobic sides was fabricated successfully. By cutting the functional layer at the desired positions, a number of quintessential oil-driven soft devices were demonstrated. Furthermore, Janus actuators with surfaces of different wettabilities exhibited different swelling behaviors, and different media manifested different surface extensions; thus, these actuators are promising candidates for soft actuators and also realized on-off switchability between an oil/water mixture and ethanol. This study offers novel insight into the design of soft actuators, and this insight may be helpful for developing an oil-driven soft actuator that can be operated like a human finger to manipulate any object and extending stimuli-responsive applications for soft robotics.
Collapse
Affiliation(s)
- Yun-Yun Song
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Hao-Bo Jiang
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Jing-Ze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Zhao-Peng Yu
- School of Automotive Engineering , Changshu Institute of Technology , Dongnan Campus, No. 99 Hushan Road , Changshu , Suzhou 215500 , P. R. China
| | - Shu-Yi Li
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Zhi-Wu Han
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Lu-Quan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| |
Collapse
|
87
|
Fan W, Shan C, Guo H, Sang J, Wang R, Zheng R, Sui K, Nie Z. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. SCIENCE ADVANCES 2019; 5:eaav7174. [PMID: 31016242 PMCID: PMC6474766 DOI: 10.1126/sciadv.aav7174] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
The design of materials that can mimic the complex yet fast actuation phenomena in nature is important but challenging. Herein, we present a new paradigm for designing responsive hydrogel sheets that can exhibit ultrafast inverse snapping deformation. Dual-gradient structures of hydrogel sheets enable the accumulation of elastic energy in hydrogels by converting prestored energy and rapid reverse snapping (<1 s) to release the energy. By controlling the magnitude and location of energy prestored within the hydrogels, the snapping of hydrogel sheets can be programmed to achieve different structures and actuation behaviors. We have developed theoretical model to elucidate the crucial role of dual gradients and predict the snapping motion of various hydrogel materials. This new design principle provides guidance for fabricating actuation materials with applications in tissue engineering, soft robotics, and active medical implants.
Collapse
Affiliation(s)
- Wenxin Fan
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Caiyun Shan
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Hongyu Guo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20892, USA
| | - Jianwei Sang
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Rui Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Ranran Zheng
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Kunyan Sui
- State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
- Corresponding author. (K.S.); (Z.N.)
| | - Zhihong Nie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20892, USA
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Corresponding author. (K.S.); (Z.N.)
| |
Collapse
|
88
|
Zhang B, Zhang W, Zhang Z, Zhang YF, Hingorani H, Liu Z, Liu J, Ge Q. Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10328-10336. [PMID: 30785262 DOI: 10.1021/acsami.9b00359] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four-dimensional (4D) printing that enables 3D printed structures to change configurations over time has gained great attention because of its exciting potential in various applications. Among all the 4D printing materials, shape memory polymers (SMPs) possess higher stiffness and faster response rate and therefore are considered as one of most promising materials for 4D printing. However, most of the SMP-based 4D printing materials are (meth)acrylate thermosets which have permanently cross-linked covalent networks and cannot be repaired if any damage occurs. To address the unrepairable nature of SMP-based 4D printing materials, this paper reports a double-network self-healing SMP (SH-SMP) system for high-resolution self-healing 4D printing. In the SH-SMP system, the semicrystalline linear polymer polycaprolactone (PCL) is incorporated into a methacrylate-based SMP system which has good compatibility with the digital light processing-based 3D printing technology and can be used to fabricate complex 4D printing structures with high resolution (up to 30 μm). The PCL linear polymer imparts the self-healing ability to the 4D printing structures, and the mechanical properties of a damaged structure can be recovered to more than 90% after adding more than 20 wt % of PCL into the SH-SMP system. We investigated the effects of PCL concentration on the thermomechanical behavior, viscosity, and the self-healing capability of the SH-SMP system and performed the computational fluid dynamics simulations to study the effect of SH-SMP solution's viscosity on the 3D printing process. Finally, we demonstrated the self-healing 4D printing application examples to show the merits of the SH-SMP system.
