51
|
Nobile E, Castanheiro T, Besset T. Radical-Promoted Distal C-H Functionalization of C(sp 3 ) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021; 60:12170-12191. [PMID: 32897632 DOI: 10.1002/anie.202009995] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Due to their unique properties, fluorinated scaffolds are pivotal compounds in pharmaceuticals, agrochemicals, and materials science. Over the last years, the development of versatile strategies for the selective synthesis of fluorinated molecules by direct C-H bond functionalization has attracted a lot of attention. In particular, the design of novel transformations based on a radical process was a bottleneck for distal C-H functionalization reactions, offering synthetic solutions for the selective introduction of fluorinated groups. This Minireview highlights the major contributions in this blossoming field. The development of new methodologies for the remote functionalization of aliphatic derivatives with various fluorinated groups based on a 1,5-hydrogen atom transfer process and a β-fragmentation reaction will be showcased and discussed.
Collapse
Affiliation(s)
- Enzo Nobile
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Castanheiro
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
52
|
Wang W, Song JR, Li ZY, Zhong T, Chi Q, Ren H, Pan WD. Copper-catalyzed aerobic oxidative radical alkoxycyclization of tryptamines to access 3-alkoxypyrroloindolines. RSC Adv 2021; 11:18080-18083. [PMID: 35480191 PMCID: PMC9033248 DOI: 10.1039/d1ra02679h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
We report a copper-catalyzed alkoxycyclization of tryptamine derivatives with O2 as the sole oxidant, leading to a variety of C3a-alkoxypyrroloindolines in good yields with high diastereoselectivities. This reaction involves an interesting double catalytic cycle in which copper-catalyzed carboamination cyclization is favored to form the C-3 radical pyrrolidinoindoline intermediate, then a copper-catalytic radical alkoxylation reaction proceeds smoothly.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmaceutical Sciences, Guizhou University Huaxi Avenue South Guiyang 550025 P. R. China
| | - Jun-Rong Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang 550014 China
| | - Zhi-Yao Li
- School of Pharmaceutical Sciences, Guizhou University Huaxi Avenue South Guiyang 550025 P. R. China
| | - Ting Zhong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang 550014 China
| | - Qin Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang 550014 China
| | - Hai Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang 550014 China
| | - Wei-Dong Pan
- School of Pharmaceutical Sciences, Guizhou University Huaxi Avenue South Guiyang 550025 P. R. China .,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences Guiyang 550014 China
| |
Collapse
|
53
|
Abstract
Minisci-type reactions have been widely known as reactions that involve the addition
of carbon-centered radicals to basic heteroarenes followed by formal hydrogen atom loss.
While the originally developed protocols for radical generation remain in active use today, in
recent years, the new array of radical generation strategies have allowed the use of a wider
variety of radical precursors that often operate under milder and more benign conditions. New
transformations based on free radical reactivity are now available to a synthetic chemist, to
utilize a Minisci-type reaction. Radical-generation methods based on photoredox catalysis
and electrochemistry, which utilize thermal cleavage or the in situ generation of reactive radical
precursors, have become popular approaches. Our review will cover the remarkable literature
that has been reported on this topic in recent 5 years, from 2015-01 to 2020-01, in an
attempt to provide guidance to the synthetic chemist on both the challenges that need to be overcome and the applications
in organic synthesis.
Collapse
Affiliation(s)
- Wengui Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shoufeng Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| |
Collapse
|
54
|
Yang Z, Niu Y, He X, Chen S, Liu S, Li Z, Chen X, Zhang Y, Lan Y, Shen X. Tuning the reactivity of alkoxyl radicals from 1,5-hydrogen atom transfer to 1,2-silyl transfer. Nat Commun 2021; 12:2131. [PMID: 33837201 PMCID: PMC8035221 DOI: 10.1038/s41467-021-22382-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023] Open
Abstract
Controlling the reactivity of reactive intermediates is essential to achieve selective transformations. Due to the facile 1,5-hydrogen atom transfer (HAT), alkoxyl radicals have been proven to be important synthetic intermediates for the δ-functionalization of alcohols. Herein, we disclose a strategy to inhibit 1,5-HAT by introducing a silyl group into the α-position of alkoxyl radicals. The efficient radical 1,2-silyl transfer (SiT) allows us to make various α-functionalized products from alcohol substrates. Compared with the direct generation of α-carbon radicals from oxidation of α-C-H bond of alcohols, the 1,2-SiT strategy distinguishes itself by the generation of alkoxyl radicals, the tolerance of many functional groups, such as intramolecular hydroxyl groups and C-H bonds next to oxygen atoms, and the use of silyl alcohols as limiting reagents.
