51
|
Chen J, Huang BQ, Wang ZQ, Zhang XJ, Yan M. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org Lett 2019; 21:9742-9746. [DOI: 10.1021/acs.orglett.9b03911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bao-qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeng-qing Wang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
52
|
Lou TS, Bagley SW, Willis MC. Cyclic Alkenylsulfonyl Fluorides: Palladium‐Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910871] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Terry Shing‐Bong Lou
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Scott W. Bagley
- Global Medicine DesignPfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Michael C. Willis
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
53
|
Lou TS, Bagley SW, Willis MC. Cyclic Alkenylsulfonyl Fluorides: Palladium-Catalyzed Synthesis and Functionalization of Compact Multifunctional Reagents. Angew Chem Int Ed Engl 2019; 58:18859-18863. [PMID: 31613041 PMCID: PMC6972694 DOI: 10.1002/anie.201910871] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 12/18/2022]
Abstract
A series of low‐molecular‐weight, compact, and multifunctional cyclic alkenylsulfonyl fluorides were efficiently prepared from the corresponding alkenyl triflates. Palladium‐catalyzed sulfur dioxide insertion using the surrogate reagent DABSO effects sulfinate formation, before trapping with an F electrophile delivers the sulfonyl fluorides. A broad range of functional groups are tolerated, and a correspondingly large collection of derivatization reactions are possible on the products, including substitution at sulfur, conjugate addition, and N‐functionalization. Together, these attributes suggest that this method could find new applications in chemical biology.
Collapse
Affiliation(s)
- Terry Shing‐Bong Lou
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Scott W. Bagley
- Global Medicine DesignPfizer Inc.Eastern Point RoadGrotonCT06340USA
| | - Michael C. Willis
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
54
|
Zhang S, Xiong H, Lu F, Ma F, Gu Y, Ma P, Xu H, Yang G. Synthesis of N-Acyl Sulfamates from Fluorosulfonates and Potassium Trimethylsilyloxyl Imidates. J Org Chem 2019; 84:15380-15388. [DOI: 10.1021/acs.joc.9b02394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
55
|
Moku B, Fang WY, Leng J, Kantchev EAB, Qin HL. Rh(I)–Diene-Catalyzed Addition of (Hetero)aryl Functionality to 1,3-Dienylsulfonyl Fluorides Achieving Exclusive Regioselectivity and High Enantioselectivity: Generality and Mechanism. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Eric Assen B. Kantchev
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
56
|
Leng J, Alharbi NS, Qin HL. Construction of α-(Hetero)aryl Ethenesulfonyl Fluorides for SuFEx Click Chemistry. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Njud S. Alharbi
- Biotechnology Research group; Deportment of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| |
Collapse
|
57
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
58
|
Liu J, Wang SM, Alharbi NS, Qin HL. Installation of -SO 2F groups onto primary amides. Beilstein J Org Chem 2019; 15:1907-1912. [PMID: 31467612 PMCID: PMC6693406 DOI: 10.3762/bjoc.15.186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
A protocol of SO2F2-mediated installation of sulfonyl fluoride onto primary amides has been developed providing a new portal to sulfur(VI) fluoride exchange (SuFEx) click chemistry. The generated molecules contain pharmaceutically important amide and -SO2F moieties for application in the discovery of new therapeutics.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Njud S Alharbi
- Biotechnology Research group, Deportment of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
59
|
Xu R, Xu T, Yang M, Cao T, Liao S. A rapid access to aliphatic sulfonyl fluorides. Nat Commun 2019; 10:3752. [PMID: 31434898 PMCID: PMC6704106 DOI: 10.1038/s41467-019-11805-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
The past few years have witnessed a fast-growing research interest on the study of sulfonyl fluorides as reactive probes in chemical biology and molecular pharmacology, which raises an urgent need for the development of effective synthetic methods to expand the toolkit. Herein, we present the invention of a facile and general approach for the synthesis of aliphatic sulfonyl fluorides via visible-light-mediated decarboxylative fluorosulfonylethylation. The method is based on abundant carboxylic acid feed stock, applicable to various alkyl carboxylic acids including primary, secondary, and tertiary acids, and is also suitable for the modification of natural products like amino acids, peptides, as well as drugs, forging a rapid, metal-free approach to build sulfonyl fluoride compound libraries of considerable structural diversity. Further diversification of the SO2F-containing products is also demonstrated, which allows for access to a range of pharmaceutically important motifs such as sultam, sulfonate, and sulfonamide. Sulfonyl fluorides are important probes in chemical biology and molecular pharmacology. Here, the authors report a mild visible light-mediated decarboxylative fluorosulfonylethylation for the synthesis of aliphatic sulfonyl fluorides from a wide range of carboxylic acids, including natural products and drug derivatives.