Collapse
Affiliation(s)
- Biao Zhang
- Shaanxi Institute of Flexible Electronics (SIFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME) , Northwestern Polytechnical University (NPU) , 710072 Xi'an , China
| | | | - Zhiqian Zhang
- Institute of High Performance Computing (IHPC), A*STAR , 138632 Singapore, Singapore
| | | | | | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), A*STAR , 138632 Singapore, Singapore
| | - Jun Liu
- Institute of High Performance Computing (IHPC), A*STAR , 138632 Singapore, Singapore
| | | |
Collapse
|
89
|
Huang HW, Tibbitt MW, Huang TY, Nelson BJ. Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs. Soft Robot 2019; 6:150-159. [DOI: 10.1089/soro.2018.0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hen-Wei Huang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Tian-Yun Huang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
90
|
Kobayashi K, Yoon C, Oh SH, Pagaduan JV, Gracias DH. Biodegradable Thermomagnetically Responsive Soft Untethered Grippers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:151-159. [PMID: 30525417 DOI: 10.1021/acsami.8b15646] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soft-robotic devices such as polymeric microgrippers offer the possibility for pick and place of fragile biological cargo in hard-to-reach conduits with potential applications in drug delivery, minimally invasive surgery, and biomedical engineering. Previously, millimeter-sized self-folding thermomagnetically responsive soft grippers have been designed, fabricated, and utilized for pick-and-place applications but there is a concern that such devices could get lost or left behind after their utilization in practical clinical applications in the human body. Consequently, strategies need to be developed to ensure that these soft-robotic devices are biodegradable so that they would disintegrate if left behind in the body. In this paper, we describe the photopatterning of bilayer gels composed of a thermally responsive high-swelling poly(oligoethylene glycol methyl ether methacrylate ( Mn = 500)-bis(2-methacryloyl)oxyethyl disulfide), P(OEGMA-DSDMA), and a low-swelling poly(acrylamide- N, N'-bis(acyloyl)cystamine) hydrogel, in the shape of untethered grippers. These grippers can change shape in response to thermal cues and open and close due to the temperature-induced swelling of the P(OEGMA-DSDMA) layer. We demonstrate that the grippers can be doped with magnetic nanoparticles so that they can be moved using magnetic fields or loaded with chemicals for potential applications as drug-eluting theragrippers. Importantly, they are also biodegradable at physiological body temperature (∼37 °C) on the basis of cleavage of disulfide bonds by reduction. This approach that combines thermoresponsive shape change, magnetic guidance, and biodegradability represents a significant advance to the safe implementation of untethered shape-changing biomedical devices and soft robots for medical and surgical applications.
Collapse
Affiliation(s)
- Kunihiko Kobayashi
- JSR Corporation , 1-9-2, Higashi-Shimbashi , Minato-ku, Tokyo 105-8640 , Japan
| | | | | | | | | |
Collapse
|
91
|
Guo H, Liu Y, Yang Y, Wu G, Demella K, Raghavan SR, Nie Z. A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles. J Mater Chem B 2019; 7:1679-1683. [DOI: 10.1039/c8tb01959b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A simple and reliable approach was developed to fabricate thermo-responsive composite hydrogel sheets with spatially patterned regions of plasmonic gold nanoparticles. The same hydrogel exhibited different modes of shape deformation under near-infrared laser irradiation depending on the irradiation direction.