Collapse
Affiliation(s)
- Zhaoliang Yang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Yunhong Niu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, People's Republic of China
| | - Suo Chen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Shanshan Liu
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Zhengyu Li
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Xiang Chen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Yunxiao Zhang
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, People's Republic of China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Xiao Shen
- The Institute for Advanced Studies, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
55
|
Radhoff N, Studer A. Functionalization of α-C(sp 3 )-H Bonds in Amides Using Radical Translocating Arylating Groups. Angew Chem Int Ed Engl 2021; 60:3561-3565. [PMID: 33215815 PMCID: PMC7898318 DOI: 10.1002/anie.202013275] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Indexed: 01/09/2023]
Abstract
α-C-H arylation of N-alkylamides using 2-iodoarylsulfonyl radical translocating arylating (RTA) groups is reported. The method allows the construction of α-quaternary carbon centers in amides. Various mono- and disubstituted RTA-groups are applied to the arylation of primary, secondary, and tertiary α-C(sp3 )-H-bonds. These radical transformations proceed in good to excellent yields and the cascades comprise a 1,6-hydrogen atom transfer, followed by a 1,4-aryl migration with subsequent SO2 extrusion.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
56
|
Li W, Chen J, Zhu D, Xia J. Fe‐Catalyzed Pictet‐Spengler‐Type
Cyclization
via
Selective
Four‐Electron
Reductive Functionalization of
CO
2. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen‐Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Dao‐Yong Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Ji‐Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou Gansu 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
57
|
Nobile E, Castanheiro T, Besset T. Radical‐Promoted Distal C−H Functionalization of C(sp
3
) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Enzo Nobile
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Castanheiro
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
58
|
Wang M, Yin C, Hu P. Ag-Catalyzed Remote Unactivated C(sp 3)-H Heteroarylation of Free Alcohols in Water. Org Lett 2021; 23:722-726. [PMID: 33439025 DOI: 10.1021/acs.orglett.0c03944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalyzed by silver salt, the unactivated C(sp3)-H heteroarylation of free alcohol at the δ position is realized under gentle thermal conditions in water through a radical procedure. Both protonic acids and Lewis acids are found to be efficient for activating pyridines for this Minisci-type reaction. The reaction enjoys a good functional group tolerance and substrate scope. Terminal secondary and tertiary alcohols are suitable substrates. With either electron-donating or -withdrawing groups, the electron-deficient heteroarene substrates generate the target products in moderate to good yields. A gram-scale experiment can be successfully operated. A radical blocking experiment and a radical clock experiment are studied to support the radical mechanism.
Collapse
Affiliation(s)
- Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Changzhen Yin
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
59
|
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianbo Du
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xiaokun Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xin Wang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Qing An
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Xu He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Hui Pan
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Science Beijing 100049 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
60
|
Du J, Yang X, Wang X, An Q, He X, Pan H, Zuo Z. Photocatalytic Aerobic Oxidative Ring Expansion of Cyclic Ketones to Macrolactones by Cerium and Cyanoanthracene Catalysis. Angew Chem Int Ed Engl 2021; 60:5370-5376. [PMID: 33259085 DOI: 10.1002/anie.202012720] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/16/2020] [Indexed: 12/17/2022]
Abstract
We describe a cerium-catalyzed aerobic oxidative ring expansion for the expedient construction of synthetically challenging macrolactones under visible-light conditions. Cyanoanthracene has been employed as co-catalyst to accelerate the turnover of the cerium cycle leading to a fast conversion within 20 min of irradiation. Taking advantage of the high efficiency and operationally simple conditions, a collection of over 100 macrolactones equipped with ring systems ranging from 9- to 19-membered macrocycles have been prepared from simple building blocks. Moreover, the enabling potential of this strategy to simplify the generation of molecular complexity has been demonstrated through the concise synthesis of sonnerlactone.
Collapse
Affiliation(s)
- Jianbo Du
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xiaokun Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Xu He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
61
|
Guo W, Wang Q, Zhu J. Visible light photoredox-catalysed remote C–H functionalisation enabled by 1,5-hydrogen atom transfer (1,5-HAT). Chem Soc Rev 2021; 50:7359-7377. [DOI: 10.1039/d0cs00774a] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of heteroatom-centred radicals followed by intramolecular 1,5-HAT and functionalisation of the translocated carbon-centred radical is an efficient way to functionalize chemo- and regio-selectively the remote unactivated C(sp3)–H bond.