Collapse
Affiliation(s)
- Ruting Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianxiao Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianpeng Cao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Saihu Liao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
60
|
Liu H, Moku B, Li F, Ran J, Han J, Long S, Zha G, Qin H. Stereoselective Construction of Nitrile‐Substituted Cyclopropanes from 2‐Substituted Ethenesulfonyl Fluorides
via
Carbon‐Sulfur Bond Cleavage. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
| | - Balakrishna Moku
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Fei Li
- School of EngineeringChina Pharmaceutical University Nanjing 210009 People's Republic of China
| | - Jiabing Ran
- Key Laboratory of Analytical Chemistry for Biology and Medicine, Ministry of Education, College of Chemistry and Molecular SciencesWuhan University Wuhan 430072 People's Republic of China
| | - Jinsong Han
- School of EngineeringChina Pharmaceutical University Nanjing 210009 People's Republic of China
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
| | - Gao‐Feng Zha
- Key Laboratory for Green Chemical Process of Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology; Hubei Engineering Research Center for Advanced Fine Chemicals; School of Chemical Engineering and PharmacyWuhan Institute of Technology 206 1st Rd Optics Valley, East Lake New Technology Development District Wuhan 430205 People's Republic of China
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Hua‐Li Qin
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
61
|
Radical scavenging and anti-inflammatory activities of (hetero)arylethenesulfonyl fluorides: Synthesis and structure-activity relationship (SAR) and QSAR studies. Bioorg Chem 2019; 89:103015. [DOI: 10.1016/j.bioorg.2019.103015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/21/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
|
62
|
Subhedar DD, Mishra AA, Bhanage BM. N
‐Methoxybenzamide: A Versatile Directing Group for Palladium‐, Rhodium‐ and Ruthenium‐Catalyzed C−H Bond Activations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900405] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ashish A. Mishra
- Department of ChemistryInstitute of Chemical Technology, Matunga Mumbai 400019 India
| | | |
Collapse
|
63
|
Huang YM, Wang SM, Leng J, Moku B, Zhao C, Alharbi NS, Qin HL. Converting (E)-(Hetero)arylethanesulfonyl Fluorides to (Z)-(Hetero)arylethanesulfonyl Fluorides Under Light Irradiation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu-Mei Huang
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Chuang Zhao
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Njud S. Alharbi
- Biotechnology Research group; Department of Biological Sciences; Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and; School of Chemistry, Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| |
Collapse
|
64
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF 4 )-Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019; 58:8029-8033. [PMID: 30998840 PMCID: PMC6546515 DOI: 10.1002/anie.201902489] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/08/2022]
Abstract
We report here the development of a suite of biocompatible SuFEx transformations from the SOF4 -derived iminosulfur oxydifluoride hub in aqueous buffer conditions. These biocompatible SuFEx reactions of iminosulfur oxydifluorides (R-N=SOF2 ) with primary amines give sulfamides (8 examples, up to 98 %), while the reaction with secondary amines furnish sulfuramidimidoyl fluoride products (8 examples, up to 97 %). Likewise, under mild buffered conditions, phenols react with the iminosulfur oxydifluorides (Ar-N=SOF2 ) to produce sulfurofluoridoimidates (13 examples, up to 99 %), which can themselves be further modified by nucleophiles. These transformations open the potential for asymmetric and trisubstituted linkages projecting from the sulfur(VI) center, including versatile S-N and S-O connectivity (9 examples, up to 94 %). Finally, the SuFEx bioconjugation of iminosulfur oxydifluorides to amine-tagged single-stranded DNA and to BSA protein demonstrate the potential of SOF4 -derived SuFEx click chemistry in biological applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Grant A L Bare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
65
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF
4
)‐Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- Department of Chemistry Fudan University Shanghai 200438 P. R. China
| | - Hua Wang
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Grant A. L. Bare
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John E. Moses
- La Trobe Institute For Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
66
|
