51
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Engeser M, Beck J, Clever GH, Lützen A. Dynamic Complex-to-Complex Transformations of Heterobimetallic Systems Influence the Cage Structure or Spin State of Iron(II) Ions. Angew Chem Int Ed Engl 2020; 59:3195-3200. [PMID: 31788925 PMCID: PMC7028022 DOI: 10.1002/anie.201914629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/26/2022]
Abstract
Two new heterobimetallic cages, a trigonal‐bipyramidal and a cubic one, were assembled from the same mononuclear metalloligand by adopting the molecular library approach, using iron(II) and palladium(II) building blocks. The ligand system was designed to readily assemble through subcomponent self‐assembly. It allowed the introduction of steric strain at the iron(II) centres, which stabilizes its paramagnetic high‐spin state. This steric strain was utilized to drive dynamic complex‐to‐complex transformations with both the metalloligand and heterobimetallic cages. Addition of sterically less crowded subcomponents as a chemical stimulus transformed all complexes to their previously reported low‐spin analogues. The metalloligand and bipyramid incorporated the new building block more readily than the cubic cage, probably because the geometric structure of the sterically crowded metalloligand favours the cube formation. Furthermore it was possible to provoke structural transformations upon addition of more favourable chelating ligands, converting the cubic structures into bipyramidal ones.
Collapse
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.,Current address: Arlanxeo Netherlands B.V., Urmonderbaan 24, 6167 RD, Geleen, The Netherlands
| | - Julian J Holstein
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Norbert Wagner
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Johannes Beck
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Guido H Clever
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
52
|
Hardy M, Struch N, Holstein JJ, Schnakenburg G, Wagner N, Beck J, Engeser M, Clever GH, Lützen A. Dynamische Komplex‐zu‐Komplex‐Umwandlungen von heterobimetallischen Systemen und ihr Einfluss auf die Käfigstruktur oder den Spinzustand von Eisen(II)‐Ionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Hardy
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Niklas Struch
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
- derzeitige Adresse: Arlanxeo Netherlands B.V. Urmonderbaan 24 6167 RD Geleen Niederlande
| | - Julian J. Holstein
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Norbert Wagner
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Johannes Beck
- Institut für Anorganische Chemie Rheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Marianne Engeser
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Guido H. Clever
- Technische Universität Dortmund Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Arne Lützen
- Rheinische Friedrich-Wilhelms-Universität Bonn Kekulé-Institut für Organische Chemie und Biochemie Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
53
|
|
54
|
Endo K, Ube H, Shionoya M. Multi-Stimuli-Responsive Interconversion between Bowl- and Capsule-Shaped Self-Assembled Zinc(II) Complexes. J Am Chem Soc 2019; 142:407-416. [DOI: 10.1021/jacs.9b11099] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kenichi Endo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
55
|
Wang H, Liu CH, Wang K, Wang M, Yu H, Kandapal S, Brzozowski R, Xu B, Wang M, Lu S, Hao XQ, Eswara P, Nieh MP, Cai J, Li X. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. J Am Chem Soc 2019; 141:16108-16116. [PMID: 31509694 DOI: 10.1021/jacs.9b08484] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three dimensional (3D) supramolecules with giant cavities are attractive due to their wide range of applications. Herein, we used pentatopic terpyridine ligands with three types of coordination moieties to assemble two giant supramolecular hexagonal prisms with a molecular weight up to 42 608 and 43 569 Da, respectively. Within the prisms, two double-rimmed Kandinsky Circles serve as the base surfaces as well as the templates for assisting the self-sorting during the self-assembly. Additionally, hierarchical self-assembly of these supramolecular prisms into tubular-like nanostructures was fully studied by scanning tunneling microscopy (STM) and small-angle X-ray scattering (SAXS). Finally, these supramolecular prisms show good antimicrobial activities against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis).