Collapse
Affiliation(s)
- Weisi Guo
- College of Chemistry & Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao
- P. R. China
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering
- École Polytechnique Fédérale de Lausanne
- EPFL-SB-ISIC-LSPN
- 1015 Lausanne
- Switzerland
| |
Collapse
|
62
|
Zou Z, Zhang W, Wang Y, Pan Y. Recent advances in electrochemically driven radical fluorination and fluoroalkylation. Org Chem Front 2021. [DOI: 10.1039/d1qo00054c] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical fluorination (ECF) refers to the introduction of fluorine-containing moieties into organic molecules under electrochemical conditions.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
63
|
Huang A, Han Y, Wu P, Gao Y, Huo Y, Chen Q, Li X. Ligand-accelerated site-selective Csp 2–H and Csp 3–H alkynylations of alcohols via Pd( ii) catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo01095f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ligand accelerated site-selective C–H alkynylation, including secondary and tertiary Csp3–H alkynylation of weakly coordinated yet synthetically promising alcohols, via putative 6, 7 and 8-membered palladacycle intermediates, was developed.
Collapse
Affiliation(s)
- Aidong Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yishen Han
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Peiqing Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| |
Collapse
|
64
|
Cao Z, Zhang H, Wu X, Li Y, Zhu C. Radical heteroarylation of unactivated remote C(sp 3)–H bonds via intramolecular heteroaryl migration. Org Chem Front 2021. [DOI: 10.1039/d1qo01209f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Described herein is the radical-mediated heteroarylation of unactivated remote C(sp3)–H bonds via intramolecular heteroaryl migration.
Collapse
Affiliation(s)
- Zhu Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Yahong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
65
|
Radhoff N, Studer A. Radikalische Funktionalisierung von α‐C(sp
3
)‐H‐Bindungen in Amiden durch Translokations‐induzierende arylierende Gruppen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
66
|
Azizollahi H, García-López JA. Recent Advances on Synthetic Methodology Merging C-H Functionalization and C-C Cleavage. Molecules 2020; 25:E5900. [PMID: 33322116 PMCID: PMC7764206 DOI: 10.3390/molecules25245900] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The functionalization of C-H bonds has become a major thread of research in organic synthesis that can be assessed from different angles, for instance depending on the type of catalyst employed or the overall transformation that is carried out. This review compiles recent progress in synthetic methodology that merges the functionalization of C-H bonds along with the cleavage of C-C bonds, either in intra- or intermolecular fashion. The manuscript is organized in two main sections according to the type of substrate in which the cleavage of the C-C bond takes place, basically attending to the scission of strained or unstrained C-C bonds. Furthermore, the related research works have been grouped on the basis of the mechanistic aspects of the different transformations that are carried out, i.e.,: (a) classic transition metal catalysis where organometallic intermediates are involved; (b) processes occurring via radical intermediates generated through the use of radical initiators or photochemically; and (c) reactions that are catalyzed or mediated by suitable Lewis or Brønsted acid or bases, where molecular rearrangements take place. Thus, throughout the review a wide range of synthetic approaches show that the combination of C-H and C-C cleavage in single synthetic operations can serve as a platform to achieve complex molecular skeletons in a straightforward manner, among them interesting carbo- and heterocyclic scaffolds.
Collapse
Affiliation(s)
- Hamid Azizollahi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 91775-1436, Iran
| | | |
Collapse
|
67
|
Wang Y, Zhang JX, Shu W. Cu-Catalyzed Remote Transarylation of Amines via Unstrained C–C Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
| | - Jian-Xin Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
| |
Collapse
|
68
|
Barday M, Blieck R, Ruyet L, Besset T. Remote trifluoromethylthiolation of alcohols under visible light. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Tsui E, Wang H, Knowles RR. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 2020; 11:11124-11141. [PMID: 33384861 PMCID: PMC7747465 DOI: 10.1039/d0sc04542j] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alkoxy radicals have long been recognized as powerful synthetic intermediates with well-established reactivity patterns. Due to the high bond dissociation free energy of aliphatic alcohol O-H bonds, these radicals are difficult to access through direct homolysis, and conventional methods have instead relied on activation of O-functionalized precursors. Over the past decade, however, numerous catalytic methods for the direct generation of alkoxy radicals from simple alcohol starting materials have emerged and created opportunities for the development of new transformations. This minireview discusses recent advances in catalytic alkoxy radical generation, with particular emphasis on progress toward the direct activation of unfunctionalized alcohols enabled by transition metal and photoredox catalysis.
