51
|
Baran T, Visibile A, Busch M, He X, Wojtyla S, Rondinini S, Minguzzi A, Vertova A. Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules 2021; 26:7271. [PMID: 34885863 PMCID: PMC8658916 DOI: 10.3390/molecules26237271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/25/2022] Open
Abstract
This work aims at reviewing the most impactful results obtained on the development of Cu-based photocathodes. The need of a sustainable exploitation of renewable energy sources and the parallel request of reducing pollutant emissions in airborne streams and in waters call for new technologies based on the use of efficient, abundant, low-toxicity and low-cost materials. Photoelectrochemical devices that adopts abundant element-based photoelectrodes might respond to these requests being an enabling technology for the direct use of sunlight to the production of energy fuels form water electrolysis (H2) and CO2 reduction (to alcohols, light hydrocarbons), as well as for the degradation of pollutants. This review analyses the physical chemical properties of Cu2O (and CuO) and the possible strategies to tune them (doping, lattice strain). Combining Cu with other elements in multinary oxides or in composite photoelectrodes is also discussed in detail. Finally, a short overview on the possible applications of these materials is presented.
Collapse
Affiliation(s)
- Tomasz Baran
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Alberto Visibile
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden;
| | - Michael Busch
- Department of Chemistry and Material Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland;
| | - Xiufang He
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Szymon Wojtyla
- SajTom Light Future, Wężerów 37/1, 32-090 Wężerów, Poland; (T.B.); (S.W.)
| | - Sandra Rondinini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (X.H.); (S.R.); (A.V.)
| |
Collapse
|
52
|
Song H, Tan YC, Kim B, Ringe S, Oh J. Tunable Product Selectivity in Electrochemical CO 2 Reduction on Well-Mixed Ni-Cu Alloys. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55272-55280. [PMID: 34767344 DOI: 10.1021/acsami.1c19224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Electrochemical reduction of CO2 on copper-based catalysts has become a promising strategy to mitigate greenhouse gas emissions and gain valuable chemicals and fuels. Unfortunately, however, the generally low product selectivity of the process decreases the industrial competitiveness compared to the established large-scale chemical processes. Here, we present random solid solution Cu1-xNix alloy catalysts that, due to their full miscibility, enable a systematic modulation of adsorption energies. In particular, we find that these catalysts lead to an increase of hydrogen evolution with the Ni content, which correlates with a significant increase of the selectivity for methane formation relative to C2 products such as ethylene and ethanol. From experimental and theoretical insights, we find the increased hydrogen atom coverage to facilitate Langmuir-Hinshelwood-like hydrogenation of surface intermediates, giving an impressive almost 2 orders of magnitude increase in the CH4 to C2H4 + C2H5OH selectivity on Cu0.87Ni0.13 at -300 mA cm-2. This study provides important insights and design concepts for the tunability of product selectivity for electrochemical CO2 reduction that will help to pave the way toward industrially competitive electrocatalyst materials.