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Chung-Hao Liu
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Kun Wang
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Minghui Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Mu-Ping Nieh
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jianfeng Cai
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
56
|
Howe ENW, Gale PA. Fatty Acid Fueled Transmembrane Chloride Transport. J Am Chem Soc 2019; 141:10654-10660. [DOI: 10.1021/jacs.9b02116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ethan N. W. Howe
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | - Philip A. Gale
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
57
|
Zhang X, Dong X, Lu W, Luo D, Zhu XW, Li X, Zhou XP, Li D. Fine-Tuning Apertures of Metal–Organic Cages: Encapsulation of Carbon Dioxide in Solution and Solid State. J Am Chem Soc 2019; 141:11621-11627. [DOI: 10.1021/jacs.9b04520] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
- Department of Chemistry, Shantou University, Guangdong 515063, People’s Republic of China
| | - Xia Dong
- Department of Chemistry, Shantou University, Guangdong 515063, People’s Republic of China
| | - Weigang Lu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Dong Luo
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Wei Zhu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xue Li
- Institute of Mass Spectrometry
and Atmospheric Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
58
|
Plajer AJ, Zhu J, Proehm P, Bond AD, Keyser UF, Wright DS. Tailoring the Binding Properties of Phosphazane Anion Receptors and Transporters. J Am Chem Soc 2019; 141:8807-8815. [DOI: 10.1021/jacs.9b00504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alex J. Plajer
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jinbo Zhu
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Patrick Proehm
- Institut fuer Chemie und Biochemie, Freie Universitaet Berlin, Fabeckstraße 34-36 14159 Berlin, Germany
| | - Andrew D. Bond
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, Department of Physics, Cambridge University, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Dominic S. Wright
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
59
|
Bose A, Mal P. Mechanochemistry of supramolecules. Beilstein J Org Chem 2019; 15:881-900. [PMID: 31019581 PMCID: PMC6466741 DOI: 10.3762/bjoc.15.86] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
The urge to use alternative energy sources has gained significant attention in the eye of chemists in recent years. Solution-based traditional syntheses are extremely useful, although they are often associated with certain disadvantages like generation of waste as by-products, use of large quantities of solvents which causes environmental hazard, etc. Contrastingly, achieving syntheses through mechanochemical methods are generally time-saving, environmentally friendly and more economical. This review is written to shed some light on supramolecular chemistry and the synthesis of various supramolecules through mechanochemistry.
Collapse
Affiliation(s)
- Anima Bose
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
60
|
|
61
|
Zarkan A, Caño-Muñiz S, Zhu J, Al Nahas K, Cama J, Keyser UF, Summers DK. Indole Pulse Signalling Regulates the Cytoplasmic pH of E. coli in a Memory-Like Manner. Sci Rep 2019; 9:3868. [PMID: 30846797 PMCID: PMC6405993 DOI: 10.1038/s41598-019-40560-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/08/2019] [Indexed: 01/06/2023] Open
Abstract
Bacterial cells are critically dependent upon pH regulation. Here we demonstrate that indole plays a critical role in the regulation of the cytoplasmic pH of Escherichia coli. Indole is an aromatic molecule with diverse signalling roles. Two modes of indole signalling have been described: persistent and pulse signalling. The latter is illustrated by the brief but intense elevation of intracellular indole during stationary phase entry. We show that under conditions permitting indole production, cells maintain their cytoplasmic pH at 7.2. In contrast, under conditions where no indole is produced, the cytoplasmic pH is near 7.8. We demonstrate that pH regulation results from pulse, rather than persistent, indole signalling. Furthermore, we illustrate that the relevant property of indole in this context is its ability to conduct protons across the cytoplasmic membrane. Additionally, we show that the effect of the indole pulse that occurs normally during stationary phase entry in rich medium remains as a "memory" to maintain the cytoplasmic pH until entry into the next stationary phase. The indole-mediated reduction in cytoplasmic pH may explain why indole provides E. coli with a degree of protection against stresses, including some bactericidal antibiotics.
