51
|
Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JL, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano ID, Causon T, Clowers BH, Creaser CS, De Pauw E, Far J, Fernandez‐Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T. Recommendations for reporting ion mobility Mass Spectrometry measurements. MASS SPECTROMETRY REVIEWS 2019; 38:291-320. [PMID: 30707468 PMCID: PMC6618043 DOI: 10.1002/mas.21585] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 05/02/2023]
Abstract
Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site2 rue Robert Escarpit, 33600PessacFrance
| | | | | | - Perdita Barran
- Michael Barber Centre for Collaborative Mass SpectrometryManchester Institute for Biotechnology, University of ManchesterManchesterUK
| | - Justin L.P. Benesch
- Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield Road, OX1 3TAOxfordUK
| | - Christian Bleiholder
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFlorida32311
| | | | - Aivett Bilbao
- Biological Sciences DivisionPacific Northwest National LaboratoryRichlandWashington
| | - Matthew F. Bush
- Department of ChemistryUniversity of WashingtonSeattleWashington
| | | | | | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Brian H. Clowers
- Department of ChemistryWashington State UniversityPullmanWashington
| | - Colin S. Creaser
- Centre for Analytical ScienceDepartment of Chemistry, Loughborough UniversityLoughboroughUK
| | - Edwin De Pauw
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | - Johann Far
- Laboratoire de spectrométrie de masse (L.S.M.) − Molecular SystemsUniversité de LiègeLiègeBelgium
| | | | | | | | - Michael Groessl
- Department of Nephrology and Hypertension and Department of BioMedical ResearchInselspital, Bern University Hospital, University of Bern, Switzerland and TofwerkThunSwitzerland
| | | | - Stephan Hann
- University of Natural Resources and Life Sciences (BOKU)Department of Chemistry, Division of Analytical ChemistryViennaAustria
| | - Hugh I. Kim
- Department of ChemistryKorea UniversitySeoulKorea
| | | | - Jody C. May
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - John A. McLean
- Department of ChemistryCenter for Innovative Technology, Vanderbilt UniversityNashvilleTennessee
| | - Kevin Pagel
- Freie Universitaet BerlinInstitute for Chemistry and BiochemistryBerlinGermany
| | | | | | - Frédéric Rosu
- CNRS, INSERM and University of BordeauxInstitut Européen de Chimie et BiologiePessacFrance
| | - Frank Sobott
- Antwerp UniversityBiomolecular & Analytical Mass SpectrometryAntwerpBelgium
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsUK
- School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of BiosciencesUniversity College LondonLondonWC1E 6BTUK
- United Kingdom and Institute of Structural and Molecular BiologyDepartment of Biological Sciences, Birkbeck College, University of LondonLondonWC1E 7HXUK
| | - Stephen J. Valentine
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest Virginia
| | | |
Collapse
|
52
|
Haler JRN, Massonnet P, Far J, de la Rosa VR, Lecomte P, Hoogenboom R, Jérôme C, De Pauw E. Gas-Phase Dynamics of Collision Induced Unfolding, Collision Induced Dissociation, and Electron Transfer Dissociation-Activated Polymer Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:563-572. [PMID: 30523570 DOI: 10.1007/s13361-018-2115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/24/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Polymer characterizations are often performed using mass spectrometry (MS). Aside from MS and different tandem MS (MS/MS) techniques, ion mobility-mass spectrometry (IM-MS) has been recently added to the inventory of characterization technique. However, only few studies have focused on the reproducibility and robustness of polymer IM-MS analyses. Here, we perform collisional and electron-mediated activation of polymer ions before measuring IM drift times, collision cross-sections (CCS), or reduced ion mobilities (K0). The resulting IM behavior of different activated product ions is then compared to non-activated native intact polymer ions. First, we analyzed collision induced unfolding (CIU) of precursor ions to test the robustness of polymer ion shapes. Then, we focused on fragmentation product ions to test for shape retentions from the precursor ions: cation ejection species (CES) and product ions with m/z and charge state values identical to native intact polymer ions. The CES species are formed using both collision induced dissociation (CID) and electron transfer dissociation (ETD, formally ETnoD) experiments. Only small drift time, CCS, or K0 deviations between the activated/formed ions are observed compared to the native intact polymer ions. The polymer ion shapes seem to depend solely on their mass and charge state. The experiments were performed on three synthetic homopolymers: poly(ethoxy phosphate) (PEtP), poly(2-n-propyl-2-oxazoline) (Pn-PrOx), and poly(ethylene oxide) (PEO). These results confirm the robustness of polymer ion CCSs for IM calibration, especially singly charged polymer ions. The results are also discussed in the context of polymer analyses, CCS predictions, and probing ion-drift gas interaction potentials. Graphical Abstract.