Collapse
Affiliation(s)
- Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ying Chuan Tan
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute of Materials Research and Engineering (IMRE), A*STAR, 2 Fusionopolis Way, #08-03 Innovis, 138634, Singapore
| | - Beomil Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Stefan Ringe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
53
|
Wang YR, Ding HM, Ma XY, Liu M, Yang YL, Chen Y, Li SL, Lan YQ. Imparting CO 2 Electroreduction Auxiliary for Integrated Morphology Tuning and Performance Boosting in a Porphyrin-based Covalent Organic Framework. Angew Chem Int Ed Engl 2021; 61:e202114648. [PMID: 34806265 DOI: 10.1002/anie.202114648] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/09/2022]
Abstract
Strategies that enable simultaneous morphology-tuning and electroreduction performance boosting are much desired for the exploration of covalent organic frameworks in efficient CO2 electroreduction. Herein, a kind of functionalizing exfoliation agent has been selected to simultaneously modify and exfoliate bulk COFs into functional nanosheets and investigate their CO2 electroreduction performance. The obtained nanosheets (Cu-Tph-COF-Dct) with large-scale (≈1.0 μm) and ultrathin (≈3.8 nm) morphology enable a superior FECH4 (≈80 %) (almost doubly enhanced than bare COF) with large current-density (-220.0 mA cm-2 ) at -0.9 V. The boosted performance can be ascribed to the immobilized functionalizing exfoliation agent (Dct groups) with integrated amino and triazine groups that strengthen CO2 absorption/activation, stabilize intermediates and enrich the CO concentration around the Cu active sites as revealed by DFT calculations. The point-to-point functionalization strategy for modularly assembling Dct-functionalized COF catalyst for CO2 electroreduction will open up the attractive possibility of developing COFs as efficient CO2 RR electrocatalysts.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hui-Min Ding
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Ma
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yi-Lu Yang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
54
|
Dongare S, Singh N, Bhunia H, Bajpai PK, Das AK. Electrochemical Reduction of Carbon Dioxide to Ethanol: A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202102829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saudagar Dongare
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Neetu Singh
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Haripada Bhunia
- Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
| | - Pramod K. Bajpai
- Ex-Distinguished Professor Department of Chemical Engineering Thapar Institute of Engineering and Technology (Deemed to be University) Patiala 147004 Punjab India
- Present address: G-1 Ekta Apartment 120/912 Ranjeet Nagar Kanpur 208005 Uttar Pradesh India
| | - Asit Kumar Das
- Head, Refinery R&D and Process Development, Reliance Industries Limited Jamnagar 361142 Gujarat India
| |
Collapse
|
55
|
Varandili SB, Stoian D, Vavra J, Rossi K, Pankhurst JR, Guntern YT, López N, Buonsanti R. Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO 2 electroreduction using tailored Cu/ZnO precatalysts. Chem Sci 2021; 12:14484-14493. [PMID: 34880999 PMCID: PMC8580038 DOI: 10.1039/d1sc04271h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Understanding the catalyst compositional and structural features that control selectivity is of uttermost importance to target desired products in chemical reactions. In this joint experimental-computational work, we leverage tailored Cu/ZnO precatalysts as a material platform to identify the intrinsic features of methane-producing and ethanol-producing CuZn catalysts in the electrochemical CO2 reduction reaction (CO2RR). Specifically, we find that Cu@ZnO nanocrystals, where a central Cu domain is decorated with ZnO domains, and ZnO@Cu nanocrystals, where a central ZnO domain is decorated with Cu domains, evolve into Cu@CuZn core@shell catalysts that are selective for methane (∼52%) and ethanol (∼39%), respectively. Operando X-ray absorption spectroscopy and various microscopy methods evidence that a higher degree of surface alloying along with a higher concentration of metallic Zn improve the ethanol selectivity. Density functional theory explains that the combination of electronic and tandem effects accounts for such selectivity. These findings mark a step ahead towards understanding structure-property relationships in bimetallic catalysts for the CO2RR and their rational tuning to increase selectivity towards target products, especially alcohols.
Collapse
Affiliation(s)
- Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - James R Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Yannick T Guntern
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology 43007 Tarragona Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
56
|
Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
57
|
Wu M, Dong X, Chen W, Chen A, Zhu C, Feng G, Li G, Song Y, Wei W, Sun Y. Investigating the Effect of the Initial Valence States of Copper on CO
2
Electroreduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minfang Wu
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Chang Zhu
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Yuhan Sun
- Low-Carbon Conversion Science and Engineering Center Shanghai Advanced Research Institute Chinese Academy of Sciences 100 Haike Road Shanghai 201203 P. R. China
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
58
|
Zhang B, Zhang B, Jiang Y, Ma T, Pan H, Sun W. Single-Atom Electrocatalysts for Multi-Electron Reduction of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101443. [PMID: 34242473 DOI: 10.1002/smll.202101443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/20/2021] [Indexed: 05/21/2023]
Abstract
The multi-electron reduction of CO2 to hydrocarbons or alcohols is highly attractive in a sustainable energy economy, and the rational design of electrocatalysts is vital to achieve these reactions efficiently. Single-atom electrocatalysts are promising candidates due to their well-defined coordination configurations and unique electronic structures, which are critical for delivering high activity and selectivity and may accelerate the explorations of the activity origin at atomic level as well. Although much effort has been devoted to multi-electron reduction of CO2 on single-atom electrocatalysts, there are still no reviews focusing on this emerging field and constructive perspectives are also urgent to be addressed. Herein recent advances in how to design efficient single-atom electrocatalysts for multi-electron reduction of CO2 , with emphasis on strategies in regulating the interactions between active sites and key reaction intermediates, are summarized. Such interactions are crucial in designing active sites for optimizing the multi-electron reduction steps and maximizing the catalytic performance. Different design strategies including regulation of metal centers, single-atom alloys, non-metal single-atom catalysts, and tandem catalysts, are discussed accordingly. Finally, current challenges and future opportunities for deep electroreduction of CO2 are proposed.
