51
|
Zahurancik WJ, Norris AS, Lai SM, Snyder DT, Wysocki VH, Gopalan V. Purification, reconstitution, and mass analysis of archaeal RNase P, a multisubunit ribonucleoprotein enzyme. Methods Enzymol 2021; 659:71-103. [PMID: 34752299 DOI: 10.1016/bs.mie.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ubiquitous ribonucleoprotein (RNP) form of RNase P catalyzes the Mg2+-dependent cleavage of the 5' leader of precursor-transfer RNAs. The rate and fidelity of the single catalytic RNA subunit in the RNase P RNP is significantly enhanced by association with protein cofactors. While the bacterial RNP exhibits robust activity at near-physiological Mg2+ concentrations with a single essential protein cofactor, archaeal and eukaryotic RNase P are dependent on up to 5 and 10 protein subunits, respectively. Archaeal RNase P-whose proteins share eukaryotic homologs-is an experimentally tractable model for dissecting in a large RNP the roles of multiple proteins that aid an RNA catalyst. We describe protocols to assemble RNase P from Methanococcus maripaludis, a methanogenic archaeon. We present strategies for tag-less purification of four of the five proteins (the tag from the fifth is removed post-purification), an approach that helps reconstitute the RNase P RNP with near-native constituents. We demonstrate the value of native mass spectrometry (MS) in establishing the accurate masses (including native oligomers and modifications) of all six subunits in M. maripaludis RNase P, and the merits of mass photometry (MP) as a complement to native MS for characterizing the oligomeric state of protein complexes. We showcase the value of native MS and MP in revealing time-dependent modifications (e.g., oxidation) and aggregation of protein subunits, thereby providing insights into the decreased function of RNase P assembled with aged preparations of recombinant subunits. Our protocols and cautionary findings are applicable to studies of other cellular RNPs.
Collapse
Affiliation(s)
- Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Andrew S Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Center for RNA Biology, The Ohio State University, Columbus, OH, United States; Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH, United States
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Center for RNA Biology, The Ohio State University, Columbus, OH, United States; Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH, United States
| | - Dalton T Snyder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Center for RNA Biology, The Ohio State University, Columbus, OH, United States; Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH, United States.
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States; Center for RNA Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
52
|
Marathe IA, Lai SM, Zahurancik WJ, Poirier MG, Wysocki VH, Gopalan V. Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Res 2021; 49:9444-9458. [PMID: 34387688 PMCID: PMC8450104 DOI: 10.1093/nar/gkab655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
The ribonucleoprotein (RNP) form of archaeal RNase P comprises one catalytic RNA and five protein cofactors. To catalyze Mg2+-dependent cleavage of the 5′ leader from pre-tRNAs, the catalytic (C) and specificity (S) domains of the RNase P RNA (RPR) cooperate to recognize different parts of the pre-tRNA. While ∼250–500 mM Mg2+ renders the archaeal RPR active without RNase P proteins (RPPs), addition of all RPPs lowers the Mg2+ requirement to ∼10–20 mM and improves the rate and fidelity of cleavage. To understand the Mg2+- and RPP-dependent structural changes that increase activity, we used pre-tRNA cleavage and ensemble FRET assays to characterize inter-domain interactions in Pyrococcus furiosus (Pfu) RPR, either alone or with RPPs ± pre-tRNA. Following splint ligation to doubly label the RPR (Cy3-RPRC domain and Cy5-RPRS domain), we used native mass spectrometry to verify the final product. We found that FRET correlates closely with activity, the Pfu RPR and RNase P holoenzyme (RPR + 5 RPPs) traverse different Mg2+-dependent paths to converge on similar functional states, and binding of the pre-tRNA by the holoenzyme influences Mg2+ cooperativity. Our findings highlight how Mg2+ and proteins in multi-subunit RNPs together favor RNA conformations in a dynamic ensemble for functional gains.