Collapse
Affiliation(s)
- Elaine Tsui
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Huaiju Wang
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Robert R Knowles
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| |
Collapse
|
70
|
Rivero AR, Fodran P, Ondrejková A, Wallentin CJ. Alcohol Etherification via Alkoxy Radicals Generated by Visible-Light Photoredox Catalysis. Org Lett 2020; 22:8436-8440. [PMID: 33040526 PMCID: PMC7653678 DOI: 10.1021/acs.orglett.0c03058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
A mechanistically divergent method
is described that, employing
a commercially available hypervalent iodine(III) reagent, generates
alkoxy radicals from 1°, 2°, and 3° alcohols and allows
their use in the functionalization of C(sp3)–H and
C(sp2)–H bonds. This visible-light photoredox catalysis
produces alkyl ethers via 1,5/6-hydrogen atom transfer or aryl ethers
via 1,5-addition. This mild methodology provides a practical strategy
for the synthesis of acetals, orthoesters, tetrahydrofurans, and chromanes.
Collapse
Affiliation(s)
- Alexandra R Rivero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Peter Fodran
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Alica Ondrejková
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Carl-Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Gothenburg, Sweden
| |
Collapse
|
71
|
Zhang Z, Zhang L, Zhang X, Yang J, Yin Y, Jiang Y, Zeng C, Lu G, Yang Y, Mo F. Anodic oxidation triggered divergent 1,2- and 1,4-group transfer reactions of β-hydroxycarboxylic acids enabled by electrochemical regulation. Chem Sci 2020; 11:12021-12028. [PMID: 34123217 PMCID: PMC8162457 DOI: 10.1039/d0sc02386h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We report a set of electrochemically regulated protocols for the divergent synthesis of ketones and β-keto esters from the same β-hydroxycarboxylic acid starting materials. Enabled by electrochemical control, the anodic oxidation of carboxylic acids proceeded in either a one-electron or a two-electron pathway, leading to a 1,4-aryl transfer or a semipinacol-type 1,2-group transfer product with excellent chemoselectivity. The 1,4-aryl transfer represents an unprecedented example of carbon-to-oxygen group transfer proceeding via a radical mechanism. In contrast to previously reported radical group transfer reactions, this 1,4-group transfer process features the migration of electron-rich aryl substituents. Furthermore, with these chemoselective electrochemical oxidation protocols, a range of ketones and β-keto esters including those possessing a challenging-to-access medium-sized ring could be synthesized in excellent yields. We report a set of electrochemically regulated protocols for the divergent synthesis of ketones and β-keto esters from the same β-hydroxycarboxylic acid starting materials.![]()
Collapse
Affiliation(s)
- Zhenxing Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University Beijing 100871 China .,College of Chemistry and Chemical Engineering, Anyang Normal University Anyang 455000 China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University Beijing 100871 China
| | - Xianhao Zhang
- WuXi AppTec (Tianjin) Co., Ltd Tianjin 300457 P. R. China
| | - Jianxin Yang
- WuXi AppTec (Tianjin) Co., Ltd Tianjin 300457 P. R. China
| | - Yunxing Yin
- WuXi AppTec (Tianjin) Co., Ltd Tianjin 300457 P. R. China
| | - Yangye Jiang
- College of Life Science & Bioengineering, Beijing University of Technology Beijing 100124 China
| | - Chengchu Zeng
- College of Life Science & Bioengineering, Beijing University of Technology Beijing 100124 China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University Beijing 100871 China .,Jiangsu Donghai Silicon Industry S&T Innovation Center Jiangsu 222300 China
| |
Collapse
|
72
|
Shao X, Wu X, Wu S, Zhu C. Metal-Free Radical-Mediated C(sp3)–H Heteroarylation of Alkanes. Org Lett 2020; 22:7450-7454. [DOI: 10.1021/acs.orglett.0c02475] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthesis Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
73
|
Zhu Y, Zhang Z, Jin R, Liu J, Liu G, Han B, Jiao N. DMSO‐Enabled Selective Radical O−H Activation of 1,3(4)‐Diols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuchao Zhu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Xue Yuan Rd. 38 Beijing 100191 China
- State Key Laboratory of Organometallic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
74
|
Zhu Y, Zhang Z, Jin R, Liu J, Liu G, Han B, Jiao N. DMSO-Enabled Selective Radical O-H Activation of 1,3(4)-Diols. Angew Chem Int Ed Engl 2020; 59:19851-19856. [PMID: 32701184 DOI: 10.1002/anie.202007187] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Indexed: 12/16/2022]
Abstract
Control of selectivity is one of the central topics in organic chemistry. Although unprecedented alkoxyl-radical-induced transformations have drawn a lot of attention, compared to selective C-H activation, selective radical O-H activation remains less explored. Herein, we report a novel selective radical O-H activation strategy of diols by combining spatial effects with proton-coupled electron transfer (PCET). It was found that DMSO is an essential reagent that enables the regioselective transformation of diols. Mechanistic studies indicated the existence of the alkoxyl radical and the selective interaction between DMSO and hydroxyl groups. Moreover, the distal C-C cleavage was realized by this selective alkoxyl-radical-initiation protocol.