Collapse
Affiliation(s)
- Bingxing Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Baohua Zhang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yinzhu Jiang
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Hongge Pan
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
59
|
Ren D, Gao J, Zakeeruddin SM, Grätzel M. New Insights into the Interface of Electrochemical Flow Cells for Carbon Dioxide Reduction to Ethylene. J Phys Chem Lett 2021; 12:7583-7589. [PMID: 34347495 DOI: 10.1021/acs.jpclett.1c02043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The implementation of an electrochemical flow cell has enabled improved efficiency for CO2 reduction. However, in situ spectroscopic insights into the interface are still lacking. Here, we investigate a series of copper layers with different thicknesses on gas diffusion electrodes as a benchmark, with the best-performing one showing a Faradaic efficiency of 59.5% and a partial current density of -170 mA cm-2 for ethylene formation in 1 M KOH at -0.70 V against a reversible hydrogen electrode. By comparing the geometric as well as specific current density for ethylene on four Cu catalysts with different thicknesses, we illustrate the effects of bulk pH, local pH, and diffusion of CO2 on C-C coupling. We also reveal that the flexible rotation of the Cu-C bond of the *CO intermediate adsorbed on Cu, as shown by in situ Raman spectroscopy, is likely to be the key factor for efficient C-C coupling in a flow cell.
Collapse
Affiliation(s)
- Dan Ren
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jing Gao
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
60
|
Mosali VSS, Zhang X, Liang Y, Li L, Puxty G, Horne MD, Brajter-Toth A, Bond AM, Zhang J. CdS-Enhanced Ethanol Selectivity in Electrocatalytic CO 2 Reduction at Sulfide-Derived Cu-Cd. CHEMSUSCHEM 2021; 14:2924-2934. [PMID: 34021532 DOI: 10.1002/cssc.202100903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Indexed: 06/12/2023]
Abstract
The development of Cu-based catalysts for the electrochemical CO2 reduction reaction (eCO2 RR) is of major interest for generating commercially important C2 liquid products such as ethanol. Cu is exclusive among the eCO2 RR metallic catalysts in that it facilitates the formation of a range of highly reduced C2 products, with a reasonable total faradaic efficiency but poor product selectivity. Here, a series of new sulfide-derived copper-cadmium catalysts (SD-Cux Cdy ) was developed. An excellent faradaic efficiency of around 32 % but with a relatively low current density of 0.6 mA cm-2 for ethanol was obtained using the SD-CuCd2 catalyst at the relatively low overpotential of 0.89 V in a CO2 -saturated aqueous 0.10 m KHCO3 solution with an H-cell. The current density increased by an order of magnitude under similar conditions using a flow cell where the mass transport rate for CO2 was greatly enhanced. Ex situ spectroscopic and microscopic, and voltammetric investigations pointed to the role of abundant phase boundaries between CdS and Cu+ /Cu sites in the SD-CuCd2 catalyst in enhancing the selectivity and efficiency of ethanol formation at low potentials.