Collapse
Affiliation(s)
- Ila A Marathe
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Stella M Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Poirier
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Venkat Gopalan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
53
|
Soltermann F, Struwe WB, Kukura P. Label-free methods for optical in vitro characterization of protein-protein interactions. Phys Chem Chem Phys 2021; 23:16488-16500. [PMID: 34342317 PMCID: PMC8359934 DOI: 10.1039/d1cp01072g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions are involved in the regulation and function of the majority of cellular processes. As a result, much effort has been aimed at the development of methodologies capable of quantifying protein-protein interactions, with label-free methods being of particular interest due to the associated simplified workflows and minimisation of label-induced perturbations. Here, we review recent advances in optical technologies providing label-free in vitro measurements of affinities and kinetics. We provide an overview and comparison of existing techniques and their principles, discussing advantages, limitations, and recent applications.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Weston B. Struwe
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| | - Philipp Kukura
- Physical and Theoretical Chemistry, Department of Chemistry, University of OxfordUK
| |
Collapse
|
54
|
Feyh R, Waeber NB, Prinz S, Giammarinaro PI, Bange G, Hochberg G, Hartmann RK, Altegoer F. Structure and mechanistic features of the prokaryotic minimal RNase P. eLife 2021; 10:70160. [PMID: 34180399 PMCID: PMC8266387 DOI: 10.7554/elife.70160] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.
Collapse
Affiliation(s)
- Rebecca Feyh
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Nadine B Waeber
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Simone Prinz
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Pietro Ivan Giammarinaro
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg Hochberg
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany.,Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology and Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
55
|
Busch F, VanAernum ZL, Lai SM, Gopalan V, Wysocki VH. Analysis of Tagged Proteins Using Tandem Affinity-Buffer Exchange Chromatography Online with Native Mass Spectrometry. Biochemistry 2021; 60:1876-1884. [PMID: 34100589 PMCID: PMC9080447 DOI: 10.1021/acs.biochem.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein overexpression and purification are critical for in vitro structure-function characterization studies. However, some proteins are difficult to express in heterologous systems due to host-related (e.g., codon usage, translation rate) and/or protein-specific (e.g., toxicity, aggregation) challenges. Therefore, it is often necessary to test multiple overexpression and purification conditions to maximize the yield of functional protein, particularly for resource-heavy downstream applications (e.g., biocatalysts, tertiary structure determination, biotherapeutics). Here, we describe an automatable liquid chromatography-mass spectrometry-based method for direct analysis of target proteins in cell lysates. This approach is facilitated by coupling immobilized metal affinity chromatography (IMAC), which leverages engineered poly-histidine tags in proteins of interest, with size exclusion-based online buffer exchange (OBE) and native mass spectrometry (nMS). While we illustrate a proof of concept here using relatively straightforward examples, the use of IMAC-OBE-nMS to optimize conditions for large-scale protein production may become invaluable for expediting structural biology and biotherapeutic initiatives.
Collapse
Affiliation(s)
- Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Stella M. Lai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 USA
- Resource for Native Mass Spectrometry-Guided Structural Biology, The Ohio State University, Columbus, OH 43210 USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
56
|
Jiang D, Zhao X, Liu YN, Chen HB, Lv WL, Qian C, Liu XW. Label-Free Probing of Molecule Binding Kinetics Using Single-Particle Interferometric Imaging. Anal Chem 2021; 93:7965-7969. [PMID: 34029055 DOI: 10.1021/acs.analchem.1c00828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Probing molecular interactions is critical for screening drugs, detecting pollutants, and understanding biological processes at the molecular level, but these interactions are difficult to detect, especially for small molecules. A label-free optical imaging technology that can detect molecule binding kinetics is presented, in which free-moving particles are driven into oscillations with an alternating electrical field and the interferometric scattering patterns of the particles are imaged via an optical imaging method. By tracking the charge-sensitive variations in the oscillation amplitude with sub-nanometer precision, the small molecules and metal ions binding to the surface as well as protein-protein binding kinetics were measured. The capability of the label-free measurement of molecular interactions can provide a promising platform for screening small-molecule drugs, probing conformational changes in proteins, and detecting environmental pollutants.