Collapse
Affiliation(s)
- Hongyu Guo
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health
- USA
| | - Yang Yang
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Guangyu Wu
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| | - Kerry Demella
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- USA
| | - Srinivasa R. Raghavan
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- USA
| | - Zhihong Nie
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| |
Collapse
|
92
|
Liu Z, Cui A, Li J, Gu C. Folding 2D Structures into 3D Configurations at the Micro/Nanoscale: Principles, Techniques, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802211. [PMID: 30276867 DOI: 10.1002/adma.201802211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Compared to their 2D counterparts, 3D micro/nanostructures show larger degrees of freedom and richer functionalities; thus, they have attracted increasing attention in the past decades. Moreover, extensive applications of 3D micro/nanostructures are demonstrated in the fields of mechanics, biomedicine, optics, etc., with great advantages. However, the mainstream micro/nanofabrication technologies are planar ones; therefore, they cannot be used directly for the construction of 3D micro/nanostructures, making 3D fabrication at the micro/nanoscale a great challenge. A promising strategy to overcome this is to combine the state-of-the-art planar fabrication techniques with the folding method to produce 3D structures. In this strategy, 2D components can be easily produced by traditional planar techniques, and then, 3D structures are constructed by folding each 2D component to specific orientations. In this way, not only will the advantages of existing planar techniques, such as high precision, programmable patterning, and mass production, be preserved, but the fabrication capability will also be greatly expanded without complex and expensive equipment modification/development. The goal here is to highlight the recent progress of the folding method from the perspective of principles, techniques, and applications, as well as to discuss the existing challenges and future prospectives.
Collapse
Affiliation(s)
- Zhe Liu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ajuan Cui
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
93
|
Kanu NJ, Gupta E, Vates UK, Singh GK. An insight into biomimetic 4D printing. RSC Adv 2019; 9:38209-38226. [PMID: 35541793 PMCID: PMC9075844 DOI: 10.1039/c9ra07342f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
4D printed objects are indexed under additive manufacturing (AM) objects. The 4D printed materials are stimulus-responsive and have shape-changing features. However, the manufacturing of such objects is still a challenging task. For this, the designing space has to be explored in the initial stages, which is lagging so far. This paper encompasses two recent approaches to explore the conceptual design of 4D printed objects in detail: (a) an application-based modeling and simulation approach for phytomimetic structures and (b) a voxel-based modeling and simulation approach. The voxel-based modeling and simulation approach has the enhanced features for the rapid testing (prior to moving into design procedures) of the given distribution of such 4D printed smart materials (SMs) while checking for behaviors, particularly when these intelligent materials are exposed to a stimulus. The voxel-based modeling and simulation approach is further modified using bi-exponential expressions to encode the time-dependent behavior of the bio-inspired 4D printed materials. The shape-changing materials are inspired from biological objects, such as flowers, which are temperature-sensitive or touch-sensitive, and can be 4D printed in such a way that they are encrypted with a decentralized, anisotropic enlargement feature under a restrained alignment of cellulose fibers as in the case of composite hydrogels. Such plant-inspired architectures can change shapes when immersed in water. This paper also outlines a review of the 4D printing of (a) smart photocurable and biocompatible scaffolds with renewable plant oils, which can be a better alternative to traditional polyethylene glycol diacrylate (PEGDA) to support human bone marrow mesenchymal stem cells (hMSCs), and (b) a biomimetic dual shape-changing tube having applications in biomedical engineering as a bioimplant. The future applications would be based on these smart and intelligent materials; thus, it is important to modify the existing voxel-based modeling and simulation approach and discuss efficient printing methods to fabricate such bio-inspired materials. 4D printed objects are indexed under additive manufacturing (AM) objects.![]()
Collapse
Affiliation(s)
| | | | | | - Gyanendra Kumar Singh
- Federal Technical and Vocational Education and Training Institute
- Addis Ababa
- Ethiopia
| |
Collapse
|
94
|
Gao G, Wang Z, Xu D, Wang L, Xu T, Zhang H, Chen J, Fu J. Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41724-41731. [PMID: 30387979 DOI: 10.1021/acsami.8b16402] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Responsive hydrogel actuators have promising applications in diverse fields. Most hydrogel actuators are limited by slow actuation or shape transformations. This work reports on snap-buckling motivated jumping of thermoresponsive hydrogel bilayers. The bilayers are composed of poly(NIPAM- co-DMAPMA)/clay hydrogel with different lower critical solution temperatures in each layer, and thus undergo slow reversible curling/uncurling at temperature changes. The gels are adhesive to numerous materials including aluminum. The adhesion between the gels and an aluminum ratchet is utilized to constrain the thermoresponsive deformation of the bilayers to store elastic energy. When the accumulated elastic energy overwhelms the gel-aluminum adhesion, snap-buckling takes place to abruptly release the accumulated energy, which motivates the bilayer to jump. The jumping direction, start time, height, and distance are controlled by the geometry of the bilayers or the ratchet. This work paves a novel way for the rapid actuation of responsive hydrogels in a controlled manner and may stimulate the development of novel hydrogel devices.