Collapse
Affiliation(s)
- Jean R N Haler
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium.
| | - Philippe Massonnet
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000, Ghent, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, CESAM Research Unit, Quartier Agora, University of Liège, Allée du Six Aout 13, B-4000, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, MolSys Research unit, Quartier Agora, University of Liège, Allée du Six Aout 11, B-4000, Liège, Belgium
| |
Collapse
|
53
|
Mao J, Zhang W, Cheng SZ, Wesdemiotis C. Analysis of monodisperse, sequence-defined, and POSS-functionalized polyester copolymers by MALDI tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:164-174. [PMID: 30773922 DOI: 10.1177/1469066719828875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monodisperse, sequence-defined polymers can be potentially used for digital data storage. This study reports the sequence analysis and differentiation of monodisperse polyester copolymers carrying side chains functionalized in a specific order by polyhedral oligomeric silsesquioxane (POSS) nanoparticles. Steglich esterification and succinic anhydride ring-opening chemistries were utilized iteratively to synthesize the intended sequences, which were characterized by matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-MS2). Isomeric oligomers were readily distinguished based on their different fragmentation patterns. The sequences embedded in the oligomers were decrypted by their specific backbone dissociation pathways. The robustness of using MALDI-MS2 as a sequencing method for monodisperse synthetic macromolecules was assessed and validated by the characterization of longer oligomers.
Collapse
Affiliation(s)
- Jialin Mao
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
| | - Wei Zhang
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Stephen Zd Cheng
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Chrys Wesdemiotis
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
54
|
Prian K, Aloui I, Legros V, Buchmann W. Study of the gas-phase decomposition of multiply lithiated polycaprolactone, polytetrahydrofurane and their copolymer by two different activation methods: Collision-induced dissociation and electron transfer dissociation. Anal Chim Acta 2019; 1048:85-95. [DOI: 10.1016/j.aca.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 01/24/2023]
|
55
|
Dubrovskii SA, Balabaev NK. Resonance Effects in High-Frequency Heating of Isolated Protonated Poly(ethylene oxide) Chains in a Vacuum. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201800056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergey A. Dubrovskii
- N.N. Semenov Institute of Chemical Physics; Russian Academy of Sciences; Kosygina st. 4 Moscow 119991 Russia
| | - Nikolay K. Balabaev
- Institute of Mathematical Problems of Biology; Keldysh Institute of Applied Mathematics; Russian Academy of Sciences; Pushchino Moscow Region 142290 Russia
| |
Collapse
|
56
|
Endres KJ, Xie TZ, Chakraborty S, Hoopingarner C, Wesdemiotis C. Monitoring Metallo-Macromolecular Assembly Equilibria by Ion Mobility-Mass Spectrometry. Macromol Rapid Commun 2018; 40:e1800667. [PMID: 30507049 DOI: 10.1002/marc.201800667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/02/2018] [Indexed: 12/25/2022]
Abstract
Ion mobility-mass spectrometry (IM-MS) allows the separation of isomeric and isobaric species on the basis of their size, shape, and charge. The fast separation timescale (ms) and high sensitivity of these measurements make IM-MS an ideally suitable method for monitoring changes in macromolecular structure, such as those occurring in interconverting terpyridine-based metallosupramolecular self-assemblies. IM-MS is used to verify the elemental composition (size) and architecture (shape) of the self-assembled products. Additionally, this article demonstrates its applicability to the elucidation of concentration-driven association-dissociation (fusion-fission) equilibria between isobaric structures. IM-MS enables both quantitative separation and identification of the interconverting complexes as well as derivation of the corresponding equilibrium constants (i.e., thermodynamic information) from extracted IM-MS abundance data.