Collapse
Affiliation(s)
- Di Jiang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiaona Zhao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Nan Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Bo Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Li Lv
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.,Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
57
|
Weiland P, Altegoer F. Identification and Characterization of Two Transmembrane Proteins Required for Virulence of Ustilago maydis. FRONTIERS IN PLANT SCIENCE 2021; 12:669835. [PMID: 34093627 PMCID: PMC8176221 DOI: 10.3389/fpls.2021.669835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Smut fungi comprise a large group of biotrophic phytopathogens infecting important crops such as wheat and corn. Through the secretion of effector proteins, the fungus actively suppresses plant immune reactions and modulates its host's metabolism. Consequently, how soluble effector proteins contribute to virulence is already characterized in a range of phytopathogens. However, membrane-associated virulence factors have been much less studied to date. Here, we investigated six transmembrane (TM) proteins that show elevated gene expression during biotrophic development of the maize pathogen Ustilago maydis. We show that two of the six proteins, named Vmp1 and Vmp2 (virulence-associated membrane protein), are essential for the full virulence of U. maydis. The deletion of the corresponding genes leads to a substantial attenuation in the virulence of U. maydis. Furthermore, both are conserved in various related smuts and contain no domains of known function. Our biochemical analysis clearly shows that Vmp1 and Vmp2 are membrane-associated proteins, potentially localizing to the U. maydis plasma membrane. Mass photometry and light scattering suggest that Vmp1 mainly occurs as a monomer, while Vmp2 is dimeric. Notably, the large and partially unstructured C-terminal domain of Vmp2 is crucial for virulence while not contributing to dimerization. Taken together, we here provide an initial characterization of two membrane proteins as virulence factors of U. maydis.
Collapse
Affiliation(s)
- Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
- Department of Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
58
|
Brun J, Vasiljevic S, Gangadharan B, Hensen M, V. Chandran A, Hill ML, Kiappes J, Dwek RA, Alonzi DS, Struwe WB, Zitzmann N. Assessing Antigen Structural Integrity through Glycosylation Analysis of the SARS-CoV-2 Viral Spike. ACS CENTRAL SCIENCE 2021; 7:586-593. [PMID: 34056088 PMCID: PMC8029450 DOI: 10.1021/acscentsci.1c00058] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide. Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response. Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo. Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates. Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins. Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design.
Collapse
Affiliation(s)
- Juliane Brun
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Snežana Vasiljevic
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Bevin Gangadharan
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Mario Hensen
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anu V. Chandran
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Michelle L. Hill
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - J.L. Kiappes
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Raymond A. Dwek
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Dominic S. Alonzi
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Weston B. Struwe
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Nicole Zitzmann
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
59
|
Label-free, mass-sensitive single-molecule imaging using interferometric scattering microscopy. Essays Biochem 2021; 65:81-91. [PMID: 33296454 DOI: 10.1042/ebc20200023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/27/2022]
Abstract
Single-molecule imaging has mostly been restricted to the use of fluorescence labelling as a contrast mechanism due to its superior ability to visualise molecules of interest on top of an overwhelming background of other molecules. Recently, interferometric scattering (iSCAT) microscopy has demonstrated the detection and imaging of single biomolecules based on light scattering without the need for fluorescent labels. Significant improvements in measurement sensitivity combined with a dependence of scattering signal on object size have led to the development of mass photometry, a technique that measures the mass of individual molecules and thereby determines mass distributions of biomolecule samples in solution. The experimental simplicity of mass photometry makes it a powerful tool to analyse biomolecular equilibria quantitatively with low sample consumption within minutes. When used for label-free imaging of reconstituted or cellular systems, the strict size-dependence of the iSCAT signal enables quantitative measurements of processes at size scales reaching from single-molecule observations during complex assembly up to mesoscopic dynamics of cellular components and extracellular protrusions. In this review, I would like to introduce the principles of this emerging imaging technology and discuss examples that show how mass-sensitive iSCAT can be used as a strong complement to other routine techniques in biochemistry.