Collapse
Affiliation(s)
- Yuchao Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Ziyao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Rui Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing, 100191, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
75
|
Abstract
Alkenes are ubiquitous in natural products and are extensively used as synthetic feedstocks in multiple fields including organic synthesis, medicinal chemistry, and materials science. Radical-mediated difunctionalization of alkenes provides a powerful tactic for alkene utilization. Despite the considerable progress made in the past several decades, state-of-the-art methods are highly dependent upon activated alkenes in which a proximal group with a π-electron system (e.g., aryl, carbonyl, and heteroatom) is requisite to stabilize the nascent alkyl radical intermediate via p-π conjugation or p orbitals of the heteroatom. In contrast, the transformation of unactivated alkenes, such as aliphatic alkenes, remains challenging.To overcome this obstacle, we have recently disclosed the strategy of intramolecular distal functional group migration (FGM), which has been efficiently applied in radical difunctionalization of unactivated alkenes. A portfolio of functional groups, such as cyano, heteroaryl, oximino, formyl, and alkynyl groups, showcase the excellent migratory aptitude. Mechanistically, after the addition of an extrinsic radical to the alkene, the newly formed active alkyl radical is rapidly captured by the intramolecular migratory group to generate a cyclic intermediate. Subsequent cleavage of the cyclic C-C bond of the intermediate leads to the functionalized product through the FGM process. Based on the strategy of FGM, a set of elusive difunctionalizations of unactivated alkenes have been accomplished (Part A).Alongside this research, an upgraded highly efficient synthetic strategy, "dock-migration," is created for intermolecular difunctionalization of alkenes. A diversity of sulfone-based dual-function reagents are developed. The intermolecular transformation is initiated by docking the dual-function reagent to the alkene, followed by intramolecular migration of the functional group. Compared to the original FGM protocol, the scope of alkenes is significantly extended from the strategically placed tertiary alcohol-substituted alkenes to general alkenes. Both activated and unactivated alkenes are well tolerated. By this approach, radical-mediated fluoroalkylheteroarylation, fluoroalkylalkynylation, and alkylation of alkenes have been achieved (Part B).Direct elaboration of C-H bonds into the targeted functional groups represents one of the most ideal and straightforward methods for molecular functionalization. The FGM strategy proves to be an ingenious tool for radical-mediated functionalization of remote unactivated C(sp3)-H bonds. Based on the FGM process, we have accomplished: (a) remote C(sp3)-H heteroarylation and cyanation of unprotected alcohols via the cascade of alkoxy radical-enabled hydrogen atom transfer (HAT) and intramolecular functional group (e.g., heteroaryl, cyano) migration, and (b) distal C(sp3)-H vinylation of propargylic alcohols through consecutive alkenyl radical-promoted HAT process and subsequent alkenyl migration (Part C).