Collapse
Affiliation(s)
- Kevin J Endres
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Ting-Zheng Xie
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Sourav Chakraborty
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chad Hoopingarner
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chrys Wesdemiotis
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
57
|
Mendes Siqueira AL, Beaumesnil M, Hubert-Roux M, Loutelier-Bourhis C, Afonso C, Bai Y, Courtiade M, Racaud A. Atmospheric Solid Analysis Probe Coupled to Ion Mobility Spectrometry-Mass Spectrometry, a Fast and Simple Method for Polyalphaolefin Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1678-1687. [PMID: 29855890 DOI: 10.1007/s13361-018-1991-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Polyalphaolefins (PAOs) are polymers produced from linear alpha olefins through catalytic oligomerization processes. The PAOs are known as synthetic high-performance base stock fluids used to improve the efficiency of many other synthetic products. In this study, we report the direct characterization of PAOs using atmospheric solid analysis probe (ASAP) coupled with ion mobility spectrometry-mass spectrometry (IMS-MS). We studied different PAOs grades exhibiting low- and high-viscosity index. Specific adjustments of the ASAP source parameters permitted the monitoring of ionization processes as three mechanisms could occur for these compounds: hydride abstraction, nitrogen addition, and/or the formation of [M-2H]+• ions. Several series of fragment ions were obtained, which allowed the identification of the alpha olefin used to synthesize the PAO. The use of the ion mobility separation dimension provides information on isomeric species. In addition, the drift time versus m/z plots permitted rapid comparison between PAO samples and to evidence their complexity. These 2D plots appear as fingerprints of PAO samples. To conclude, the resort to ASAP-IMS-MS provides a rapid characterization of the PAO samples in a direct analysis approach, without any sample preparation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anna Luiza Mendes Siqueira
- Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France
- TOTAL Marketing Services, Research Center, 69360, Solaize, France
| | - Mathieu Beaumesnil
- Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France
- TOTAL Marketing Services, Research Center, 69360, Solaize, France
| | - Marie Hubert-Roux
- Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France
| | - Corinne Loutelier-Bourhis
- Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France.
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan Cedex, France.
| | - Yang Bai
- TOTAL Marketing Services, Research Center, 69360, Solaize, France
| | - Marion Courtiade
- TOTAL Marketing Services, Research Center, 69360, Solaize, France
| | - Amandine Racaud
- TOTAL Marketing Services, Research Center, 69360, Solaize, France
| |
Collapse
|
58
|
Nachtigall FM, Rojas M, Santos LS. MALDI coupled to modified traveling wave ion mobility mass spectrometry for fast enantiomeric determination. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:693-699. [PMID: 29802663 DOI: 10.1002/jms.4206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
In this work, the use of MALDI traveling wave ion mobility spectrometry-mass spectrometry (MALDI-TWIMS-MS) for stereoselective structural analysis of direct cleavage and identification of 2-substituted piperidines obtained through solid-phase asymmetric synthesis by using heterogeneous 8-phenylmenthyl-based chiral auxiliary resins. A strategy for gas-phase chiral and structural characterization of small molecular weight molecules by using MALDI-IMS-MS technique is discussed. Because both MALDI and IMS do not directly offer chiral resolution, an easy methodology by adding a chiral phase is described to carry out in situ online ion/molecule complexation with different chiral analytes inside the mass spectrometer. Piperidine enantiomers were resolved, and separation obtained shows dependence of surface areas. To corroborate this assumption and elucidate the separation mechanism to accomplish an analytical technique by which fast determination of the chirality of molecules may be determined for a wide range organic compound applications, it was performed DFT calculations to determine the cross-sectional areas of proton-bound dimer complexes. Drift times are affected by cross-sectional areas, correlating bigger times with bigger molecular volumes during the ion mobility experiments of proton-bound dimer complexes.