Collapse
|
60
|
Elucidating Recombination Mediator Function Using Biophysical Tools. BIOLOGY 2021; 10:biology10040288. [PMID: 33916151 PMCID: PMC8066028 DOI: 10.3390/biology10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This review recapitulates the initial knowledge acquired with genetics and biochemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to overcome the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) molecular mechanisms. The RMP function is usually realized by a single protein in bacteriophages and eukaryotes, respectively UvsY or Orf, and RAD52 or BRCA2, while in bacteria three proteins RecF, RecO and RecR act cooperatively to displace SSB and load RecA onto a ssDNA region. Proteins working alongside to the RMPs in homologous recombination and DNA repair notably belongs to the RAD52 epistasis group in eukaryote and the RecF epistasis group in bacteria. Although RMPs have been studied for several decades, molecular mechanisms at the single-cell level are still not fully understood. Here, we summarize the current knowledge acquired on RMPs and review the crucial role of biophysical tools to investigate molecular mechanisms at the single-cell level in the physiological context.
Collapse
|
61
|
Li N, Canady TD, Huang Q, Wang X, Fried GA, Cunningham BT. Photonic resonator interferometric scattering microscopy. Nat Commun 2021; 12:1744. [PMID: 33741998 PMCID: PMC7979857 DOI: 10.1038/s41467-021-21999-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Interferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm-2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.
Collapse
Affiliation(s)
- Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taylor D Canady
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Glenn A Fried
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, Urbana, IL, USA.
| |
Collapse
|
62
|
Wu D, Piszczek G. Standard protocol for mass photometry experiments. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:403-409. [PMID: 33651123 DOI: 10.1007/s00249-021-01513-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Mass photometry (MP) is a relatively new experimental technique with a quickly expanding list of applications. Using optical detection, MP measures the mass of individual molecules to obtain molecular mass distributions of proteins and other biomolecules in solution. The combination of speed, sensitivity, and very low sample consumption with label- and immobilization-free detection sets MP apart from other analytical methods. An increasing number of laboratories incorporates mass photometry as a routine sample analysis technique. However, MP measurements can sometimes be challenging, especially for users without previous experience with single-molecule techniques. Here, we present a protocol for the determination of protein molecular mass distributions by MP. It describes the sample and materials preparation as well as data collection and analysis. The advantages and limitations of this technique and the potential sources of artifacts are also given. This protocol can be used by new MP users and serve as a checklist for laboratories routinely performing MP experiments to guide consistent data collection and documentation.
Collapse
Affiliation(s)
- Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
63
|
Kulenkampff K, Wolf Perez AM, Sormanni P, Habchi J, Vendruscolo M. Quantifying misfolded protein oligomers as drug targets and biomarkers in Alzheimer and Parkinson diseases. Nat Rev Chem 2021; 5:277-294. [PMID: 37117282 DOI: 10.1038/s41570-021-00254-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Protein misfolding and aggregation are characteristic of a wide range of neurodegenerative disorders, including Alzheimer and Parkinson diseases. A hallmark of these diseases is the aggregation of otherwise soluble and functional proteins into amyloid aggregates. Although for many decades such amyloid deposits have been thought to be responsible for disease progression, it is now increasingly recognized that the misfolded protein oligomers formed during aggregation are, instead, the main agents causing pathological processes. These oligomers are transient and heterogeneous, which makes it difficult to detect and quantify them, generating confusion about their exact role in disease. The lack of suitable methods to address these challenges has hampered efforts to investigate the molecular mechanisms of oligomer toxicity and to develop oligomer-based diagnostic and therapeutic tools to combat protein misfolding diseases. In this Review, we describe methods to quantify misfolded protein oligomers, with particular emphasis on diagnostic applications as disease biomarkers and on therapeutic applications as target biomarkers. The development of these methods is ongoing, and we discuss the challenges that remain to be addressed to establish measurement tools capable of overcoming existing limitations and to meet present needs.
Collapse
|
64
|
Wu D, Piszczek G. Rapid Determination of Antibody-Antigen Affinity by Mass Photometry. J Vis Exp 2021. [PMID: 33616097 DOI: 10.3791/61784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Measurements of the specificity and affinity of antigen-antibody interactions are critically important for medical and research applications. In this protocol, we describe the implementation of a new single-molecule technique, mass photometry (MP), for this purpose. MP is a label- and immobilization-free technique that detects and quantifies molecular masses and populations of antibodies and antigen-antibody complexes on a single-molecule level. MP analyzes the antigen-antibody sample within minutes, allowing for the precise determination of the binding affinity and simultaneously providing information on the stoichiometry and the oligomeric state of the proteins. This is a simple and straightforward technique that requires only picomole quantities of protein and no expensive consumables. The same procedure can be used to study protein-protein binding for proteins with a molecular mass larger than 50 kDa. For multivalent protein interactions, the affinities of multiple binding sites can be obtained in a single measurement. However, the single-molecule mode of measurement and the lack of labeling imposes some experimental limitations. This method gives the best results when applied to measurements of sub-micromolar interaction affinities, antigens with a molecular mass of 20 kDa or larger, and relatively pure protein samples. We also describe the procedure for performing the required fitting and calculation steps using basic data analysis software.