Collapse
Affiliation(s)
| | - Xiaolong Zhang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Yan Liang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Linbo Li
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Graeme Puxty
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, Newcastle, 2304, New South Wales, Australia
| | | | - Anna Brajter-Toth
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL, 32611, USA
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, 3800, Victoria, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
61
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
62
|
Xiao C, Zhang J. Architectural Design for Enhanced C 2 Product Selectivity in Electrochemical CO 2 Reduction Using Cu-Based Catalysts: A Review. ACS NANO 2021; 15:7975-8000. [PMID: 33956440 DOI: 10.1021/acsnano.0c10697] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical CO2 reduction to value-added chemicals and fuels is a promising approach to mitigate the greenhouse effect arising from anthropogenic CO2 emission and energy shortage caused by the depletion of nonrenewable fossil fuels. The generation of multicarbon (C2+) products, especially hydrocarbons and oxygenates, is of great interest for industrial applications. To date, Cu is the only metal known to catalyze the C-C coupling in the electrochemical CO2 reduction reaction (eCO2RR) with appreciable efficiency and kinetic viability to produce a wide range of C2 products in aqueous solutions. Nonetheless, poor product selectivity associated with Cu is the main technical problem for the application of the eCO2RR technology on a global scale. Based on extensive research efforts, a delicate and rational design of electrocatalyst architecture using the principles of nanotechnology is likely to significantly affect the adsorption energetics of some key intermediates and hence the inherent reaction pathways. In this review, we summarize recent progress that has been achieved by tailoring the electrocatalyst architecture for efficient electrochemical CO2 conversion to the target C2 products. By considering the experimental and computational results, we further analyze the underlying correlations between the architecture of a catalyst and its selectivity toward C2 products. Finally, the major challenges are outlined, and directions for future development are suggested.
Collapse
Affiliation(s)
- Changlong Xiao
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, VIC 3800, Australia
| | - Jie Zhang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
63
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO 2 Reduction to HCOOH. Angew Chem Int Ed Engl 2021; 60:12554-12559. [PMID: 33720479 DOI: 10.1002/anie.202102832] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/14/2022]
Abstract
Electrochemical reduction of CO2 (CO2 RR) into valuable hydrocarbons is appealing in alleviating the excessive CO2 level. We present the very first utilization of metallic bismuth-tin (Bi-Sn) aerogel for CO2 RR with selective HCOOH production. A non-precious bimetallic aerogel of Bi-Sn is readily prepared at ambient temperature, which exhibits 3D morphology with interconnected channels, abundant interfaces and a hydrophilic surface. Superior to Bi and Sn, the Bi-Sn aerogel exposes more active sites and it has favorable mass transfer properties, which endow it with a high FEHCOOH of 93.9 %. Moreover, the Bi-Sn aerogel achieves a FEHCOOH of ca. 90 % that was maintained for 10 h in a flow battery. In situ ATR-FTIR measurements confirmed that the formation of *HCOO is the rate-determining step toward formic acid generation. DFT demonstrated the coexistence of Bi and Sn optimized the energy barrier for the production of HCOOH, thereby improving the catalytic activity.
Collapse
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Weiquan Cai
- School of chemistry and chemical engineering, Guangzhou University, 230 Guangzhou University City Outer Ring Road, Guangzhou, 510006, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, Qingdao, 266042, P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
64
|
Wu Z, Wu H, Cai W, Wen Z, Jia B, Wang L, Jin W, Ma T. Engineering Bismuth–Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO
2
Reduction to HCOOH. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zexing Wu
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Hengbo Wu
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Weiquan Cai
- School of chemistry and chemical engineering Guangzhou University 230 Guangzhou University City Outer Ring Road Guangzhou 510006 China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Baohua Jia
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| | - Lei Wang
- State Key Laboratory Base of Eco-chemical Engineering College of Chemistry and Molecular Engineering Qingdao University of Science & Technology 53 Zhengzhou Road Qingdao 266042 P. R. China
| | - Wei Jin
- State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Tianyi Ma
- Centre for Translational Atomaterials Faculty of Science, Engineering and Technology Swinburne University of Technology John Street Hawthorn VIC 3122 Australia
| |
Collapse
|
65
|
Core-Shell ZnO@Cu2O as Catalyst to Enhance the Electrochemical Reduction of Carbon Dioxide to C2 Products. Catalysts 2021. [DOI: 10.3390/catal11050535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The copper-based catalyst is considered to be the only catalyst for electrochemical carbon dioxide reduction to produce a variety of hydrocarbons, but its low selectivity and low current density to C2 products restrict its development. Herein, a core-shell xZnO@yCu2O catalysts for electrochemical CO2 reduction was fabricated via a two-step route. The high selectivity of C2 products of 49.8% on ZnO@4Cu2O (ethylene 33.5%, ethanol 16.3%) with an excellent total current density of 140.1 mA cm−2 was achieved over this core-shell structure catalyst in a flow cell, in which the C2 selectivity was twice that of Cu2O. The high electrochemical activity for ECR to C2 products was attributed to the synergetic effects of the ZnO core and Cu2O shell, which not only enhanced the selectivity of the coordinating electron, improved the HER overpotential, and fastened the electron transfer, but also promoted the multielectron involved kinetics for ethylene and ethanol production. This work provides some new insights into the design of highly efficient Cu-based electrocatalysts for enhancing the selectivity of electrochemical CO2 reduction to produce high-value C2 products.
