51
|
Hendrikse NM, Charpentier G, Nordling E, Syrén PO. Ancestral diterpene cyclases show increased thermostability and substrate acceptance. FEBS J 2018; 285:4660-4673. [PMID: 30369053 DOI: 10.1111/febs.14686] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/07/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022]
Abstract
Bacterial diterpene cyclases are receiving increasing attention in biocatalysis and synthetic biology for the sustainable generation of complex multicyclic building blocks. Herein, we explore the potential of ancestral sequence reconstruction (ASR) to generate remodeled cyclases with enhanced stability, activity, and promiscuity. Putative ancestors of spiroviolene synthase, a bacterial class I diterpene cyclase, display an increased yield of soluble protein of up to fourfold upon expression in the model organism Escherichia coli. Two of the resurrected enzymes, with an estimated age of approximately 1.7 million years, display an upward shift in thermostability of 7-13 °C. Ancestral spiroviolene synthases catalyze cyclization of the natural C20 -substrate geranylgeranyl diphosphate (GGPP) and also accept C15 farnesyl diphosphate (FPP), which is not converted by the extant enzyme. In contrast, the consensus sequence generated from the corresponding multiple sequence alignment was found to be inactive toward both substrates. Mutation of a nonconserved position within the aspartate-rich motif of the reconstructed ancestral cyclases was associated with modest effects on activity and relative substrate specificity (i.e., kcat /KM for GGPP over kcat /KM for FPP). Kinetic analyses performed at different temperatures reveal a loss of substrate saturation, when going from the ancestor with highest thermostability to the modern enzyme. The kinetics data also illustrate how an increase in temperature optimum of biocatalysis is reflected in altered entropy and enthalpy of activation. Our findings further highlight the potential and limitations of applying ASR to biosynthetic machineries in secondary metabolism.
Collapse
Affiliation(s)
- Natalie M Hendrikse
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Swedish Orphan Biovitrum AB, Stockholm, Sweden
| | - Gwenaëlle Charpentier
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.,Swedish Orphan Biovitrum AB, Stockholm, Sweden.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Protein Technology, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
52
|
Sato H, Mitsuhashi T, Yamazaki M, Abe I, Uchiyama M. Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
53
|
Wang C, Liwei M, Park JB, Jeong SH, Wei G, Wang Y, Kim SW. Microbial Platform for Terpenoid Production: Escherichia coli and Yeast. Front Microbiol 2018; 9:2460. [PMID: 30369922 PMCID: PMC6194902 DOI: 10.3389/fmicb.2018.02460] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
Terpenoids, also called isoprenoids, are a large and highly diverse family of natural products with important medical and industrial properties. However, a limited production of terpenoids from natural resources constrains their use of either bulk commodity products or high valuable products. Microbial production of terpenoids from Escherichia coli and yeasts provides a promising alternative owing to available genetic tools in pathway engineering and genome editing, and a comprehensive understanding of their metabolisms. This review summarizes recent progresses in engineering of industrial model strains, E. coli and yeasts, for terpenoids production. With advances of synthetic biology and systems biology, both strains are expected to present the great potential as a platform of terpenoid synthesis.
Collapse
Affiliation(s)
- Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mudanguli Liwei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Seong-Hee Jeong
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yujun Wang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
54
|
Sato H, Mitsuhashi T, Yamazaki M, Abe I, Uchiyama M. Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type. Angew Chem Int Ed Engl 2018; 57:14752-14757. [DOI: 10.1002/anie.201807139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hajime Sato
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences; Chiba University; 1-8-1 Inohana, Chuoku Chiba 260-8675 Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Cluster of Pioneering Research (CPR), Advanced Elements Chemistry Laboratory; RIKEN; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
55
|
Ferrer S, Echavarren AM. Total Synthesis of Repraesentin F and Configuration Reassignment by a Gold(I)-Catalyzed Cyclization Cascade. Org Lett 2018; 20:5784-5788. [DOI: 10.1021/acs.orglett.8b02478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia Ferrer
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
56
|
Lauterbach L, Rinkel J, Dickschat JS. Zwei bakterielle Diterpensynthasen aus
Allokutzneria albata
für Bonnadien sowie für Phomopsen und Allokutzneren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803800] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und BiochemieRheinische Friedrich-Wilhelms-Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
57
|
Lauterbach L, Rinkel J, Dickschat JS. Two Bacterial Diterpene Synthases from Allokutzneria albata Produce Bonnadiene, Phomopsene, and Allokutznerene. Angew Chem Int Ed Engl 2018; 57:8280-8283. [PMID: 29758116 DOI: 10.1002/anie.201803800] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 11/08/2022]