Collapse
Affiliation(s)
- Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health;
| |
Collapse
|
65
|
Olerinyova A, Sonn-Segev A, Gault J, Eichmann C, Schimpf J, Kopf AH, Rudden LSP, Ashkinadze D, Bomba R, Frey L, Greenwald J, Degiacomi MT, Steinhilper R, Killian JA, Friedrich T, Riek R, Struwe WB, Kukura P. Mass Photometry of Membrane Proteins. Chem 2021; 7:224-236. [PMID: 33511302 PMCID: PMC7815066 DOI: 10.1016/j.chempr.2020.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/20/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation. We introduce a label-free, single molecule approach for membrane-protein characterization Mass photometry quantifies membrane proteins in different membrane-mimetic systems MP reveals carrier and protein heterogeneity It helps distinguish different functional states of membrane proteins
Membrane proteins are some of the most important biological molecules, carrying out vital functions and being frequent drug targets. Yet, preferring lipid environments and so requiring solubilization, they are challenging to study. Here, we show that mass photometry can characterize the heterogeneity of membrane proteins and the carriers in which they are solubilized. It can also distinguish different functional states of membrane proteins. Our approach thus opens the door to more comprehensive studies of function, structure, and interaction of these critical proteins in their native membrane environment at the single-molecule level.
Collapse
Affiliation(s)
- Anna Olerinyova
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Adar Sonn-Segev
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Cédric Eichmann
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johannes Schimpf
- Institut für Biochemie, Albert-Ludwigs-Universität, Alberstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Adrian H Kopf
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Lucas S P Rudden
- Department of Physics, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Dzmitry Ashkinadze
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Radoslaw Bomba
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Jason Greenwald
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Matteo T Degiacomi
- Department of Physics, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Ralf Steinhilper
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - J Antoinette Killian
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Alberstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
66
|
Mass photometry enables label-free tracking and mass measurement of single proteins on lipid bilayers. Nat Methods 2021; 18:1247-1252. [PMID: 34608319 PMCID: PMC8490153 DOI: 10.1038/s41592-021-01261-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
The quantification of membrane-associated biomolecular interactions is crucial to our understanding of various cellular processes. State-of-the-art single-molecule approaches rely largely on the addition of fluorescent labels, which complicates the quantification of the involved stoichiometries and dynamics because of low temporal resolution and the inherent limitations associated with labeling efficiency, photoblinking and photobleaching. Here, we demonstrate dynamic mass photometry, a method for label-free imaging, tracking and mass measurement of individual membrane-associated proteins diffusing on supported lipid bilayers. Application of this method to the membrane remodeling GTPase, dynamin-1, reveals heterogeneous mixtures of dimer-based oligomers, oligomer-dependent mobilities, membrane affinities and (dis)association of individual complexes. These capabilities, together with assay-based advances for studying integral membrane proteins, will enable the elucidation of biomolecular mechanisms in and on lipid bilayers.