Chen XY, Wu Y, Zhou J, Wang P, Yu JQ. Synthesis of β-Arylethenesulfonyl Fluoride via Pd-Catalyzed Nondirected C–H Alkenylation. Org Lett 2019; 21:1426-1429. [DOI: 10.1021/acs.orglett.9b00165] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Yue Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P.R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, P.R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
| | - Jin-Quan Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Or-ganic Chemistry, CAS 345 Lingling Road, Shanghai 200032, P.R. China
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
67
|
Zhang X, Moku B, Leng J, Rakesh KP, Qin HL. 2-Azidoethane-1-sulfonylfluoride (ASF): A VersatileBis-clickable Reagent for SuFEx and CuAAC Click Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan 430070 China
| |
Collapse
|
68
|
Zhao C, Zha GF, Fang WY, Rakesh KP, Qin HL. Construction of Di(hetero)arylmethanes Through Pd-Catalyzed Direct Dehydroxylative Cross-Coupling of Benzylic Alcohols and Aryl Boronic Acids Mediated by Sulfuryl Fluoride (SO2
F2
). European J Org Chem 2019. [DOI: 10.1002/ejoc.201801888] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chuang Zhao
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 430070 Wuhan Hubei Province People's Republic of China
| |
Collapse
|
69
|
Jiang Y, Alharbi NS, Sun B, Qin HL. Facile one-pot synthesis of sulfonyl fluorides from sulfonates or sulfonic acids. RSC Adv 2019; 9:13863-13867. [PMID: 35519565 PMCID: PMC9064029 DOI: 10.1039/c9ra02531f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
A facile cascade process for directly transforming the abundant and inexpensive sulfonates (or sulfonic acids) to the highly valuable sulfonyl fluorides was developed. This new protocol features mild reaction conditions using readily available and easy-to-operate reagents. A diverse set of sulfonyl fluorides was prepared facilitating the enrichment of the sulfonyl fluoride library. A mild one-pot protocol for directly converting sulfonates or sulfonic acids into sulfonyl fluorides was developed.![]()
Collapse
Affiliation(s)
- Ying Jiang
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Njud S. Alharbi
- Biotechnology Research Group
- Deportment of Biological Sciences
- Faculty of Science
- King Abdulaziz University
- Jeddah
| | - Bing Sun
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Hua-Li Qin
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| |
Collapse
|
70
|
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. The growing applications of SuFEx click chemistry. Chem Soc Rev 2019; 48:4731-4758. [DOI: 10.1039/c8cs00960k] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SuFEx (Sulfur Fluoride Exchange) is a modular, next generation family of click reactions, geared towards the rapid and reliable assembly of functional molecules.
Collapse
Affiliation(s)
- A. S. Barrow
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - C. J. Smedley
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Q. Zheng
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - S. Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - J. Dong
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - J. E. Moses
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
71
|
Fang WY, Zha GF, Zhao C, Qin HL. Regioselective installation of fluorosulfate (–OSO2F) functionality into aromatic C(sp2)–H bonds for the construction of para-amino-arylfluorosulfates. Chem Commun (Camb) 2019; 55:6273-6276. [DOI: 10.1039/c9cc02659b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The synthesis of novel para-amino-arylfluorosulfates was achieved through installing fluorosulfate functionality into aromatic C(sp2)–H bonds mediated by sulfuryl fluoride.
Collapse
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science Wuhan University of Technology
- Wuhan 430070
- China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science Wuhan University of Technology
- Wuhan 430070
- China
| | - Chuang Zhao
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science Wuhan University of Technology
- Wuhan 430070
- China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
72
|
Discovery of novel arylethenesulfonyl fluorides as potential candidates against methicillin-resistant of Staphylococcus aureus (MRSA) for overcoming multidrug resistance of bacterial infections. Eur J Med Chem 2019; 162:364-377. [DOI: 10.1016/j.ejmech.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022]
|
73
|
Arupula SK, Gudimella SK, Guin S, Mobin SM, Samanta S. Chemoselective cyclization of N-sulfonyl ketimines with ethenesulfonyl fluorides: access to trans-cyclopropanes and fused-dihydropyrroles. Org Biomol Chem 2019; 17:3451-3461. [DOI: 10.1039/c9ob00433e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stereo- and chemoselective ring closing reaction of N-sulfonyl ketimines with ethene sulfonyl fluorides promoted by DBU is reported. This selective C–C vs. C–N bond cyclization process delivers to trans-cyclopropanes (dr up to ≤99 : 1) and fused-dihydropyrroles.
