51
|
Wu W, Huang L, Zhu X, Chen J, Chao D, Li M, Wu S, Dong S. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem Sci 2022; 13:4566-4572. [PMID: 35656135 PMCID: PMC9020197 DOI: 10.1039/d2sc00212d] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/19/2022] [Indexed: 12/05/2022] Open
Abstract
Mechanism research of nanozymes has always been of great interest since their emergence as outstanding mimics of friable natural enzymes. An important but rarely mentioned issue in mechanism research of nanozymology is the inhibitory effect of nanozymes. And conventional nanozymes with various active sites hinder the mechanism research, while single-atom Fe-N-C nanozymes with similar active sites to natural enzymes exhibit structural advantages. Herein, we synthesized Fe single-atom nanozymes (Fe-SANs) with ultrahigh oxidase-like activity and found that a common analgesic-antipyretic drug 4-acetamidophenol (AMP) had inhibitory effects for the oxidase-like activity of Fe-SANs. We investigated the inhibitory effects in detail and demonstrated that the inhibition type was reversible mixed-inhibition with inhibition constants (K i and ) of 0.431 mM and 0.279 mM, respectively. Furthermore, we put forward a colorimetric method for AMP detection based on nanozyme inhibition. The research on the inhibitory effects of small molecules on nanozymes expands the scope of analysis based on nanozymes and the inhibition mechanism study may offer some insight into investigating the interaction between nanozymes and inhibitors.
Collapse
Affiliation(s)
- Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Daiyong Chao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Minghua Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shuangli Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
52
|
Huang L, Chen H, Diao D. Manufacturing high-density graphene edges with electrochemical etching for sensing aminophenol. Anal Chim Acta 2022; 1198:339527. [DOI: 10.1016/j.aca.2022.339527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 01/23/2023]
|
53
|
Chen Y, Zou H, Yan B, Wu X, Cao W, Qian Y, Zheng L, Yang G. Atomically Dispersed Cu Nanozyme with Intensive Ascorbate Peroxidase Mimic Activity Capable of Alleviating ROS-Mediated Oxidation Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103977. [PMID: 34951150 PMCID: PMC8844488 DOI: 10.1002/advs.202103977] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Ascorbate peroxidase (APX) as a crucial antioxidant enzyme has drawn attentions for its utilization in preventing cells from oxidative stress responses by efficiently scavenging H2 O2 in plants. For eliminating the specific inactivation of natural APXs and regulating the catalytic activity, single-atom nanozymes are considered as promising classes of alternatives with similar active sites and maximal atomic utilization efficiency to natural APXs. Herein, graphitic carbon nitride (g-C3 N4 ) anchored with isolated single copper atoms (Cu SAs/CN) is designed as an efficient nanozyme with intrinsic APX mimetic behavior. The engineered Cu SAs/CN exhibits comparable specific activity and kinetics to the natural APXs. Based on the density functional theory (DFT), Cu-N4 moieties in the active center of Cu SAs/CN are determined to exert such favorable APX catalytic performance, in which the electron transfer between Cu and coordinated N atoms facilitates the activation and cleavage of the adsorbed H2 O2 molecules and results in fast kinetics. The constructed Cu SAs/CN nanozyme with superior APX-like performance and high biocompatibility can be applied for effectively protecting the H2 O2 -treated cells against oxidative injury in vitro. These findings report the single-atom nanozymes as a successful paradigm for guiding nanozymes to implement APX mimetic performance for reactive oxygen species-related biotherapeutic.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Hang Zou
- Department of Laboratory MedicineNanfang Hospital, Southern Medical University/The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Yihang Qian
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang Hospital, Southern Medical University/The First School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdong510515P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesNanotechnology Research CenterSchool of Materials Science and EngineeringSchool of PhysicsSun Yat‐sen UniversityGuangzhouGuangdong510275P. R. China
| |
Collapse
|
54
|
Yan B, Wang F, He S, Liu W, Zhang C, Chen C, Lu Y. Peroxidase-like activity of Ru-N-C nanozymes in colorimetric assay of acetylcholinesterase activity. Anal Chim Acta 2022; 1191:339362. [PMID: 35033267 DOI: 10.1016/j.aca.2021.339362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Herein, the Ru-N-C nanozymes with abundant active Ru-Nx sites have been successfully prepared by pyrolyzing Ru(acac)3 trapped zeolitic-imidazolate-frameworks (Ru(acac)3@ZIF-8). Taking advantages of the remarkable peroxidase-mimicking activity, outstanding stability and reusability of Ru-N-C nanozymes, a novel biosensing system with explicit mechanism is strategically fabricated for sensitively determining acetylcholinesterase (AChE) and tacrine. The limit of detection for AChE activity can achieve as low as 0.0433 mU mL-1, and the IC50 value of tacrine for AChE is about 0.190 μmol L-1. The robust analytical performance in serums test verifies the great application potential of this assay in real matrix. Furthermore, "INH" and "IMPLICATION-AND" logic gates are rationally constructed based on the proposed colorimetric sensor. This work not only provides one sustainable and effective avenue to fabricate Ru-N-C-based peroxidase mimic with high catalytic performance, and also gives new impetuses for developing novel biosensors by applying Ru-N-C-based enzyme mimics as substitutes for the natural enzyme.