Collapse
|
67
|
Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021; 296:100144. [PMID: 33273015 PMCID: PMC7857493 DOI: 10.1074/jbc.ra120.016342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Ian Loke
- Cordlife Group Limited, Singapore, Singapore
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Fabian Soltermann
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
68
|
Chen H, Xie X, Chen TY. Single-molecule microscopy for in-cell quantification of protein oligomeric stoichiometry. Curr Opin Struct Biol 2020; 66:112-118. [PMID: 33242727 DOI: 10.1016/j.sbi.2020.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Protein organization modification plays a vital role in initiating signaling pathways, transcriptional regulation, and cell apoptosis regulation. Simultaneous quantification of oligomeric state and cellular parameters in the same cell, even though challenging, is required to understand their correlation at the molecular level. Recent advances of fluorescence protein and single-molecule localization microscopy enables the determination of localizations and oligomeric states of target proteins in cells. We reviewed the fluorescence intensity-based, localization-based, and photophysical property-based approaches for in-cell quantification of protein oligomeric stoichiometry. We discussed their working principles, applications, advantages, and limitations. These results also imply the combination of methodologies targeting different biological parameters at the single-cell level is essential to uncover the structure-function relationship at the molecular level.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, United States
| | - Xihong Xie
- Department of Chemistry, University of Houston, Houston, TX 77204, United States
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
69
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out‐of‐Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Josh Southworth
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Maria A. Lebedeva
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Robert J. H. Scanes
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Philipp Kukura
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| | - Stephen P. Fletcher
- Chemistry Research Laboratory University of Oxford 12 Mansfield Road Oxford UK
| |
Collapse
|
70
|
Engwerda AHJ, Southworth J, Lebedeva MA, Scanes RJH, Kukura P, Fletcher SP. Coupled Metabolic Cycles Allow Out-of-Equilibrium Autopoietic Vesicle Replication. Angew Chem Int Ed Engl 2020; 59:20361-20366. [PMID: 32706135 PMCID: PMC7692917 DOI: 10.1002/anie.202007302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/06/2020] [Indexed: 12/11/2022]
Abstract
We report chemically fuelled out-of-equilibrium self-replicating vesicles based on surfactant formation. We studied the vesicles' autocatalytic formation using UPLC to determine monomer concentration and interferometric scattering microscopy at the nanoparticle level. Unlike related reports of chemically fuelled self-replicating micelles, our vesicular system was too stable to surfactant degradation to be maintained out of equilibrium. The introduction of a catalyst, which introduces a second catalytic cycle into the metabolic network, was used to close the first cycle. This shows how coupled catalytic cycles can create a metabolic network that allows the creation and perseverance of fuel-driven, out-of-equilibrium self-replicating vesicles.
Collapse
Affiliation(s)
| | - Josh Southworth
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | - Maria A. Lebedeva
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | | - Philipp Kukura
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordUK
| | | |
Collapse
|
71
|
Li Y, Struwe WB, Kukura P. Single molecule mass photometry of nucleic acids. Nucleic Acids Res 2020; 48:e97. [PMID: 32756898 PMCID: PMC7515692 DOI: 10.1093/nar/gkaa632] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mass photometry is a recently developed methodology capable of measuring the mass of individual proteins under solution conditions. Here, we show that this approach is equally applicable to nucleic acids, enabling their facile, rapid and accurate detection and quantification using sub-picomoles of sample. The ability to count individual molecules directly measures relative concentrations in complex mixtures without need for separation. Using a dsDNA ladder, we find a linear relationship between the number of bases per molecule and the associated imaging contrast for up to 1200 bp, enabling us to quantify dsDNA length with up to 2 bp accuracy. These results introduce mass photometry as an accurate, rapid and label-free single molecule method complementary to existing DNA characterization techniques.
Collapse
Affiliation(s)
- Yiwen Li
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Weston B Struwe
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
72
|
Fineberg A, Surrey T, Kukura P. Quantifying the Monomer-Dimer Equilibrium of Tubulin with Mass Photometry. J Mol Biol 2020; 432:6168-6172. [PMID: 33068635 PMCID: PMC7763485 DOI: 10.1016/j.jmb.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
The αβ-tubulin heterodimer is the fundamental building block of microtubules, making it central to several cellular processes. Despite the apparent simplicity of heterodimerisation, the associated energetics and kinetics remain disputed, largely due to experimental challenges associated with quantifying affinities in the <µM range. We use mass photometry to observe tubulin monomers and heterodimers in solution simultaneously, thereby quantifying the αβ-tubulin dissociation constant (8.48 ± 1.22 nM) and its tightening in the presence of GTP (3.69 ± 0.65 nM), at a dissociation rate >10-2 s-1. Our results demonstrate the capabilities of mass photometry for quantifying protein-protein interactions and clarify the energetics and kinetics of tubulin heterodimerisation.