Collapse
Affiliation(s)
- Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Santiago Caño-Muñiz
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jinbo Zhu
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kareem Al Nahas
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jehangir Cama
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ulrich F Keyser
- The Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David K Summers
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
62
|
Abstract
In order to fabricate efficient molecular photonic devices, it has been a long-held aspiration for chemists to understand and mimic natural light-harvesting complexes where a rapid and efficient transfer of excitation energy between chlorophyll pigments is observed. Synthetic porphyrins are attractive building blocks in this regard because of their rigid and planar geometry, high thermal and electronic stability, high molar extinction, small and tunable band gap, and tweakable optical as well as redox behavior. Owing to these fascinating properties, various types of porphyrin-based architectures have been reported utilizing both covalent and noncovalent approaches. However, it still remains a challenge to construct chemically robust, well-defined three-dimensional porphyrin cages which can be easily synthesized and yet suitable for useful applications both in solution as well as in solid state. Working on this idea, we recently synthesized box-shaped organic cages, which we called porphyrin boxes, by making use of dynamic covalent chemistry of imine condensation reaction between 4-connecting, square-shaped, tetraformylporphyrin and 3-connecting, triangular-shaped, triamine molecules. Various presynthetic, as well as postsynthetic modifications, can be carried out on porphyrin boxes including a variation of the alkyl chain length in their 3-connecting subunit, chemical functionalization, and metalation of the porphyrin core. This can remarkably tune their inherent properties, e.g., solubility, window size, volume, and polarity of the internal void. The porphyrin boxes can therefore be considered as a significant addition to the family of multiporphyrin-based architectures, and because of their chemical stability and shape persistency, the applications of porphyrin boxes expand beyond the photophysical properties of an artificial light-harvesting complex. Consequently, they have been exploited as porous organic cages, where their gas adsorption properties have been investigated. By incorporating them in a lipid bilayer membrane, an iodide selective synthetic ion channel has also been demonstrated. Further, we have explored electrocatalytic reduction of carbon dioxide using Fe(III) metalated porphyrin boxes. Additionally, the precise size and ease of metalation of porphyrin boxes allowed us to utilize them as premade building blocks for creating coordination-based hierarchical superstructures. Considering these developments, it may be worth combining the photophysical properties of porphyrin with the shape-persistent porous nature of porphyrin boxes to explore other novel applications. This Account summarizes our recent work on porphyrin boxes, starting with their design, structural features, and applications in different fields. We also try to provide scientific insight into the future opportunities that these amazing boxes have in store for exploring the still uncharted challenging domains in the field of supramolecular chemistry in a confined space.
Collapse
Affiliation(s)
- Rahul Dev Mukhopadhyay
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jaehyoung Koo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-Assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
63
|
Abstract
Coordination-driven self-assembly can produce large, symmetrical, hollow cages that are synthetically easy to access. The functions provided by these aesthetically attractive structures provide a driving force for their development, enabling practical applications. For instance, cages have provided new methods of molecular recognition, chirality sensing, separations, stabilization of reactive species, and catalysis. We have fruitfully employed subcomponent self-assembly to prepare metal-organic capsules from simple building blocks via the simultaneous formation of dynamic coordinative (N→metal) and covalent (N═C) bonds. Design strategies employ multidentate pyridyl-imine ligands to define either the edges or the faces of polyhedral structures. Octahedral metal ions, such as FeII, CoII, NiII, ZnII, and CdII, constitute the vertices. The generality of this technique has enabled the preparation of capsules with diverse three-dimensional structures. This Account highlights how fundamental investigations into the host-guest chemistry of capsules prepared through subcomponent self-assembly have led to the design of useful functions and new applications. We start by discussing simple host-guest systems involving a single capsule and continue to systems that include multiple capsules and guests, whose interactions give rise to complex functional behavior. Many of the capsules presented herein bind varied neutral guests, including aromatic or aliphatic molecules, biomolecules, and fullerenes. Binding selectivity is influenced by solvent effects, weak non-covalent interactions between hosts and guests, and the size, shape, flexibility, and degree of surface enclosure of the inner spaces of the capsules. Some hosts are able to adaptively rearrange structurally or express a different ratio of cage diastereomers to optimize the guest binding ability of the system. In other cases the bound guest can be either protected from degradation or catalytically transformed through encapsulation. Other capsules bind anions, most often in organic solvents and occasionally in water. Complexation is usually driven by a combination of electrostatic interactions, hydrogen bonding, and coordination to additional metal centers. Anion binding can also induce cage diastereomeric reconfiguration in a similar manner to some neutral guests, illustrating the general ability of subcomponent self-assembled capsules to respond to stimuli due to their dynamic nature. Capsules have been developed as supramolecular extractants for the selective removal of anions from water and as channels for transporting anions through planar lipid