Collapse
Affiliation(s)
- Guorong Gao
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Zhenwu Wang
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Dan Xu
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Liufang Wang
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Ting Xu
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Hua Zhang
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Jing Chen
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| | - Jun Fu
- Polymers and Composites Division & Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Zhongguan West Road 1219 , Zhenhai District, Ningbo 315201 , People's Republic of China
| |
Collapse
|
95
|
Bolaños Quiñones VA, Zhu H, Solovev AA, Mei Y, Gracias DH. Origami Biosystems: 3D Assembly Methods for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vladimir A. Bolaños Quiñones
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Hong Zhu
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Alexander A. Solovev
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - Yongfeng Mei
- Department of Materials Science State Key Laboratory of ASIC and Systems Fudan University Shanghai 200433 P. R. China
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering Johns Hopkins University 3400 N Charles Street, 221 Maryland Hall Baltimore MD 21218 USA
| |
Collapse
|
96
|
Abdullah AM, Li X, Braun PV, Rogers JA, Hsia KJ. Self-Folded Gripper-Like Architectures from Stimuli-Responsive Bilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801669. [PMID: 29921009 DOI: 10.1002/adma.201801669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Self-folding microgrippers are an emerging class of smart structures that have widespread applications in medicine and micro/nanomanipulation. To achieve their functionalities, these architectures rely on spatially patterned hinges to transform into 3D configurations in response to an external stimulus. Incorporating hinges into the devices requires the processing of multiple layers which eventually increases the fabrication costs and actuation complexities. The goal of this work is to demonstrate that it is possible to achieve gripper-like configurations in an on-demand manner from simple planar bilayers that do not require hinges for their actuation. Finite element modeling of bilayers is performed to understand the mechanics behind their stimuli-responsive shape transformation behavior. The model predictions are then experimentally validated and axisymmetric gripper-like shapes are realized using millimeter-scale poly(dimethylsiloxane) bilayers that undergo differential swelling in organic solvents. Owing to the nature of the computational scheme which is independent of length scales and material properties, the guidelines reported here would be applicable to a diverse array of gripping systems and functional devices. Thus, this work not only demonstrates a simple route to fabricate functional microgrippers but also contributes to self-assembly in general.
Collapse
Affiliation(s)
- Arif M Abdullah
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiuling Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul V Braun
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Departments of Materials Science and Engineering, Biomedical Engineering, Chemistry,, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/Biotechnology, McCormick School of Engineering, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| | - K Jimmy Hsia
- Departments of Mechanical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| |
Collapse
|
97
|
Xu B, Tian Z, Wang J, Han H, Lee T, Mei Y. Stimuli-responsive and on-chip nanomembrane micro-rolls for enhanced macroscopic visual hydrogen detection. SCIENCE ADVANCES 2018; 4:eaap8203. [PMID: 29740609 PMCID: PMC5938281 DOI: 10.1126/sciadv.aap8203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/15/2018] [Indexed: 05/07/2023]
Abstract
Nanomembrane rolling offers advanced three-dimensional (3D) mesostructures in electronics, optics, and biomedical applications. We demonstrate a high-density and on-chip array of rolled-up nanomembrane actuators with stimuli-responsive function based on the volume expansion of palladium in hydrogen milieu. The uniform stimuli-responsive behavior of high-density nanomembrane rolls leads to huge macroscopic visual detection with more than 50% transmittance change under optimization of micropattern design. The reversible shape changing between rolled and flat (unrolled) statuses can be well explained on the basis of the elastic mechanical model. The strain change in the palladium layer during hydrogen absorption and desorption produces a marked change in the diameter of nanomembrane rolls. We found that a functional palladium layer established an external compressive strain after hydrogen stimuli and thus also reduced the rolls' diameters. The large area of the nanomembrane roll array performs excellent nonelectrical hydrogen detection, with response and recovery speeds within seconds. Our work suggests a new strategy to integrate high-density 3D mesoscale architectures into functional devices and systems.