Collapse
Affiliation(s)
| | - Moises Rojas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| | - Leonardo S Santos
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, Chile
| |
Collapse
|
59
|
Duez Q, Metwally H, Konermann L. Electrospray Ionization of Polypropylene Glycol: Rayleigh-Charged Droplets, Competing Pathways, and Charge State-Dependent Conformations. Anal Chem 2018; 90:9912-9920. [DOI: 10.1021/acs.analchem.8b02115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Quentin Duez
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, Place du Parc, 23, Mons, 7000, Belgium
| | - Haidy Metwally
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
60
|
Huang KH, Tu TH, Wang SC, Chan YT, Hsu CC. Micelles Protect Intact Metallo-supramolecular Block Copolymer Complexes from Solution to Gas Phase during Electrospray Ionization. Anal Chem 2018; 90:7691-7699. [DOI: 10.1021/acs.analchem.8b01576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Kai-Hung Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
61
|
Lorenz Y, Gutiérrez A, Ferrer M, Engeser M. Bond Dissociation Energies of Metallo-supramolecular Building Blocks: Insight from Fragmentation of Selectively Self-Assembled Heterometallic Metallo-supramolecular Aggregates. Inorg Chem 2018; 57:7346-7354. [DOI: 10.1021/acs.inorgchem.8b00930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yvonne Lorenz
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Albert Gutiérrez
- Departament de Quimica Inorgànica i Orgànica, Secció de Quimica Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Montserrat Ferrer
- Departament de Quimica Inorgànica i Orgànica, Secció de Quimica Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Marianne Engeser
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| |
Collapse
|
62
|
Cavallo G, Poyer S, Amalian J, Dufour F, Burel A, Carapito C, Charles L, Lutz J. Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angew Chem Int Ed Engl 2018; 57:6266-6269. [DOI: 10.1002/anie.201803027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Gianni Cavallo
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Florent Dufour
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Alexandre Burel
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Christine Carapito
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Laurence Charles
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
63
|
Cavallo G, Poyer S, Amalian J, Dufour F, Burel A, Carapito C, Charles L, Lutz J. Cleavable Binary Dyads: Simplifying Data Extraction and Increasing Storage Density in Digital Polymers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gianni Cavallo
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Salomé Poyer
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐Arthur Amalian
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Florent Dufour
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Alexandre Burel
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Christine Carapito
- Université de Strasbourg, CNRS Institut Pluridisciplinaire Hubert Curien UMR7178 25 Rue Becquerel 67087 Strasbourg France
| | - Laurence Charles
- Aix-Marseille Univ., CNRS, UMR 7273 Institute of Radical Chemistry 13397 Marseille Cedex 20 France
| | - Jean‐François Lutz
- Université de Strasbourg, CNRS Institut Charles Sadron UPR22 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
64
|
Sallam S, Dolog I, Paik BA, Jia X, Kiick KL, Wesdemiotis C. Sequence and Conformational Analysis of Peptide–Polymer Bioconjugates by Multidimensional Mass Spectrometry. Biomacromolecules 2018; 19:1498-1507. [DOI: 10.1021/acs.biomac.7b01694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sahar Sallam
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, Jazan University, Jazan, Saudi Arabia
| | - Ivan Dolog
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Bradford A. Paik
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Xinqiao Jia
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Material Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
65
|
Sallam S, Luo Y, Becker ML, Wesdemiotis C. Multidimensional mass spectrometry characterization of isomeric biodegradable polyesters. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:402-410. [PMID: 29183194 DOI: 10.1177/1469066717711401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biodegradable polyester copolymer poly(propylene fumarate) (PPF) is increasingly utilized in bone tissue engineering studies due to its suitability as inert cross-linkable scaffold material. The well-defined poly(propylene fumarate) oligomers needed for this purpose are synthesized by post-polymerization isomerization of poly(propylene maleate), which is prepared by ring opening polymerization of maleic anhydride and propylene oxide. In this study, multidimensional mass spectrometry methodologies, interfacing matrix-assisted laser desorption ionization and electrospray ionization with mass analysis, tandem mass spectrometry fragmentation and/or ion mobility mass spectrometry, have been employed to characterize the composition, end groups, chain connectivity and isomeric purity of the isomeric copolyesters poly(propylene maleate)and poly(propylene fumarate). It is demonstrated that the polymerization catalyst is incorporated into the polymer chain (as the initiating chain end) and that the poly(propylene maleate) to poly(propylene fumarate) isomerization using an amine base proceeds with quantitative yield. Hydrolytic degradation is shown not to alter the double bond geometry of the poly(propylene fumarate) or poly(propylene maleate) chains.