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
76
|
Photocatalytic radical defluoroalkylation of unactivated alkenes via distal heteroaryl ipso-migration. Commun Chem 2020; 3:98. [PMID: 36703324 PMCID: PMC9814454 DOI: 10.1038/s42004-020-00354-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/06/2020] [Indexed: 01/29/2023] Open
Abstract
Currently, the selective activation of C(sp3)-F bonds and C-C bonds constitute one of the most widely used procedures for the synthesis of high-value products that range from pharmaceuticals to agrochemical applications. While numerous examples of these two methods have been reported in their respective fields, the processes which merge the activation of both single C(sp3)-F bonds and C-C bonds in one step still remain elusive. Here, we demonstrate the controllable defluoroalkylation-distal functionalization of trifluoromethylarenes with unactivated alkenes via distal heteroaryl migration. This is proposed to proceed via tandem C(sp3)-F and C-C bond cleavage using visible-light photoredox catalysis combined with Lewis acid activation. This strategy provides facile and flexible access to multiply functionalized α,α-difluorobenzylic ketones in useful yields (up to 88%) under mild conditions. The products can be further transformed into other valuable compounds, demonstrating the method's utility.
Collapse
|
77
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 360] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
78
|
Niu T, Liu J, Wu X, Zhu C. Radical Heteroarylalkylation of Alkenes via
Three‐Component Docking‐Migration
Thioetherification Cascade. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tao Niu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren‐Ai Road Suzhou Jiangsu 215123 China
| | - Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren‐Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren‐Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren‐Ai Road Suzhou Jiangsu 215123 China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
79
|
Chen L, Yang JC, Xu P, Zhang JJ, Duan XH, Guo L. Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids. J Org Chem 2020; 85:7515-7525. [DOI: 10.1021/acs.joc.0c00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lei Chen
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Pengfei Xu
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Jie Zhang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li−Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
80
|
An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. J Am Chem Soc 2020; 142:6216-6226. [PMID: 32181657 DOI: 10.1021/jacs.0c00212] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern photoredox catalysis has traditionally relied upon metal-to-ligand charge-transfer (MLCT) excitation of metal polypyridyl complexes for the utilization of light energy for the activation of organic substrates. Here, we demonstrate the catalytic application of ligand-to-metal charge-transfer (LMCT) excitation of cerium alkoxide complexes for the facile activation of alkanes utilizing abundant and inexpensive cerium trichloride as the catalyst. As demonstrated by cerium-catalyzed C-H amination and the alkylation of hydrocarbons, this reaction manifold has enabled the facile use of abundant alcohols as practical and selective hydrogen atom transfer (HAT) agents via the direct access of energetically challenging alkoxy radicals. Furthermore, the LMCT excitation event has been investigated through a series of spectroscopic experiments, revealing a rapid bond homolysis process and an effective production of alkoxy radicals, collectively ruling out the LMCT/homolysis event as the rate-determining step of this C-H functionalization.
Collapse
Affiliation(s)
- Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Yuegang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Kaining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Zhiwei Zuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
81
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
82
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:8195-8202. [DOI: 10.1002/anie.201915837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
83
|
Liu C, Jiang Q, Lin Y, Fang Z, Guo K. C- to N-Center Remote Heteroaryl Migration via Electrochemical Initiation of N Radical by Organic Catalyst. Org Lett 2020; 22:795-799. [PMID: 31922422 DOI: 10.1021/acs.orglett.9b04141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Herein an exogenous oxidant- and metal-free electrochemical heteroaryl migration triggered by N radicals to construct new N-C bonds was developed. This methodology features a high atom economy and utilization rate of energy, and it is insensitive to water and air. Moreover, a user-friendly undivided cell was employed. The use of an organic catalyst makes it more efficient, green, and practical.
Collapse
Affiliation(s)
- Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Qiang Jiang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yang Lin
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 211816 , China.,State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
84
|
Liao Y, Ran Y, Liu G, Liu P, Liu X. Transition-metal-free radical relay cyclization of vinyl azides with 1,4-dihydropyridines involving a 1,5-hydrogen-atom transfer: access to α-tetralone scaffolds. Org Chem Front 2020. [DOI: 10.1039/d0qo01042a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The remote C(sp3)–H functionalization enabled by a radical-mediated 1,5-hydrogen-atom transfer (HAT) process using vinyl azides and 1,4-dihydropyridines as precursors has been described.
Collapse
Affiliation(s)
- Yangzhen Liao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Yu Ran
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Guijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563000
| |
Collapse
|
85
|
Niu T, Yang S, Wu X, Zhu C. Remote C(sp3)–H vinylation via radical-mediated consecutive fission of C–H and C–C bonds. Org Chem Front 2020. [DOI: 10.1039/d0qo00952k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described herein is a radical-mediated vinylation of the remote C(sp3)–H bonds of propargylic alcohols.