Collapse
Affiliation(s)
| | | | - Soumitra Guin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- 453552, Indore
- India
| |
Collapse
|
74
|
Mishra AA, Subhedar D, Bhanage BM. Nickel, Cobalt and Palladium Catalysed C−H Functionalization of Un‐Activated C(sp
3
)−H Bond. CHEM REC 2018; 19:1829-1857. [DOI: 10.1002/tcr.201800093] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Ashish A. Mishra
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Dnyaneshwar Subhedar
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| | - Bhalchandra M. Bhanage
- Department of ChemistryInstitute of Chemical Technology, Matunga Nathalal Parekh Marg Mumbai Maharashtra
| |
Collapse
|
75
|
Chen X, Zha GF, Wang JQ, Liu XH. Ethenesulfonyl fluoride derivatives as telomerase inhibitors: structure-based design, SAR, and anticancer evaluation in vitro. J Enzyme Inhib Med Chem 2018; 33:1266-1270. [PMID: 30139286 PMCID: PMC6116703 DOI: 10.1080/14756366.2018.1484735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Based on our previous docking model, in order to carry out more rational drug design, totally 82 vinyl sulfonyl fluorides, including some 2-(hetero)arylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides derivatives as potential human telomerase inhibitors were designed and synthesised. The in vitro anticancer activity assay showed that compound 57 (1E,3E)-4-(4-((E)-2-(fluorosulfonyl)vinyl)phenyl)buta-1,3-diene-1-sulfonyl fluoride exhibited high activity against A375 and MDA-MB-231 cell lines with IC50 1.58 and 3.22 µM, but it manifested obvious un-toxic effect against GES-1 and L-02 with IC50 with IC50 values less than 2.00 mM. By the modified TRAP assay, some compounds including 57 exhibited potent inhibitory activities against telomerase with IC50 values of 0.71–0.97 µM.
Collapse
Affiliation(s)
- Xing Chen
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Gao-Feng Zha
- b School of Chemistry, Chemical Engineering and Life Science , Wuhan University of Technology , Wuhan , P. R. China
| | - Jie Quan Wang
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China
| | - Xin-Hua Liu
- a School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases , Anhui Institute of Innovative Drugs, Anhui Medical University , Hefei , P. R. China.,c School of Material Science Chemical Engineering , ChuZhou University , ChuZhou , P. R. China
| |
Collapse
|
76
|
Abdul Fattah T, Saeed A, Albericio F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
77
|
Wang SM, Moku B, Leng J, Qin HL. Rh-Catalyzed Carboxylates Directed C-H Activation for the Synthesis of ortho
-Carboxylic 2-Arylethenesulfonyl Fluorides: Access to Unique Electrophiles for SuFEx Click Chemistry. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800762] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shi-Meng Wang
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Balakrishna Moku
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Jing Leng
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| | - Hua-Li Qin
- School of Chemistry; Chemical Engineering and Life Science; and State Key Laboratory of Silicate Materials for Architectures; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan China
| |
Collapse
|
78
|
Ravindar L, Bukhari SNA, Rakesh KP, Manukumar HM, Vivek HK, Mallesha N, Xie ZZ, Qin HL. Aryl fluorosulfate analogues as potent antimicrobial agents: SAR, cytotoxicity and docking studies. Bioorg Chem 2018; 81:107-118. [PMID: 30118982 DOI: 10.1016/j.bioorg.2018.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
A series of aryl fluorosulfate analogues (1-37) were synthesized and tested for in vitro antibacterial and antifungal studies, and validated by docking studies. The compounds 9, 12, 14, 19, 25, 26, 35, 36 and 37 exhibited superior antibacterial potency against tested bacterial strains, while compounds 2, 4, 5, 15, 35, 36 and 37 were found to have better antifungal activity against tested fungal strains, compared to standard antibiotic gentamicin and ketoconazole respectively. Among all the synthesized 37 analogs, compounds 25, 26, 35, 36 and 37 displayed excellent anti-biofilm property against Staphylococcus aureus. The structure-activity relationship (SAR) revealed that the antimicrobial activity depends upon the presence of -OSO2F group and slender effect of different substituent's on the phenyl rings. The electron donating (OCH3) groups in analogs increase the antibacterial activity, and interestingly the electron withdrawing (Cl, NO2, F and Br) groups increase the antifungal activity (except compound 35, 36 and 37). The mechanism of potent compounds showed membrane damage on bacteria confirmed by SEM. Compounds 35, 36 and 37 exhibited highest glide g-scores in molecular docking studies and validated the biocidal property.