Abstract
Two diterpene synthases from Allokutzneria albata were studied for their products, resulting in the identification of the new compound bonnadiene from the first enzyme. Although phylogenetically unrelated to fungal phomopsene synthase, the second enzyme produced a mixture of phomopsene and a biosynthetically linked new compound, allokutznerene, as well as spiroviolene. Both enzymes were subjected to in-depth mechanistic studies involving isotopic labelling experiments, metal-cofactor variation, and site-directed mutagenesis. Oxidation products of phomopsene and allokutznerene are also discussed.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
58
|
Rinkel J, Rabe P, Dickschat JS. The EI-MS Fragmentation Mechanisms of Bacterial Sesquiterpenes and Diterpenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Rheinische Friedrich-Wilhelms-Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
59
|
Yang Y, Zhang Y, Zhang S, Chen Q, Ma K, Bao L, Tao Y, Yin W, Wang G, Liu H. Identification and Characterization of a Membrane-Bound Sesterterpene Cyclase from Streptomyces somaliensis. JOURNAL OF NATURAL PRODUCTS 2018; 81:1089-1092. [PMID: 29553734 DOI: 10.1021/acs.jnatprod.7b01033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sesterterpenes are usually found in plants and fungi, but are rare in bacteria. Here, we present the identification of StsC from Streptomyces somaliensis, a member of the UbiA superfamily, as a membrane-bound sesterterpene cyclase in bacteria. The cyclized products for StsC, somaliensenes A (1) and B (2), were identified by expressing the corresponding gene in an engineered Escherichia coli strain. The structures of 1 and 2 were determined by analysis of the NMR and MS spectroscopic data.
Collapse
Affiliation(s)
- Yanlong Yang
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
| | - Yuting Zhang
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Shasha Zhang
- Chinese Academy of Science, Key Laboratory of Microbial Physiology and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
| | - Qingwen Chen
- State Key Laboratory of Plant Genomics , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
| | - Ke Ma
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Li Bao
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Yong Tao
- Chinese Academy of Science, Key Laboratory of Microbial Physiology and Metabolic Engineering , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
| | - Wenbing Yin
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
| | - Hongwei Liu
- State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , 100101 , People's Republic of China
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , People's Republic of China
| |
Collapse
|
60
|
Mitsuhashi T, Abe I. Chimeric Terpene Synthases Possessing both Terpene Cyclization and Prenyltransfer Activities. Chembiochem 2018; 19:1106-1114. [PMID: 29675947 DOI: 10.1002/cbic.201800120] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Prenyltransferase (PT) and terpene synthase (TPS) are key enzymes in the formation of the basic carbon skeletons of terpenoids. The PTs determine the prenyl carbon chain length, whereas TPSs generate the structural complexity of the molecular scaffolds, forming various ring structures. Normally, PTs and TPSs are separate, independent enzymes. However, in 2007, a chimeric enzyme, in which the PT was fused with the TPS, was found in a fungus. Recent studies have revealed that such chimeric TPSs are widely distributed in fungi and function in the biosyntheses of various terpene natural products, including sesterterpenes, which are a relatively rare group of terpenoids. This review summarizes the accumulated knowledge of these recently discovered, unique, chimeric TPSs.
Collapse
Affiliation(s)
- Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
61
|
Rinkel J, Lauterbach L, Rabe P, Dickschat JS. Zwei Diterpensynthasen für Spiroalbaten und Cembren A aus Allokutzneria albata. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800385] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Lukas Lauterbach
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Patrick Rabe
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| |
Collapse
|
62
|
Rinkel J, Lauterbach L, Rabe P, Dickschat JS. Two Diterpene Synthases for Spiroalbatene and Cembrene A from Allokutzneria albata. Angew Chem Int Ed Engl 2018; 57:3238-3241. [DOI: 10.1002/anie.201800385] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Lukas Lauterbach
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Jeroen S. Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry; University of Bonn; Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
63
|
Xiong ZJ, Huang J, Yan Y, Wang L, Wang Z, Yang J, Luo J, Li J, Huang SX. Isolation and biosynthesis of labdanmycins: four new labdane diterpenes from endophyticStreptomyces. Org Chem Front 2018. [DOI: 10.1039/c8qo00085a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gene cluster of two new labdanmycins was identified from an endophyticStreptomyces. The P450 enzyme LabE was confirmed to oxidize C-20 methyl of the biosynthetic intermediate3to afford labdanmycins.
Collapse
Affiliation(s)
- Zi-Jun Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jianping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China
- CAS Center for Excellence in Molecular Plant Sciences
- Kunming Institute of Botany
- Chinese Academy of Sciences
- Kunming 650204
| |
Collapse
|