Collapse
Affiliation(s)
- Tao Niu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
86
|
Chen H, Yu S. Remote C–C bond formationviavisible light photoredox-catalyzed intramolecular hydrogen atom transfer. Org Biomol Chem 2020; 18:4519-4532. [DOI: 10.1039/d0ob00854k] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visible light photoredox catalysis combined with intramolecular hydrogen atom transfer (HAT) can serve as a unique tool for achieving remote C–C bond formation. Recent advances in photoredox-catalyzed remote C–C bond formation are summarized.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
87
|
Hu F, Wang L, Xu L, Li SS. Aromatization-driven deconstruction/refunctionalization of unstrained rings. Org Chem Front 2020. [DOI: 10.1039/d0qo00344a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aromatization-driven ring-opening/functionalization of common unstrained rings has been developed with the in situ generation of pre-aromatic fused spiro heterocycles as the key step.
Collapse
Affiliation(s)
- Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
88
|
Zhong LJ, Wang HY, Ouyang XH, Li JH, An DL. Benzylic C–H heteroarylation of N-(benzyloxy)phthalimides with cyanopyridines enabled by photoredox 1,2-hydrogen atom transfer. Chem Commun (Camb) 2020; 56:8671-8674. [DOI: 10.1039/d0cc03619f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Visible light initiated α-C(sp3)–H hetroarylation of N-(benzyloxy)phthalimides with cyanopyridines via 1,2-hydrogen atom transfer is depicted.
Collapse
Affiliation(s)
- Long-Jin Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - Hong-Yu Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
| | - De-Lie An
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|
89
|
Li Y, Guo J, Lu X, Zhong F. One-step assembly of alkoxypyrroloindolines via iodine-catalyzed alkoxycyclization of indole derivatives. Org Biomol Chem 2019; 18:32-35. [PMID: 31761916 DOI: 10.1039/c9ob02287b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report an iodine-catalyzed alkoxycyclization of tryptamine derivatives under mild reaction conditions. This method distinguished itself by providing a catalytic, one-step assembly of diversely functionalized C3a-alkoxypyrroloindolines as well as dihydrofuran and lactone fused indolines. Mechanistic studies suggest that an ionic pathway is operative and this probably accounts for the diastereospecificity of all isolated cycloadducts.
Collapse
Affiliation(s)
- Yan Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu road, Wuhan 430074, China.
| | | | | | | |
Collapse
|
90
|
Zhang J, Liu D, Liu S, Ge Y, Lan Y, Chen Y. Visible-Light-Induced Alkoxyl Radicals Enable α-C(sp 3)-H Bond Allylation. iScience 2019; 23:100755. [PMID: 31884167 PMCID: PMC6941871 DOI: 10.1016/j.isci.2019.100755] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/08/2019] [Accepted: 11/27/2019] [Indexed: 11/18/2022] Open
Abstract
The alkoxyl radical is an essential reactive intermediate in mechanistic studies and organic synthesis with hydrogen atom transfer (HAT) reactivity. However, compared with intramolecular 1,5-HAT or intermolecular HAT of alkoxyl radicals, the intramolecular 1,2-HAT reactivity has been limited to theoretical studies and rarely synthetically utilized. Here we report the first selective 1,2-HAT of alkoxyl radicals for α-C(sp3)-H bond allylation of α-carbonyl, α-cyano, α-trifluoromethyl, and benzylic N-alkoxylphthalimides. The mechanistic probing experiments, electron paramagnetic resonance (EPR) studies, and density functional theory (DFT) calculations confirmed the 1,2-HAT reactivity of alkoxyl radicals, and the use of protic solvents lowered the activation energy by up to 10.4 kcal/mol to facilitate the α-C(sp3)-H allylation reaction.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dan Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Song Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuanyuan Ge
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
91
|
Wang M, Zhang H, Liu J, Wu X, Zhu C. Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angew Chem Int Ed Engl 2019; 58:17646-17650. [DOI: 10.1002/anie.201910514] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
92
|
Visible‐Light‐Induced
ortho
‐Selective Migration on Pyridyl Ring: Trifluoromethylative Pyridylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
93
|
Jeon J, He Y, Shin S, Hong S. Visible‐Light‐Induced
ortho
‐Selective Migration on Pyridyl Ring: Trifluoromethylative Pyridylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2019; 59:281-285. [DOI: 10.1002/anie.201912746] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jinwon Jeon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Yu‐Tao He
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sanghoon Shin
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
94
|
Allen BDW, Hareram MD, Seastram AC, McBride T, Wirth T, Browne DL, Morrill LC. Manganese-Catalyzed Electrochemical Deconstructive Chlorination of Cycloalkanols via Alkoxy Radicals. Org Lett 2019; 21:9241-9246. [PMID: 31687826 PMCID: PMC7007279 DOI: 10.1021/acs.orglett.9b03652] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A manganese-catalyzed
electrochemical deconstructive chlorination
of cycloalkanols has been developed. This electrochemical method provides
access to alkoxy radicals from alcohols and exhibits a broad substrate
scope, with various cyclopropanols and cyclobutanols converted into
synthetically useful β- and γ-chlorinated ketones (40
examples). Furthermore, the combination of recirculating flow electrochemistry
and continuous inline purification was employed to access products
on a gram scale.