Collapse
|
66
|
Xiang Q, Li F, Wang J, Chen W, Miao Q, Zhang Q, Tao P, Song C, Shang W, Zhu H, Deng T, Wu J. Heterostructure of ZnO Nanosheets/Zn with a Highly Enhanced Edge Surface for Efficient CO 2 Electrochemical Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10837-10844. [PMID: 33620190 DOI: 10.1021/acsami.0c20302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrochemical reduction of CO2 to valuable chemicals or fuels is critical for closing the carbon cycle and preventing further deterioration of the environment. Here, we discover that by adopting the Zn foil as the substrate, a ZnO two-dimensional sheet array is in situ synthesized on the Zn foil by a facile hydrothermal method. The obtained ZnO sheet array/Zn foil exhibited an outstanding CO2 reduction performance to CO, which showed the highest Faraday efficiency of 85% for CO at -2.0 V (vs Ag/AgCl) with a current density of 11.5 mA/cm2 compared with the freestanding ZnO sheets and particles and excellent stability in the 0.1 M KHCO3 electrolyte. The in situ vertical ZnO sheet array exposed with abundant exposed (11̅00) edge facets can accelerate the electron transfer and improve the number of active sites, which leads to the enhanced reduction performance. Alongside, the density functional theory simulation indicated that the vertical-grown ZnO sheet array possesses lower Gibbs free energy for the CO2 activation, with a more exposed (11̅00) edge surface of ZnO.
Collapse
Affiliation(s)
- Qian Xiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jiale Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qiushi Miao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qingfeng Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Hong Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
67
|
Wang M, Wan L, Luo J. Promoting CO 2 electroreduction on CuO nanowires with a hydrophobic Nafion overlayer. NANOSCALE 2021; 13:3588-3593. [PMID: 33538738 DOI: 10.1039/d0nr08369k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper-based materials could produce a series of products through the CO2 electroreduction reaction, and are regarded as the most promising catalysts to produce fuels and value-added chemicals using renewable energy sources. However, the competitive hydrogen evolution reaction (HER) is a daunting challenge for the selectivity of carbonaceous products. Here, a hydrophobic electrode surface was constructed by modifying the CuO nanowire electrode with a thick Nafion overlayer, which exhibited enhanced selectivity toward the CO2 RR (especially for CO) and suppressed HER activity. This work highlights the importance of hydrophobicity in the selectivity of CO2 reduction and hints at the additional role of Nafion in powder-based catalyst electrodes.
Collapse
Affiliation(s)
- Mang Wang
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China.
| | - Lili Wan
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China.
| | - Jingshan Luo
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China.