Collapse
Affiliation(s)
- Sahar Sallam
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
| | - Yuanyuan Luo
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Matthew L Becker
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| | - Chrys Wesdemiotis
- 1 Department of Chemistry, The University of Akron, Akron, OH, USA
- 2 Department of Polymer Science, The University of Akron, Akron, OH, USA
| |
Collapse
|
66
|
Al Ouahabi A, Amalian JA, Charles L, Lutz JF. Mass spectrometry sequencing of long digital polymers facilitated by programmed inter-byte fragmentation. Nat Commun 2017; 8:967. [PMID: 29042552 PMCID: PMC5645402 DOI: 10.1038/s41467-017-01104-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
In the context of data storage miniaturization, it was recently shown that digital information can be stored in the monomer sequences of non-natural macromolecules. However, the sequencing of such digital polymers is currently limited to short chains. Here, we report that intact multi-byte digital polymers can be sequenced in a moderate resolution mass spectrometer and that full sequence coverage can be attained without requiring pre-analysis digestion or the help of sequence databases. In order to do so, the polymers are designed to undergo controlled fragmentations in collision-induced dissociation conditions. Each byte of the sequence is labeled by an identification tag and a weak alkoxyamine group is placed between 2 bytes. As a consequence of this design, the NO-C bonds break first upon collisional activation, thus leading to a pattern of mass tag-shifted intact bytes. Afterwards, each byte is individually sequenced in pseudo-MS3 conditions and the whole sequence is found.Digital information can be stored in monomer sequences of non-natural macromolecules, but only short chains can be read. Here the authors show long multi-byte digital polymers sequenced in a moderate resolution mass spectrometer. Full sequence coverage can be attained without pre-analysis digestion or the help from sequence databases.
Collapse
Affiliation(s)
- Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France
| | - Jean-Arthur Amalian
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France
| | - Laurence Charles
- Aix-Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille, France.
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg, France.