Collapse
Affiliation(s)
- Bingsong Yan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Fengtian Wang
- Blood Center of Shandong Province, Jinan, 250014, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
55
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
56
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device. Angew Chem Int Ed Engl 2022; 61:e202112453. [PMID: 34750950 DOI: 10.1002/anie.202112453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Surpassing natural enzymes in cost, stability and mass production, nanozymes have attracted wide attention in fields from disease diagnosis to tumor therapy. However, nanozymes intrinsically have low reaction selectivity, which significantly restricts their applications. A general method is reported to address this challenge by following a biomimetic operation principle of substrates channeling and screening. Two oxidase- and peroxidase-like nanozymes (i.e., emerging N-doped carbon nanocages and Prussian blue nanoparticles), were cascaded as a proof of concept to improve the reaction selectivity in transforming the substrate into the targeted product by more than 2000 times. The cascaded nanozymes were also adopted to a spatially confined microfluidic device, leading to more than 100-fold enhancement of the reaction efficiency due to signal amplification.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
57
|
Zhang C, Zhang X, Ye Y, Ni P, Chen C, Liu W, Wang B, Jiang Y, Lu Y. Manganese-doped iron coordination polymer nanoparticles with enhanced peroxidase-like activity for colorimetric detection of antioxidants. Analyst 2021; 147:238-246. [PMID: 34913935 DOI: 10.1039/d1an01953h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient and sensitive antioxidant assay with high performance is essential for assessing food quality and monitoring the oxidative stress level of biological matrices. Although coordination polymer nanoparticles (CPNs)-based nanozymes have emerged as candidates in the analytical field, strategies to improve the catalytic activity of CPNs have been scarcely revealed and studied. Herein, we demonstrate a manganese (Mn) doping strategy to enhance the peroxidase-mimetic activity of Fe-based CPNs. By tuning the Mn doping amounts and selecting 2,5-dihydroxyterephthalic acid (H4DHTP) as ligands, the produced nanozymes in amorphous state followed the catalytic activity order of Fe5Mn-DHTP > Fe8Mn-DHTP > Fe2Mn-DHTP > Fe-DHTP > Mn-DHTP. Ulteriorly, benefitting from the best catalytic performance and definite catalytic mechanism of Fe5Mn-DHTP, versatile colorimetric assays for ultrasensitive detection of one exogenous antioxidant (ascorbic acid, AA) and two endogenous antioxidants (glutathione, GSH; cysteine, Cys) have been deftly devised based on the inhibition of the 3,3',5,5'-tetramethylbenzidine chromogenic reaction in presence of H2O2. It was found that mercaptan (GSH and Cys) and AA exhibited different inhibition mechanisms. Practically, such a colorimetric assay was viable to determine the total antioxidant capacity of drugs and foods with desirable results. This work proposes a feasible strategy for embellishing CPN nanozymes used for designing sensitive and convenient assays for various antioxidants based on an explicit detection mechanism.