Collapse
Affiliation(s)
- Adam Fineberg
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK.
| |
Collapse
|
73
|
Lebedeva M, Palmieri E, Kukura P, Fletcher SP. Emergence and Rearrangement of Dynamic Supramolecular Aggregates Visualized by Interferometric Scattering Microscopy. ACS NANO 2020; 14:11160-11168. [PMID: 32790332 PMCID: PMC7513470 DOI: 10.1021/acsnano.0c02414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Studying dynamic self-assembling systems in their native environment is essential for understanding the mechanisms of self-assembly and thereby exerting full control over these processes. Traditional ensemble-based analysis methods often struggle to reveal critical features of the self-assembly that occur at the single particle level. Here, we describe a label-free single-particle assay to visualize real-time self-assembly in aqueous solutions by interferometric scattering microscopy. We demonstrate how the assay can be applied to biphasic reactions yielding micellar or vesicular aggregates, detecting the onset of aggregate formation, quantifying the kinetics at the single particle level, and distinguishing sigmoidal and exponential growth of aggregate populations. Furthermore, we can follow the evolution in aggregate size in real time, visualizing the nucleation stages of the self-assembly processes and record phenomena such as incorporation of oily components into the micelle or vesicle lumen.
Collapse
|
74
|
Huang Q, Li N, Zhang H, Che C, Sun F, Xiong Y, Canady TD, Cunningham BT. Critical Review: digital resolution biomolecular sensing for diagnostics and life science research. LAB ON A CHIP 2020; 20:2816-2840. [PMID: 32700698 PMCID: PMC7485136 DOI: 10.1039/d0lc00506a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the frontiers in the field of biosensors is the ability to quantify specific target molecules with enough precision to count individual units in a test sample, and to observe the characteristics of individual biomolecular interactions. Technologies that enable observation of molecules with "digital precision" have applications for in vitro diagnostics with ultra-sensitive limits of detection, characterization of biomolecular binding kinetics with a greater degree of precision, and gaining deeper insights into biological processes through quantification of molecules in complex specimens that would otherwise be unobservable. In this review, we seek to capture the current state-of-the-art in the field of digital resolution biosensing. We describe the capabilities of commercially available technology platforms, as well as capabilities that have been described in published literature. We highlight approaches that utilize enzymatic amplification, nanoparticle tags, chemical tags, as well as label-free biosensing methods.
Collapse
Affiliation(s)
- Qinglan Huang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Hanyuan Zhang
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Fu Sun
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Taylor D. Canady
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Illinois Cancer Center, University of Illinois at Urbana-Champaign Urbana, IL 61801
| |
Collapse
|
75
|
Soltermann F, Foley EDB, Pagnoni V, Galpin M, Benesch JLP, Kukura P, Struwe WB. Quantifying Protein-Protein Interactions by Molecular Counting with Mass Photometry. Angew Chem Int Ed Engl 2020; 59:10774-10779. [PMID: 32167227 PMCID: PMC7318626 DOI: 10.1002/anie.202001578] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Interactions between biomolecules control the processes of life in health and their malfunction in disease, making their characterization and quantification essential. Immobilization- and label-free analytical techniques are desirable because of their simplicity and minimal invasiveness, but they struggle with quantifying tight interactions. Here, we show that mass photometry can accurately count, distinguish by molecular mass, and thereby reveal the relative abundances of different unlabelled biomolecules and their complexes in mixtures at the single-molecule level. These measurements determine binding affinities over four orders of magnitude at equilibrium for both simple and complex stoichiometries within minutes, as well as the associated kinetics. These results introduce mass photometry as a rapid, simple and label-free method for studying sub-micromolar binding affinities, with potential for extension towards a universal approach for characterizing complex biomolecular interactions.
Collapse
Affiliation(s)
- Fabian Soltermann
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Eric D. B. Foley
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Veronica Pagnoni
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Martin Galpin
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Justin L. P. Benesch
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Philipp Kukura
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| | - Weston B. Struwe
- Physical and Theoretical ChemistryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3TAUK
| |
Collapse
|