| |
Collapse
|
68
|
Zhong D, Zhao Z, Zhao Q, Cheng D, Liu B, Zhang G, Deng W, Dong H, Zhang L, Li J, Li J, Gong J. Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dazhong Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Qiang Zhao
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Dongfang Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Bin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Gong Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Wanyu Deng
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Hao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
| | - Jinping Li
- College of Chemistry and Chemical Engineering Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Yingze West Street 79 Taiyuan 030024 Shanxi China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Weijin Road 92 Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
69
|
Zhong D, Zhao ZJ, Zhao Q, Cheng D, Liu B, Zhang G, Deng W, Dong H, Zhang L, Li J, Li J, Gong J. Coupling of Cu(100) and (110) Facets Promotes Carbon Dioxide Conversion to Hydrocarbons and Alcohols. Angew Chem Int Ed Engl 2021; 60:4879-4885. [PMID: 33231928 DOI: 10.1002/anie.202015159] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Copper can efficiently electro-catalyze carbon dioxide reduction to C2+ products (C2 H4 , C2 H5 OH, n-propanol). However, the correlation between the activity and active sites remains ambiguous, impeding further improvements in their performance. The facet effect of copper crystals to promote CO adsorption and C-C coupling and consequently yield a superior selectivity for C2+ products is described. We achieve a high Faradaic efficiency (FE) of 87 % and a large partial current density of 217 mA cm-2 toward C2+ products on Cu(OH)2 -D at only -0.54 V versus the reversible hydrogen electrode in a flow-cell electrolyzer. With further coupled to a Si solar cell, record-high solar conversion efficiencies of 4.47 % and 6.4 % are achieved for C2 H4 and C2+ products, respectively. This study provides an in-depth understanding of the selective formation of C2+ products on Cu and paves the way for the practical application of electrocatalytic or solar-driven CO2 reduction.
Collapse
Affiliation(s)
- Dazhong Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China.,College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Qiang Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Dongfang Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Gong Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Wanyu Deng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Hao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Lei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Jingkun Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Yingze West Street 79, Taiyuan, 030024, Shanxi, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
70
|
Chatterjee S, Bhanja P, Ghosh D, Kumar P, Kanti Das S, Dalapati S, Bhaumik A. Metformin-Templated Nanoporous ZnO and Covalent Organic Framework Heterojunction Photoanode for Photoelectrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:408-416. [PMID: 33052003 DOI: 10.1002/cssc.202002136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Photoelectrochemical water-splitting offers unique opportunity in the utilization of abundant solar light energy and water resources to produce hydrogen (renewable energy) and oxygen (clean environment) in the presence of a semiconductor photoanode. Zinc oxide (ZnO), a wide bandgap semiconductor is found to crystallize predominantly in the hexagonal wurtzite phase. Herein, we first report a new crystalline triclinic phase of ZnO by using N-rich antidiabetic drug metformin as a template via hydrothermal synthesis with self-assembled nanorod-like particle morphology. We have fabricated a heterojunction nanocomposite charge carrier photoanode by coupling this porous ZnO with a covalent organic framework, which displayed highly enhanced photocurrent density of 0.62 mA/cm2 at 0.2 V vs. RHE in photoelectrochemical water oxidation and excellent photon-to-current conversion efficiency at near-neutral pH vis-à-vis bulk ZnO. This enhancement of the photocurrent for the porous ZnO/COF nanocomposite material over the corresponding bulk ZnO could be attributed to the visible light energy absorption by COF and subsequent efficient charge-carrier mobility via porous ZnO surface.
Collapse
Affiliation(s)
- Sauvik Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Piyali Bhanja
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Dibyendu Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Praveen Kumar
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| | - Sasanka Dalapati
- School of Technology, Department of Materials Science, Central University of Tamil Nadu (CUTN), Neelakudi, Thiruvarur, Tamil Nadu, 610005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
71
|
Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem Soc Rev 2021; 50:4993-5061. [DOI: 10.1039/d0cs00071j] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This timely and comprehensive review mainly summarizes advances in heterogeneous electroreduction of CO2: from fundamentals to value-added products.
Collapse
|
72
|
Wu ZY, Huang LJ, Zhong R. Terpyridine-containing porphyrin and coordination assembly with fullerene-based pyridine for enhanced electrocatalytic oxygen evolution and photocurrent response. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
73
|
Juntrapirom S, Santatiwongchai J, Watwiangkham A, Suthirakun S, Butburee T, Faungnawakij K, Chakthranont P, Hirunsit P, Rungtaweevoranit B. Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO 2 conversion to C 2 products. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01839f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CuZn alloy derived from a metal–organic framework shows a 5-fold enhancement in faradaic efficiency for CO2 reduction to C2 products compared to Cu alone. Density functional theory calculation provides important mechanistic insights.