| |
Collapse
|
67
|
Burel A, Carapito C, Lutz JF, Charles L. MS-DECODER: Milliseconds Sequencing of Coded Polymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01737] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Burel
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, CNRS
UMR7178, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire
de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, CNRS
UMR7178, Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg, France
| | - Jean-François Lutz
- Institut
Charles Sadron UPR22, CNRS, Université de Strasbourg, 23 rue
du Loess, 67034 Cedex 2 Strasbourg, France
| | - Laurence Charles
- Aix
Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397 Marseille Cedex 20, France
| |
Collapse
|
68
|
He Q, Mao J, Wesdemiotis C, Quirk RP, Foster MD. Synthesis and Isomeric Characterization of Well-Defined 8-Shaped Polystyrene Using Anionic Polymerization, Silicon Chloride Linking Chemistry, and Metathesis Ring Closure. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qiming He
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Jialin Mao
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Chrys Wesdemiotis
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Roderic P. Quirk
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Mark D. Foster
- Department
of Polymer Science and ‡Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
69
|
Cecchini MM, Reale S, Manini P, d'Ischia M, De Angelis F. Modeling Fungal Melanin Buildup: Biomimetic Polymerization of 1,8-Dihydroxynaphthalene Mapped by Mass Spectrometry. Chemistry 2017; 23:8092-8098. [DOI: 10.1002/chem.201701951] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Martina Maya Cecchini
- Department of Physical and Chemical Sciences; University of L'Aquila; Via Vetoio Coppito, L'Aquila Italy
| | - Samantha Reale
- Department of Physical and Chemical Sciences; University of L'Aquila; Via Vetoio Coppito, L'Aquila Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples “Federico II”-; Faculties of Monte Sant'Angelo; Via Cinthia Naples Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples “Federico II”-; Faculties of Monte Sant'Angelo; Via Cinthia Naples Italy
| | - Francesco De Angelis
- Department of Physical and Chemical Sciences; University of L'Aquila; Via Vetoio Coppito, L'Aquila Italy
| |
Collapse
|
70
|
Fouquet T, Sato H. Improving the Resolution of Kendrick Mass Defect Analysis for Polymer Ions with Fractional Base Units. ACTA ACUST UNITED AC 2017; 6:A0055. [PMID: 28580221 PMCID: PMC5447562 DOI: 10.5702/massspectrometry.a0055] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/15/2017] [Indexed: 01/05/2023]
Abstract
The concept of a fractional base unit for the Kendrick mass defect (KMD) analysis of polymer ions is introduced for the first time. A fraction of the ethylene oxide (EO) repeat unit (namely EO/8) has been used for the KMD analysis of a poly(ethylene oxide) and found to amplify the variations of KMD between monoisotopic and 13C isotopes, producing an isotopically resolved KMD plot at full scale when the KMD plot computed with EO is fuzzy. The expansion of the KMD dimension using a fractional base unit has then been successfully used to unequivocally discriminate all the distributions from a blend of poly(ethylene oxide)s in a high resolution KMD plot calculated with EO/3 as base unit. Extending the concept of fractional base units to other repeat units, the visualization of the co-oligomers from a poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymer has been dramatically improved using a fraction of the propylene oxide repeat unit (namely PO/3) in an oligomer and isotope resolved plot. High resolution KMD plots were eventually calculated from tandem mass spectra of poly(dimethylsiloxane) ions using a fraction of the dimethylsiloxane (DMS) unit (namely DMS/6) with clearer point alignments and a discrimination of all the product ion series, out of reach of the KMD analysis using DMS. Versatile and producing high resolution KMD plots, the introduction of fractional base units is believed to be a major step towards the implementation of the KMD analysis as a routine data mining tool for mass spectrometry in polymer chemistry.
Collapse
Affiliation(s)
- Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST)
| | - Hiroaki Sato
- National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
71
|
Fouquet T, Sato H. Extension of the Kendrick Mass Defect Analysis of Homopolymers to Low Resolution and High Mass Range Mass Spectra Using Fractional Base Units. Anal Chem 2017; 89:2682-2686. [DOI: 10.1021/acs.analchem.6b05136] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroaki Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
72
|
Fouquet T, Shimada H, Maeno K, Ito K, Ozeki Y, Kitagawa S, Ohtani H, Sato H. High-resolution Kendrick Mass Defect Analysis of Poly(ethylene oxide)-based Non-ionic Surfactants and Their Degradation Products. J Oleo Sci 2017; 66:1061-1072. [DOI: 10.5650/jos.ess17096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Sustainable Chemistry
| | | | | | - Kanako Ito
- Nagoya Institute of Technology, Graduate School of Engineering, Life Science and Applied Chemistry
| | - Yuka Ozeki
- Nagoya Institute of Technology, Graduate School of Engineering, Life Science and Applied Chemistry
| | - Shinya Kitagawa
- Nagoya Institute of Technology, Graduate School of Engineering, Life Science and Applied Chemistry
| | - Hajime Ohtani
- Nagoya Institute of Technology, Graduate School of Engineering, Life Science and Applied Chemistry
| | - Hiroaki Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Sustainable Chemistry
| |
Collapse
|