bilayers and into vesicles. Different capsules may work together, allowing for functions more complex than those achievable within single host-guest systems. Incorporation of stimuli-responsive capsules into multicage systems allows individual capsules within the network to be addressed and may allow signals to be passed between network members. We first present strategies to achieve selective guest binding and controlled guest release using mixtures of capsules with varied affinities for guests and different stabilities toward external stimuli. We then discuss strategies to separate capsules with encapsulated cargos via selective phase transfer, where the solvent affinities of capsules change as a result of anion exchange or post-assembly modification. The knowledge gained from these multicage systems may lead to the design of synthetic systems that can perform complex tasks in biomimetic fashion, paving the way for new supramolecular technologies to address practical problems.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
64
|
Roberts DA, Pilgrim BS, Sirvinskaite G, Ronson TK, Nitschke JR. Covalent Post-assembly Modification Triggers Multiple Structural Transformations of a Tetrazine-Edged Fe4L6 Tetrahedron. J Am Chem Soc 2018; 140:9616-9623. [DOI: 10.1021/jacs.8b05082] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Derrick A. Roberts
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Ben S. Pilgrim
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Giedre Sirvinskaite
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Tanya K. Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|
65
|
Wang H, Qian X, Wang K, Su M, Haoyang WW, Jiang X, Brzozowski R, Wang M, Gao X, Li Y, Xu B, Eswara P, Hao XQ, Gong W, Hou JL, Cai J, Li X. Supramolecular Kandinsky circles with high antibacterial activity. Nat Commun 2018; 9:1815. [PMID: 29739936 PMCID: PMC5940903 DOI: 10.1038/s41467-018-04247-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/16/2018] [Indexed: 11/09/2022] Open
Abstract
Nested concentric structures widely exist in nature and designed systems with circles, polygons, polyhedra, and spheres sharing the same center or axis. It still remains challenging to construct discrete nested architecture at (supra)molecular level. Herein, three generations (G2−G4) of giant nested supramolecules, or Kandinsky circles, have been designed and assembled with molecular weight 17,964, 27,713 and 38,352 Da, respectively. In the ligand preparation, consecutive condensation between precursors with primary amines and pyrylium salts is applied to modularize the synthesis. These discrete nested supramolecules are prone to assemble into tubular nanostructures through hierarchical self-assembly. Furthermore, nested supramolecules display high antimicrobial activity against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA), and negligible toxicity to eukaryotic cells, while the corresponding ligands do not show potent antimicrobial activity. Nested structures are common throughout nature and art, yet remain challenging synthetic targets in supramolecular chemistry. Here, the authors design multitopic terpyridine ligands that coordinate into nested concentric hexagons, and show that these discrete supramolecules display potent antimicrobial activity.
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Xiaomin Qian
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Kun Wang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Ma Su
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Wei-Wei Haoyang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiang Gao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yiming Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weitao Gong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
66
|
Ren C, Ding X, Roy A, Shen J, Zhou S, Chen F, Yau Li SF, Ren H, Yang YY, Zeng H. A halogen bond-mediated highly active artificial chloride channel with high anticancer activity. Chem Sci 2018; 9:4044-4051. [PMID: 29780533 PMCID: PMC5935034 DOI: 10.1039/c8sc00602d] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022] Open
Abstract
Chloride-selective transmembrane carriers or channels might have possible uses in treating channelopathies or cancers. While chloride carriers have been extensively investigated, the corresponding chloride channels have remained limitedly studied. Moreover, all hitherto reported channel systems lack clearly definable and readily modifiable positions in their structures for the reliable construction and combinatorial optimization of their ion transport properties. As a result, the existing channels are limited by their large molecular weight, weak activity or low anion selectivity. In this report, we describe a readily accessible and robust monopeptide-based scaffold for the reliable construction of halogen bond-mediated artificial anion channels via directional assembly of electron-deficient iodine atoms, which create a transmembrane pathway for facilitating anion transport. The high intrinsic modularity of the backbone of the scaffold, which enables the rapid and combinatorial optimization of the transport activity and selectivity of channels, effectively delivers a highly active chloride channel A10. Such high activity in chloride transport subsequently leads to an excellent IC50 value of 20 μM toward inhibiting the growth of human breast cancer cells (BT-474), an anticancer activity that is even higher than that of the well-known anticancer agent cisplatin.
Collapse
Affiliation(s)
- Changliang Ren
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Xin Ding
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Arundhati Roy
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Jie Shen
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Shaoyuan Zhou
- College of Chemical Engineering , Sichuan University , Chengdu , China 610065
| | - Feng Chen
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Sam Fong Yau Li
- NUS Environmental Research Institute , Department of Chemistry , National University of Singapore , 3 Science Drive 3 , Singapore 117543
| | - Haisheng Ren
- College of Chemical Engineering , Sichuan University , Chengdu , China 610065
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| | - Huaqiang Zeng
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , Singapore 138669 .
| |
Collapse
|