Collapse
Affiliation(s)
- Saranya Juntrapirom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirapat Santatiwongchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Athis Watwiangkham
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Suwit Suthirakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pussana Hirunsit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
74
|
Zhang Y, Cao C, Wu XT, Zhu QL. Three-dimensional porous copper-decorated bismuth-based nanofoam for boosting the electrochemical reduction of CO2 to formate. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00065a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu-decorated Bi/Bi2O3 nanofoam with a 3D porous network structure was assembled, which exhibits excellent electrocatalytic performance toward electrocatalytic CO2 reduction owing to the optimized morphology and electronic structure.
Collapse
Affiliation(s)
- Yingchun Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences (CAS)
- Fuzhou 350002
- China
| | - Changsheng Cao
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences (CAS)
- Fuzhou 350002
- China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences (CAS)
- Fuzhou 350002
- China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences (CAS)
- Fuzhou 350002
- China
| |
Collapse
|
75
|
Batrice RJ, Gordon JC. Powering the next industrial revolution: transitioning from nonrenewable energy to solar fuels via CO 2 reduction. RSC Adv 2020; 11:87-113. [PMID: 35423038 PMCID: PMC8691073 DOI: 10.1039/d0ra07790a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
Solar energy has been used for decades for the direct production of electricity in various industries and devices; however, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuel combustion. The common feedstocks for producing such solar fuels are carbon dioxide and water, yet only the photoconversion of carbon dioxide presents the opportunity to generate liquid fuels capable of integrating into our existing infrastructure, while simultaneously removing atmospheric greenhouse gas pollution. This review presents recent advances in photochemical solar fuel production technology. Although efforts in this field have created an incredible number of methods to convert carbon dioxide into gaseous and liquid fuels, these can generally be classified under one of four categories based on how incident sunlight is utilised: solar concentration for thermoconversion (Category 1), transformation toward electroconversion (Category 2), natural photosynthesis for bioconversion (Category 3), and artificial photosynthesis for direct photoconversion (Category 4). Select examples of developments within each of these categories is presented, showing the state-of-the-art in the use of carbon dioxide as a suitable feedstock for solar fuel production. Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.![]()
Collapse
Affiliation(s)
- Rami J Batrice
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - John C Gordon
- Chemistry Division, Inorganic, Isotope, and Actinide Chemistry, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| |
Collapse
|
76
|
Liao S, Luo Z, Metternich JB, Zenobi R, Stellacci F. Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. NANOSCALE 2020; 12:22639-22644. [PMID: 33151213 DOI: 10.1039/d0nr05061j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work we show that it is possible to use MALDI-TOF as a tool to quantify the atomic composition and to describe the phase segragation of the surface of ligand-coated, bimetallic AuAg nanoparticles. Our investigation shows that AuAg nanoparticles of various compositions exhibit core-shell heterogeneity with surface enrichment of Ag. A Monte-Carlo type simulation demonstrates that the surface Au and Ag atoms arrange in a random fashion.
Collapse
Affiliation(s)
- Suiyang Liao
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
77
|
Advances in Clean Fuel Ethanol Production from Electro-, Photo- and Photoelectro-Catalytic CO2 Reduction. Catalysts 2020. [DOI: 10.3390/catal10111287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Using renewable energy to convert CO2 to a clean fuel ethanol can not only reduce carbon emission through the utilization of CO2 as feedstock, but also store renewable energy as the widely used chemical and high-energy-density fuel, being considered as a perfect strategy to address current environment and energy issues. Developing efficient electrocatalysts, photocatalysts, and photoelectrocatalysts for CO2 reduction is the most crucial keystone for achieving this goal. Considerable progresses in CO2-based ethanol production have been made over the past decades. This review provides the general principles and summarizes the latest advancements in electrocatalytic, photocatalytic and photoelectrocatalytic CO2 conversion to ethanol. Furthermore, the main challenges and proposed future prospects are illustrated for further developments in clean fuel ethanol production.