Collapse
Affiliation(s)
- Chenghui Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Xingfeng Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yu Ye
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Wendong Liu
- School of Science Tianjin University, Tianjin University, Tianjin 300350, China
| | - Bo Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
58
|
Synthesis of Rod-like NiO–Co3O4 Composites for Sensitive Electrochemical Detection of Hydrogen Peroxide. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00202-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
59
|
Affiliation(s)
- Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anqi Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
60
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
61
|
Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C. A Titanium Nitride Nanozyme for pH‐Responsive and Irradiation‐Enhanced Cascade‐Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Shihui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Ruiqi Yang
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Longwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Fene Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research University of Jinan Jinan 250022 China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine Northwest University Xi'an 710069 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China University of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
62
|
Ren G, Dong F, Zhao Z, Li K, Lin Y. Structure Defect Tuning of Metal-Organic Frameworks as a Nanozyme Regulatory Strategy for Selective Online Electrochemical Analysis of Uric Acid. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52987-52997. [PMID: 34723454 DOI: 10.1021/acsami.1c17974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozymes have been designed to address the limitations of high cost and poor stability involving natural enzymes in analytical applications. However, the catalytic efficiency of the nanozyme still needs to be improved so that it can meet the selectivity and stability requirements of accurate biomolecule analysis. Here, we presented structure defects of metal-organic frameworks (MOFs) as a tuning strategy to regulate the catalytic efficiency of artificial nanozymes and investigated the roles of defects on the catalytic activity of oxidase-like MOFs. Structural defects were introduced into a novel Co-containing zeolitic imidazolate framework with gradually loosened morphology (ZIF-L-Co) by doping cysteine (Cys). It was found that with the increase in defect degree, the properties of materials such as ascorbate oxidase-like, glutathione oxidase-like, and laccase-like were obviously enhanced by over 5, 2, and 3 times, respectively. In-depth structural investigations indicate that the doping of sulfur inducing structural defects which may destroy the equilibrium state between cobalt and nitrogen in 2-methylimidazole and distort the crystal lattice, thereby enhancing the adsorption of oxygen and thus promoting the oxidase-like activity. The ZIF-L-Co-10 mg with enhanced ascorbate oxidase- and laccase-like activity was loaded into a microreactor and integrated into an online electrochemical system (OECS) in the upstream of the detector. This nanozyme-based microreactor can completely remove ascorbic acid, dopamine, and 3,4-dihydroxyphenylacetic acid which are the main interference toward uric acid (UA) electrochemical measurement, and the ZIF-L-Co-10 mg Cys-based OECS system is capable of continuously capturing UA change in rat brain following ischemia-reperfusion injury. Structure defect tuning of ZIF-L-Co not only provides a new regulatory strategy for artificial nanozyme activity but also provides a critical chemical platform for the investigation of UA-related brain function and brain diseases.
Collapse
Affiliation(s)
- Guoyuan Ren
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Fangdi Dong
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing 100048, China
| |
Collapse
|
63
|
Wu Y, Jiang W, Huo S, Li S, Xu Y, Ding S, Zhou J, Liu H, Lv W, Wang Y. Nano-metal-organic-frameworks for treating H 2O 2-Secreting bacteria alleviate pulmonary injury and prevent systemic sepsis. Biomaterials 2021; 279:121237. [PMID: 34749071 DOI: 10.1016/j.biomaterials.2021.121237] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
As a vital bacteria-secreted toxin, hydrogen peroxide (H2O2) can destroy infected tissues and increase vascular permeability, leading to life-threatening systemic bacteremia or sepsis. No strategy that can alleviate H2O2-induced injury and prevent systemic sepsis has been reported. Herein, as a proof of concept, we demonstrate the use of H2O2-reactive metal-organic framework nanosystems (MOFs) for treating H2O2-secreting bacteria. In mice infected with Streptococcus pneumoniae (S. pneumoniae) isolated from patients, MOFs efficiently accumulate in the lungs after systemic administration due to infection-induced alveolar-capillary barrier dysfunction. Moreover, MOFs sequester pneumococcal H2O2, reduce endothelial DNA damage, and prevent systemic dissemination of bacteria. In addition, this nanosystem exhibits excellent chemodynamic bactericidal effects against drug-resistant bacteria. Through synergistic therapy with the antibiotic ampicillin, MOFs eliminate over 98% of invading S. pneumoniae, resulting in a survival rate of greater than 90% in mice infected with a lethal dose of S. pneumoniae. This work opens up new paths for the clinical treatment of toxin-secreting bacteria.
Collapse
Affiliation(s)
- Yi Wu
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shaohu Huo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Shuya Li
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Youcui Xu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jing Zhou
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hang Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Weifu Lv
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China.