Collapse
Affiliation(s)
- Benjamin D W Allen
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Mishra Deepak Hareram
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Alex C Seastram
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Tom McBride
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Thomas Wirth
- School of Chemistry , Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Duncan L Browne
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| | - Louis C Morrill
- Cardiff Catalysis Institute , School of Chemistry, Cardiff University , Main Building, Park Place , Cardiff CF10 3AT , U.K
| |
Collapse
|
95
|
Wang C, Yu Y, Liu WL, Duan WL. Site-Tunable Csp3–H Bonds Functionalization by Visible-Light-Induced Radical Translocation of N-Alkoxyphthalimides. Org Lett 2019; 21:9147-9152. [DOI: 10.1021/acs.orglett.9b03524] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yangyang Yu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wen-Long Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| |
Collapse
|
96
|
Wang Z, Ji X, Han T, Deng G, Huang H. LiBr‐Promoted Photoredox Minisci‐Type Alkylations of Quinolines with Ethers. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901168] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Tonghao Han
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
97
|
Wang M, Zhang H, Liu J, Wu X, Zhu C. Radical Monofluoroalkylative Alkynylation of Olefins by a Docking–Migration Strategy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910514] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Huihui Zhang
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
98
|
Proctor RSJ, Phipps RJ. Recent Advances in Minisci‐Type Reactions. Angew Chem Int Ed Engl 2019; 58:13666-13699. [DOI: 10.1002/anie.201900977] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Rupert S. J. Proctor
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert J. Phipps
- Department of ChemistryUniversity of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
99
|
Ruzi R, Ma J, Yuan X, Wang W, Wang S, Zhang M, Dai J, Xie J, Zhu C. Deoxygenative Arylation of Carboxylic Acids by Aryl Migration. Chemistry 2019; 25:12724-12729. [DOI: 10.1002/chem.201903816] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rehanguli Ruzi
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Junyang Ma
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Xiang‐Ai Yuan
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Wenliang Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Shanshan Wang
- School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 P. R. China
| | - Muliang Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jie Dai
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Jin Xie
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsNational Demonstration Center for Experimental Chemistry EducationSchool of Chemistry and Chemical EngineeringNanjing, University Nanjing 210023 P. R. China
- State Key Laboratory of Organometallic ChemistryInstitute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
100
|
Bao X, Wang Q, Zhu J. Remote C(sp 3 )-H Arylation and Vinylation of N-Alkoxypyridinium Salts to δ-Aryl and δ-Vinyl Alcohols. Chemistry 2019; 25:11630-11634. [PMID: 31321814 DOI: 10.1002/chem.201902918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Indexed: 02/02/2023]
Abstract
The reaction of readily available and bench-stable N-alkoxypyridinium salts with arylboronic and vinylboronic acids afforded δ-aryl and δ-vinyl alcohols, respectively, in the presence of fac-Ir(ppy)3 and Cu(OTf)2 dual catalysts. The reaction takes place through a domino process involving the reductive generation of alkoxyl radicals, 1,5-hydrogen atom transfer (1,5-HAT) and the copper-catalyzed cross-coupling reaction of the resulting translocated carbon radicals with boronic acids. Complementary to the Minisci reaction, this method allows for the arylation of nucleophilic alkyl radicals with both electron-rich and electron-poor arenes under mild reaction conditions.
Collapse
Affiliation(s)
- Xu Bao
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH 5304, 1015, Lausanne, Switzerland
| |
Collapse
|