Collapse
|
78
|
Varandili SB, Stoian D, Vavra J, Pankhurst J, Buonsanti R. Ligand-mediated formation of Cu/metal oxide hybrid nanocrystals with tunable number of interfaces. Chem Sci 2020; 11:13094-13101. [PMID: 34094491 PMCID: PMC8163200 DOI: 10.1039/d0sc04739b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Combining domains of different chemical nature within the same hybrid material through the formation of heterojunctions provides the opportunity to exploit the properties of each individual component within the same nano-object; furthermore, new synergistic properties will often arise as a result of unique interface interactions. However, synthetic strategies enabling precise control over the final architecture of multicomponent objects still remain scarce for certain classes of materials. Herein, we report on the formation of Cu/MO x (M = Ce, Zn and Zr) hybrid nanocrystals with a tunable number of interfaces between the two domains. We demonstrate that the organic ligands employed during the synthesis play a key role in regulating the final configuration. Finally, we show that the synthesized nanocrystals serve as materials platforms to investigate the impact of the Cu/metal oxide interfaces in applications by focusing on the electrochemical CO2 reduction reaction as one representative example.
Collapse
Affiliation(s)
- Seyedeh Behnaz Varandili
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Dragos Stoian
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Jan Vavra
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - James Pankhurst
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
79
|
Enhance CO2-to-C2+ products yield through spatial management of CO transport in Cu/ZnO tandem electrodes. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
80
|
Tan Z, Peng T, Tan X, Wang W, Wang X, Yang Z, Ning H, Zhao Q, Wu M. Controllable Synthesis of Leaf‐Like CuO Nanosheets for Selective CO
2
Electroreduction to Ethylene. ChemElectroChem 2020. [DOI: 10.1002/celc.202000235] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhonghao Tan
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Tingyue Peng
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Xiaojie Tan
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Wenhang Wang
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Xiaoshan Wang
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Zhongxue Yang
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Hui Ning
- College of chemical engineeringChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Qingshan Zhao
- College of chemical engineeringChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| | - Mingbo Wu
- College of Chemical Engineering, College of New Energy Institute of New Energy, State Key Laboratory of Heavy Oil ProcessingChina University of Petroleum No. 66, West Changjiang Road, Huangdao District Qingdao China 266580
| |
Collapse
|
81
|
Yang PP, Zhang XL, Gao FY, Zheng YR, Niu ZZ, Yu X, Liu R, Wu ZZ, Qin S, Chi LP, Duan Y, Ma T, Zheng XS, Zhu JF, Wang HJ, Gao MR, Yu SH. Protecting Copper Oxidation State via Intermediate Confinement for Selective CO 2 Electroreduction to C 2+ Fuels. J Am Chem Soc 2020; 142:6400-6408. [PMID: 32176485 DOI: 10.1021/jacs.0c01699] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Selective and efficient catalytic conversion of carbon dioxide (CO2) into value-added fuels and feedstocks provides an ideal avenue to high-density renewable energy storage. An impediment to enabling deep CO2 reduction to oxygenates and hydrocarbons (e.g., C2+ compounds) is the difficulty of coupling carbon-carbon bonds efficiently. Copper in the +1 oxidation state has been thought to be active for catalyzing C2+ formation, whereas it is prone to being reduced to Cu0 at cathodic potentials. Here we report that catalysts with nanocavities can confine carbon intermediates formed in situ, which in turn covers the local catalyst surface and thereby stabilizes Cu+ species. Experimental measurements on multihollow cuprous oxide catalyst exhibit a C2+ Faradaic efficiency of 75.2 ± 2.7% at a C2+ partial current density of 267 ± 13 mA cm-2 and a large C2+-to-C1 ratio of ∼7.2. Operando Raman spectra, in conjunction with X-ray absorption studies, confirm that Cu+ species in the as-designed catalyst are well retained during CO2 reduction, which leads to the marked C2+ selectivity at a large conversion rate.
Collapse
Affiliation(s)
- Peng-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ya-Rong Zheng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhuang-Zhuang Niu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingxing Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ren Liu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuai Qin
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li-Ping Chi
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Duan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Ma
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu-Sheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jun-Fa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Hui-Juan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei 230026 P. R. China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China
| |
Collapse
|