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China; Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
64
|
Zhou X, Zeng W, Rong S, Lv H, Chen Y, Mao Y, Tan W, Li H. Alendronate-Modified Nanoceria with Multiantioxidant Enzyme-Mimetic Activity for Reactive Oxygen Species/Reactive Nitrogen Species Scavenging from Cigarette Smoke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47394-47406. [PMID: 34605626 DOI: 10.1021/acsami.1c15358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Highly toxic radicals including reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cigarette smoke play an important role in oxidative damage of the lungs, which cannot be efficiently scavenged by current filter techniques. Herein, a novel alendronate-coated nanoceria (CeAL) nanozyme is explored for cigarette filter modification for ROS/RNS scavenging. The CeAL nanozyme with an adjustable oxidation state and high thermal stability exhibits an excellent superoxide dismutase (SOD)-like activity, hydroxyl radical elimination capacity, catalase-mimicking activity, and nitric oxide radical scavenging ability. These synergistic antioxidant abilities make the CeAL nanozyme a lucrative additive for cigarette filters. The filter incorporated with the CeAL nanozyme can efficiently scavenge ROS/RNS in the hot smoke generated by burned commercial cigarettes, resulting in reduction of oxidative stress-induced pulmonary injury and acute inflammation of mice. The developed CeAL nanozyme opens up new opportunities for cigarette filter modification to decrease the toxicity of cigarette smoke and expands the application fields of nanoceria.
Collapse
Affiliation(s)
- Xia Zhou
- Department of Stomatology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Weinan Zeng
- Orthopedic Research institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Rong
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Heng Lv
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yonghong Chen
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Yinghua Mao
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| | - Hong Li
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing 210002, China
| |
Collapse
|
65
|
Liao Y, Wang Y, Liu J, Tang Y, Wu C, Chen Y. Ordered Mesoporous Carbon Confined Highly Dispersed PtCo Alloy for the Oxygen Reduction Reaction: The Effect of Structure and Composition on Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yifei Liao
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yao Wang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Jinchao Liu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yiyun Tang
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chaoling Wu
- Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| | - Yungui Chen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, P. R. China
| |
Collapse
|
66
|
Liu J, Wang A, Liu S, Yang R, Wang L, Gao F, Zhou H, Yu X, Liu J, Chen C. A Titanium Nitride Nanozyme for pH-Responsive and Irradiation-Enhanced Cascade-Catalytic Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:25328-25338. [PMID: 34453387 DOI: 10.1002/anie.202106750] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Indexed: 11/11/2022]
Abstract
Nanozyme-based catalytic tumor therapy is an emerging therapeutic method with high reactivity in response to tumor microenvironments (TMEs). To overcome the current limitations of deficient catalytic activity of nanozymes, we studied the contributing factors of enzymatic activity based on non-metallic-atom doping and irradiation. Nitrogen doping significantly enhanced the peroxidase activity of Ti-based nanozymes, which was shown experimentally and theoretically. Based on the excellent NIR-adsorption-induced surface plasmon resonance and photothermal effect, the enzymatic activity of TiN nanoparticles (NPs) was further improved under NIR laser irradiation. Hence, an acidic TME-responsive and irradiation-mediated cascade nanocatalyst (TLGp) is presented by using TiN-NP-encapsulated liposomes linked with pH-responsive PEG-modified glucose oxidase (GOx). The integration of pH-responsive GOx-mediated H2 O2 self-supply, nitrogen-doping, and irradiation-enhanced enzymatic activity of TiN NPs and mild-photothermal therapy enables an effective tumor inhibition by TLGp with minimal side effects in vivo.
Collapse
Affiliation(s)
- Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Shihui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiqi Yang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Longwei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Fene Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
67
|
Wang F, Na N, Ouyang J. Particle-in-a-frame gold nanomaterials with an interior nanogap-based sensor array for versatile analyte detection. Chem Commun (Camb) 2021; 57:4520-4523. [PMID: 33956027 DOI: 10.1039/d1cc01094h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we studied the catalytic performance of gold nanomaterials, specifically a particle-in-a-frame nanostructure (PIAF) with interior nanogaps. Au PIAF was used to catalyse the 3,3',5,5'-tetramethylbenzidine (TMB) reaction. This array could accurately identify 7 proteins, 5 antioxidants, and 3 cell types.