Collapse
Affiliation(s)
- Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Ziao Tian
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jiao Wang
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- School of Information Science and Engineering, Fudan University, Shanghai 200433, China
| | - Heetak Han
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul 120749, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, Seoul 120749, Republic of Korea
- Corresponding author. (Y.M.); (T.L.)
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Corresponding author. (Y.M.); (T.L.)
| |
Collapse
|
98
|
Peng F, Tu Y, Wilson DA. Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev 2018; 46:5289-5310. [PMID: 28524919 DOI: 10.1039/c6cs00885b] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inspired by highly efficient natural motors, synthetic micro/nanomotors are self-propelled machines capable of converting the supplied fuel into mechanical motion. A significant advance has been made in the construction of diverse motors over the last decade. These synthetic motor systems, with rapid transporting and efficient cargo towing abilities, are expected to open up new horizons for various applications. Utilizing emergent motor platforms for in vivo applications is one important aspect receiving growing interest as conventional therapeutic methodology still remains limited for cancer, heart, or vasculature diseases. In this review we will highlight the recent efforts towards realistic in vivo application of various motor systems. With ever booming research enthusiasm in this field and increasing multidisciplinary cooperation, micro/nanomotors with integrated multifunctionality and selectivity are on their way to revolutionize clinical practice.
Collapse
Affiliation(s)
- Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
99
|
Pacchierotti C, Ongaro F, van den Brink F, Yoon C, Prattichizzo D, Gracias DH, Misra S. Steering and control of miniaturized untethered soft magnetic grippers with haptic assistance. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING : A PUBLICATION OF THE IEEE ROBOTICS AND AUTOMATION SOCIETY 2018; 15:290-306. [PMID: 31423113 PMCID: PMC6697175 DOI: 10.1109/tase.2016.2635106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Untethered miniature robotics have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery, microassembly, and biopsy procedures. However, the vast majority of these small-scale robots have very limited manipulation capabilities, and none of the steering systems currently available enable humans to intuitively and effectively control dexterous miniaturized robots in a remote environment. In this paper, we present an innovative micro teleoperation system with haptic assistance for the intuitive steering and control of miniaturized self-folding soft magnetic grippers in 2-D space. The soft grippers can be wirelessly positioned using weak magnetic fields and opened/closed by changing their temperature. An image-guided algorithm tracks the position of the controlled miniaturized gripper in the remote environment. A haptic interface provides the human operator with compelling haptic sensations about the interaction between the gripper and the environment, as well as enables the operator to intuitively control the target position and grasping configuration of the gripper. Finally, magnetic and thermal control systems regulate the position and grasping configuration of the gripper. The viability of the proposed approach is demonstrated through two experiments involving 26 human subjects. Providing haptic stimuli elicited statistically significant improvements in the performance of the considered navigation and micromanipulation tasks. Note to Practitioners-The ability to accurately and intuitively control the motion of miniaturized grippers in remote environments can open new exciting possibilities in the fields of minimally-invasive surgery, micromanipulation, biopsy, and drug delivery. This paper presents a micro teleoperation system with haptic assistance through which a clinician can easily control the motion and open/close capability of miniaturized wireless soft grippers. It introduces the underlying autonomous magnetic and thermal control systems, their interconnection with the master haptic interface, and an extensive evaluation in two real-world scenarios: following of a predetermined trajectory, and pick-and-place of a microscopic object.
Collapse
Affiliation(s)
- C. Pacchierotti
- CNRS at Irisa and Inria Rennes Bretagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - F. Ongaro
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, MIRA–Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands
| | - F. van den Brink
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, MIRA–Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands
| | - C. Yoon
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - D. Prattichizzo
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy, and also with the Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - D. H. Gracias
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218 USA
| | - S. Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, MIRA–Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Biomedical Engineering, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
100
|
A New Dimension: 4D Printing Opportunities in Pharmaceutics. 3D PRINTING OF PHARMACEUTICALS 2018. [DOI: 10.1007/978-3-319-90755-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|