Collapse
Affiliation(s)
- Lekkala Ravindar
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - S N A Bukhari
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - H M Manukumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - H K Vivek
- Analytical Research and Development, Syngene International Ltd, Biocon Park, Bommasandra Industrial Estate, Bangaluru 560099, Karnataka, India
| | - N Mallesha
- SRI RAM CHEM, R & D Centre, Plot No. 31, JCK Industrial Park, Belagola Industrial Area, Mysore 570016, Karnataka, India
| | - Zhi-Zhong Xie
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
79
|
Affiliation(s)
- Gqwetha Ncube
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Malcolm P. Huestis
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
80
|
Li C, Wang SM, Qin HL. A Rh-Catalyzed Air and Moisture Tolerable Aldehyde (Ketone)-Directed Fluorosulfonylvinylation of Aryl C(sp2)–H Bonds. Org Lett 2018; 20:4699-4703. [DOI: 10.1021/acs.orglett.8b02037] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Li
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
81
|
Affiliation(s)
- Praveen K. Chinthakindi
- Department of Medicinal Chemistry; Drug Design and Discovery; Uppsala University; Box 574 SE-75123 Uppsala Sweden
| | - Per I. Arvidsson
- Catalysis and Peptide Research Unit; University of KwaZulu Natal; Durban South Africa
- Science for Life Laboratory, Drug Discovery and Development Platform and Division of Translational Medicine and Chemical Biology; Department of Medical Biochemistry and Biophysics; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
82
|
Mykhalchuk VL, Yarmolchuk VS, Doroschuk RO, Tolmachev AA, Grygorenko OO. [3+2] Cycloaddition of an Azomethyne Ylide and Vinyl Sulfonyl Fluorides ― an Approach to Pyrrolidine-3-sulfonyl Fluorides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Volodymyr L. Mykhalchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Vladimir S. Yarmolchuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Roman O. Doroschuk
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Andrey A. Tolmachev
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd.; Chervonotkatska Street 78 02094 Kyiv Ukraine
- National Taras Shevchenko University of Kyiv; Volodymyrska Street 60 01601 Kyiv Ukraine
| |
Collapse
|
83
|
Leng J, Qin HL. 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable reagent, and its application for regioselective construction of 5-sulfonylfluoro isoxazoles. Chem Commun (Camb) 2018; 54:4477-4480. [PMID: 29658035 DOI: 10.1039/c8cc00986d] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluorosulfonylation reagent 1-bromoethene-1-sulfonyl fluoride was developed (1-Br-ESF). This unique reagent possesses three addressable handles (vinyl, bromide, and sulfonyl fluoride) and has great potential to function as a tris-electrophile and as a sulfur(vi) fluoride exchange (SuFEx) clickable material to enrich the SuFEx tool cabinet. The application of this reagent for regioselective synthesis of 5-sulfonylfluoro isoxazoles has been realized through a [3+2] cycloaddition with N-hydroxybenzimidoyl chlorides. This practical protocol provides a general and direct route to functionalized isoxazoles possessing sulfonyl fluoride moieties.
Collapse
Affiliation(s)
- Jing Leng
- School of Chemistry, Chemical Engineering and Life Science, and State Key Laboratory of Silicate Materials for Architectures Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province 430070, P. R. China.
| | | |
Collapse
|
84
|
Liu M, Yang P, Karunananda MK, Wang Y, Liu P, Engle KM. C(alkenyl)-H Activation via Six-Membered Palladacycles: Catalytic 1,3-Diene Synthesis. J Am Chem Soc 2018; 140:5805-5813. [PMID: 29630359 DOI: 10.1021/jacs.8b02124] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A catalytic method to prepare highly substituted 1,3-dienes from two different alkenes is described using a directed, palladium(II)-mediated C(alkenyl)-H activation strategy. The transformation exhibits broad scope across three synthetically useful substrate classes masked with suitable bidentate auxiliaries (4-pentenoic acids, allylic alcohols, and bishomoallylic amines) and tolerates internal nonconjugated alkenes, which have traditionally been a challenging class of substrates in this type of chemistry. Catalytic turnover is enabled by either MnO2 as the stoichiometric oxidant or co-catalytic Co(OAc)2 and O2 (1 atm). Experimental and computational studies were performed to elucidate the preference for C(alkenyl)-H activation over other potential pathways. As part of this effort, a structurally unique alkenylpalladium(II) dimer was isolated and characterized.