Collapse
Affiliation(s)
- Feiyang Wang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
68
|
Chen X, Zhao L, Wu K, Yang H, Zhou Q, Xu Y, Zheng Y, Shen Y, Liu S, Zhang Y. Bound oxygen-atom transfer endows peroxidase-mimic M-N-C with high substrate selectivity. Chem Sci 2021; 12:8865-8871. [PMID: 34257887 PMCID: PMC8246298 DOI: 10.1039/d1sc02170b] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in nanoscience have stimulated the wide exploration of nanozymes as alternatives to enzymes. Nonetheless, nanozymes often catalyze multiple reactions and are not specialized to a specific substrate, restricting their broad application. Here, we report that the substrate selectivity of the peroxidase-mimic M-N-C can be significantly altered via forming bound intermediates with variable interactions with substrates according to the type of metal. Taking two essential reactions in chemical sensing as an example, Fe-N-C and Co-N-C showed opposite catalytic selectivity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) and 3-aminophthalhydrazide (luminol), respectively, by factors of up to 200-fold. It was revealed that specific transition metal-N coordination was the origin of the selective activation of H2O2 forming critically bound oxygen intermediates (M[double bond, length as m-dash]O) for oxygen-atom transfer and the consequent oxidization of substrates. Notably, owing to the embedded ligands in the rigid graphitic framework, surprisingly, the selectivity of M-N-C was even superior to that of commonly used horseradish peroxidase (HRP).
Collapse
Affiliation(s)
- Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Lufang Zhao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Kaiqing Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yongjun Zheng
- Medical School, Southeast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Southeast University Nanjing 210009 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
69
|
Yu B, Wang W, Sun W, Jiang C, Lu L. Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy. J Am Chem Soc 2021; 143:8855-8865. [PMID: 34086444 DOI: 10.1021/jacs.1c03510] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wenbo Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China.,College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chunhuan Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
70
|
Xing Y, Zhang T, Lu N, Xu Z, Song Y, Liu Y, Liu M, Zhao P, Zhang Z, Yan X. Catalytic amplification based on hierarchical heterogeneity bimetal-organic nanostructures with peroxidase-like activity. Anal Chim Acta 2021; 1173:338713. [PMID: 34172151 DOI: 10.1016/j.aca.2021.338713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
In this paper, integrating heterometallic units and nanostructures into metal-organic frameworks (MOFs) were applied to improve the sensitivity of detecting hydrogen peroxide (H2O2) in neutral solution. The bimetal-MOFs (CuCo-BDC) and GO composite (CuCo-BDC/GO) were first synthesized via an ordinary one-step solvothermal synthesis. The CuCo-BDC/GO with admirable peroxidase-like catalytic activity could be applied to detect H2O2. The results have low detection limit of 69 nM (S/N = 3) and a wide linear detection range, from 100 nM to 3.5 mM. This is superior to recently published biosensors based on noble metal nanomaterials, which confirms CuCo-BDC/GO as the MOF electrocatalysts with high performance. The remarkable electroanalytical performance of CuCo-BDC/GO is due to the presence of numerous open metal active sites, the synergistic effect of Cu2+ and Co2+, hierarchical structure with high-specific surface areas and the marvelous electrochemical properties of GO. Therefore, CuCo-BDC/GO is a powerful candidate for detecting H2O2 in electrochemical biosensing fields. Moreover, H2O2 detection in real samples can be done with the CuCo-BDC/GO, including human serum samples. Therefore, the novel CuCo-BDC/GO is a promising catalyst that can be applied in biotechnological and environmental applications.
Collapse
Affiliation(s)
- Yue Xing
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiqian Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Song
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meihan Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Puyu Zhao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
71
|
Sun C, Duan X, Song J, Zhang M, Jin Y, Zhang M, Song L, Cao H. Rh particles in N-doped porous carbon materials derived from ZIF-8 as an efficient bifunctional electrocatalyst for the ORR and HER. RSC Adv 2021; 11:13906-13911. [PMID: 35423952 PMCID: PMC8697751 DOI: 10.1039/d1ra00484k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Durable and efficient electrocatalysts toward the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) are crucial to the development of sustainable energy conversion. In this article, we report a highly active bifunctional electrocatalyst derived from ZIF-8 through simple heat-treatment activation. The resultant catalyst is enriched with Rh nanoparticles in the carbon matrix, showing excellent ORR performance with a half-wave potential (E 1/2) of 0.803 V in alkaline electrolytes; it is simultaneously active for catalyzing the HER with an overpotential of 89 mV to reach a current density of 10 mA cm2 in acidic electrolytes. The prepared RhNC-900 catalyst (1.47 wt% Rh) is comparable to the commercial Pt/C catalyst (20 wt% Pt) in terms of the ORR in alkaline media and might inspire new ideas for the development of fuel cells and water splitting.
Collapse
Affiliation(s)
- Can Sun
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Xinde Duan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210044 P. R. China
| | - Jiajun Song
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Mengxian Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Yachao Jin
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Mingdao Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Li Song
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| | - Hui Cao
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment, Nanjing University of Information Science & Technology Nanjing Jiangsu 210044 P. R. China
| |
Collapse
|
72
|
Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021; 26:668. [PMID: 33514064 PMCID: PMC7865342 DOI: 10.3390/molecules26030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Nitrogen-doped and heteroatom multi-doped carbon materials are considered excellent metal-free catalysts, superior catalyst supports for transition metal particles and single metal atoms (single-atom catalysts), as well as efficient sorbents for gas- and liquid-phase substances. Acid-catalyzed sol-gel polycondensation of hydroxybenzenes with heterocyclic aldehydes yields cross-linked thermosetting resins in the form of porous organic polymers (i.e., organic gels). Depending on the utilized hydroxybenzene (e.g., phenol, resorcinol, phloroglucinol, etc.) and heterocyclic aldehyde variety of heteroatom-doped organic polymers can be produced. Upon pyrolysis, highly porous and heteroatom-doped carbons are obtained. Herein, polycondensation of phloroglucinol with imidazole-2-carboxaldehyde (and other, similar heterocyclic aldehydes with two heteroatoms in the aromatic ring) is utilized to obtain porous, N-doped organic and carbon gels with N-content of up to 16.5 and 12 wt.%, respectively. Utilization of a heterocyclic aldehyde with two different heteroatoms yields dually-doped carbon materials. Upon pyrolysis, the porous polymers yield ultramicroporous N-doped and N,S co-doped carbons with specific surface areas of up to 800 m2g-1. The influence of the initial composition of reactants and the pyrolysis temperature on the structure and chemical composition of the final doped organic and carbon materials is studied in detail.
Collapse
Affiliation(s)
- Wojciech Kiciński
- Institute of Chemistry, Military University of Technology, 2 Kaliskiego Str., PL 00-908 Warsaw, Poland;
| | | |
Collapse
|
73
|
Bai Y, Zheng Y, Wang Z, Hong Q, Liu S, Shen Y, Zhang Y. Metal-doped carbon nitrides: synthesis, structure and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02148f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective provides a comprehensive overview of the latest progress of M–CN, which would promote further development, such as for single-atom catalysis and nanozymatic reactions.
Collapse
Affiliation(s)
- Yuhan Bai
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| |
Collapse
|
74
|
Chen X, Zhu C, Xu Y, Wang K, Cao X, Shen Y, Liu S, Zhang Y. Quantitative evaluation of O 2 activation half-reaction for Fe–N–C in oxidase-like activity enhancement. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01537k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Beyond the conventional study of structure–activity relationships, exploration of half-reactions by an electrochemical method provides a facile quantitative approach to disclose the factors for oxidase-like catalyst activity.
Collapse
Affiliation(s)
- Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Caixia Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Kaiyuan Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xuwen Cao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Medical School, Southeast University, Nanjing 210009, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
75
|
Jia X, Cui J, Fang H, Wang L, Li X, Song Y, Zhang L, Guo H. Co/Co9S8/nitrogen-doping hollow carbon spheres nanocomposite as an efficient and durable electrocatalyst for oxygen reduction reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
76
|
Wu W, Huang L, Wang E, Dong S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem Sci 2020; 11:9741-9756. [PMID: 34094238 PMCID: PMC8162425 DOI: 10.1039/d0sc03522j] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
Enzyme mimics, especially nanozymes, play a crucial role in replacing natural enzymes for diverse applications related to bioanalysis, therapeutics and other enzyme-like catalysis. Nanozymes are catalytic nanomaterials with enzyme-like properties, which currently face formidable challenges with respect to their intricate structure, properties and mechanism in comparison with enzymes. The latest emergence of single-atom nanozymes (SAzymes) undoubtedly promoted the nanozyme technologies to the atomic level and provided new opportunities to break through their inherent limitations. In this perspective, we discuss key aspects of SAzymes, including the advantages of the single-site structure, and the derived synergetic enhancements of enzyme-like activity, catalytic selectivity and the mechanism, as well as the superiority in biological and catalytic applications, and then highlight challenges that SAzymes face and provide relevant guidelines from our point of view for the rational design and extensive applications of SAzymes, so that SAzyme may achieve its full potential as the next-generation nanozyme.
Collapse
Affiliation(s)
- Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|