Collapse
Affiliation(s)
- Mingyu Liu
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Pusu Yang
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Malkanthi K Karunananda
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Yanyan Wang
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Peng Liu
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Keary M Engle
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
85
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF 4 ) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018; 57:1939-1943. [PMID: 29314580 PMCID: PMC6005182 DOI: 10.1002/anie.201712145] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Thionyl tetrafluoride (SOF4 ) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur-oxygen and sulfur-nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur-carbon links at the sulfur center of SOF4 -derived iminosulfur oxydifluorides (R1 -N=SOF2 ). This method provides rapid and modular access to sulfonimidoyl fluorides (R1 -N=SOFR2 ), another array of versatile SuFEx connectors with readily tunable reactivity of the S-F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.
Collapse
Affiliation(s)
- Bing Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Bundoora, Melbourne, Victoria, 3083, Australia
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
86
|
Gao B, Li S, Wu P, Moses JE, Sharpless KB. SuFEx Chemistry of Thionyl Tetrafluoride (SOF4
) with Organolithium Nucleophiles: Synthesis of Sulfonimidoyl Fluorides, Sulfoximines, Sulfonimidamides, and Sulfonimidates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bing Gao
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Peng Wu
- Department of Molecular Medicine; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - John E. Moses
- La Trobe Institute For Molecular Science; La Trobe University; Bundoora, Melbourne Victoria 3083 Australia
| | - K. Barry Sharpless
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
87
|
Pd-Catalyzed Mizoroki-Heck Reactions Using Fluorine-Containing Agents as the Cross-Coupling Partners. Catalysts 2018. [DOI: 10.3390/catal8010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
88
|
Wang SM, Li C, Leng J, Bukhari SNA, Qin HL. Rhodium(iii)-catalyzed Oxidative Coupling of N-Methoxybenzamides and Ethenesulfonyl fluoride: a C–H Bond Activation Strategy for the Preparation of 2-Aryl ethenesulfonyl fluorides and Sulfonyl fluoride Substituted γ-Lactams. Org Chem Front 2018. [DOI: 10.1039/c7qo01128h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The synthesis of a new class of 2-aryl ethenesulfonyl fluorides was achieved via a rhodium(iii)-catalyzed sp2 C–H bond activation strategy.
Collapse
Affiliation(s)
- Shi-Meng Wang
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Chen Li
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jing Leng
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Syed Nasir Abbas Bukhari
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Hua-Li Qin
- School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
89
|
Chen X, Zha GF, Fang WY, Rakesh KP, Qin HL. A portal to a class of novel sultone-functionalized pyridines via an annulative SuFEx process employing earth abundant nickel catalysts. Chem Commun (Camb) 2018; 54:9011-9014. [DOI: 10.1039/c8cc04032j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient Ni2+ promoted process for the synthesis of a class of structurally unique heterocycles containing both pyridines and sultones was developed through a SuFEx annulation. This protocol serves as an irreplaceable asset for medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| |
Collapse
|
90
|
Chen X, Zha GF, Bare GAL, Leng J, Wang SM, Qin HL. Synthesis of a Class of Fused δ-Sultone HeterocyclesviaDBU-Catalyzed Direct Annulative SuFEx Click of Ethenesulfonyl Fluorides and Pyrazolones or 1,3-Dicarbonyl Compounds. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700887] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xing Chen
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Grant A. L. Bare
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla, CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Shi-Meng Wang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China, Fax: +86 27 87749300
| |
Collapse
|
91
|
Zha GF, Bare GAL, Leng J, Shang ZP, Luo Z, Qin HL. Gram-Scale Synthesis of β-(Hetero)arylethenesulfonyl Fluorides via
a Pd(OAc)2
Catalyzed Oxidative Heck Process with DDQ or AgNO3
as an Oxidant. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700688] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Grant A. L. Bare
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla, CA 92037 USA
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhen-Peng Shang
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Zhixiong Luo
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road Wuhan Hubei Province 430070 People's Republic of China
| |
Collapse
|