51
|
Huang X, Yang SH, Liu W, Guo SP. Ba 3HgGa 2S 7: A Zero-Dimensional Quaternary Sulfide Featuring a Unique [Hg 2Ga 4S 14] 12- String and Exhibiting a High Photocurrent Response. Inorg Chem 2022; 61:12954-12958. [PMID: 35947431 DOI: 10.1021/acs.inorgchem.2c01678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The discovery of new types of metal sulfides is attractive because of their rich structures and diverse physical properties. Here, a novel quaternary sulfide, Ba3HgGa2S7 (BHGS), is obtained by a solid-state reaction at 1123 K. It crystallizes in the monoclinic space group P21/c, and its zero-dimensional structure features two seesaw-like HgS2 units and four GaS4 tetrahedra, constructing a unique [Hg2Ga4S14]12- string. BHGS has a wide band gap of 3.64 eV and a large birefringence of 0.09 at 2100 nm. Specifically, BHGS exhibits a remarkable photocurrent response. This work may be extended to a new family of AE3MIIMIII2Q7 (AE = Mg, Ca, Sr, Ba; MII = Zn, Cd, Hg; MIII = Al, Ga, In; Q = S, Se) chalcogenides.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Si-Han Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
52
|
Huang X, Yang SH, Li XH, Liu W, Guo SP. Eu 2 P 2 S 6 : The First Rare-Earth Chalcogenophosphate Exhibiting Large Second-Harmonic Generation Response and High Laser-Induced Damage Threshold. Angew Chem Int Ed Engl 2022; 61:e202206791. [PMID: 35675321 DOI: 10.1002/anie.202206791] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/09/2022]
Abstract
Metal chalcogenophosphates are receiving increasing interest, specifically as promising infrared nonlinear optical (NLO) candidates. Here, a rare-earth chalcogenophosphate Eu2 P2 S6 crystallizing in the monoclinic noncentrosymmetric space group Pn was synthesized using a high-temperature solid-state method. Its structure features isolated [P2 S6 ]4- dimer, and two types of EuS8 bicapped triangular prisms. Eu2 P2 S6 exhibits a phase-matchable second-harmonic generation (SHG) response ≈0.9×AgGaS2 @2.1 μm, and high laser-induced damage threshold of 3.4×AgGaS2 , representing the first rare-earth NLO chalcogenophosphate. The theoretical calculation result suggests that the SHG response is ascribed to the synergetic contribution of [P2 S6 ]4- dimers and EuS8 bicapped triangular prisms. This work provides not only a promising high-performance infrared NLO material, but also opens the avenue for exploring rare-earth chalcogenophosphates as potential IR NLO materials.
Collapse
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Si-Han Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Xiao-Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, 250002, China
| |
Collapse
|
53
|
Chen Z, Mei D, Jiang X, Zhao J, Wu Y, Wang J, Wen S. New quaternary sulfide LiGaSiS4: Synthesis, structure and optical properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
54
|
Huang J, Guo F, Guo Z, Chen J, Dai B, Yu F. NH 4IO 2F 2 and (NH 4) 3(IO 2F 2) 3·H 2O: A Series of Ammonium-Containing Fluoroiodates with Wide Band Gaps. Inorg Chem 2022; 61:11803-11810. [PMID: 35860841 DOI: 10.1021/acs.inorgchem.2c01540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of ammonium-containing fluoroiodates, NH4IO2F2 and (NH4)3(IO2F2)3·H2O, with isolated [IO2F2] units have been fabricated by a fluorine-oxygen substitution strategy from NH4IO3. The two compounds crystallize in the orthorhombic system, but in different space groups, noncentrosymmetric Pca21 for NH4IO2F2 and centrosymmetric Pnma for (NH4)3(IO2F2)3·H2O, and show wide band gaps of 4.53 eV for (NH4IO2F2) and 4.55 eV for ((NH4)3(IO2F2)3·H2O). In addition, NH4IO2F2 exhibits a 1.2 × KDP second harmonic generation response, a short ultraviolet cutoff edge in iodates, and a good crystal growth habit. The crystal of NH4IO2F2 with a size of 11 × 5 × 2 mm3 was obtained by the aqueous solution method. The results enrich the structural diversity of iodate and supply a greater understanding of the design of new functional materials based on the fluoroiodates.
Collapse
Affiliation(s)
- Jianlong Huang
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Fengjiao Guo
- School of Physical Science and Technology, Xinjiang University, 666 Shengli Road, Urumqi 830046, China
| | - Zhiyong Guo
- Xuchang Quality and Technical Supervision, Inspection and Testing Center, West Section of LongXing Road, Dongcheng District, Xuchang 461000, China
| | - Jianbang Chen
- Department of Physics, Changji University, Changji, Xinjiang 831100, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of XinjiangBingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
55
|
AgGaGeSe4: An Infrared Nonlinear Quaternary Selenide with Good Performance. Symmetry (Basel) 2022. [DOI: 10.3390/sym14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The symmetry of crystals is an extremely important property of crystals. Crystals can be divided into centrosymmetric and non-centrosymmetric crystals. In this paper, an infrared (IR) nonlinear optical (NLO) material AgGaGeSe4 was synthesized. The related performance analysis, nonlinear optical properties, and first-principle calculation of AgGaGeSe4 were also introduced in detail. In the AgGaGeSe4 structure, Ge4+ was replaced with Ga3+ and produced the same number of vacancies at the Ag+ position. The low content of Ge doping kept the original chalcopyrite structure and improved its optical properties such as the band gap. The UV-Vis diffuse reflection spectrum shows that the experimental energy band gap of AgGaGeSe4 is 2.27 eV, which is 0.48 eV larger than that of AgGaSe2 (1.79 eV). From the perspective of charge-transfer engineering strategy, the introduction of Group IV Ge elements into the crystal structure of AgGaSe2 effectively improves its band gap. The second harmonic generation (SHG) effect of AgGaGeSe4 is similar to that of AgGaSe2, and at 1064 nm wavelength, the birefringence of AgGaGeSe4 is 0.03, which is greater than that of AgGaSe2 (∆n = 0.02). The results show that AgGaGeSe4 possessed better optical properties than AgGaSe2, and can been broadly applied as a good infrared NLO material.
Collapse
|
56
|
Liu Q, Liu X, Wu L, Chen L. SrZnGeS
4
: A Dual‐Waveband Nonlinear Optical Material with a Transparency Spanning UV/Vis and Far‐IR Spectral Regions. Angew Chem Int Ed Engl 2022; 61:e202205587. [DOI: 10.1002/anie.202205587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Qian‐Qian Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Xin Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
| | - Li‐Ming Wu
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Center for Advanced Materials Research Advanced Institute of Natural Sciences Beijing Normal University Zhuhai 519087 P. R. China
| | - Ling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials College of Chemistry Beijing Normal University Beijing 100875 P. R. China
- Center for Advanced Materials Research Advanced Institute of Natural Sciences Beijing Normal University Zhuhai 519087 P. R. China
| |
Collapse
|
57
|
Chu D, Xie C, Yang Z. Design of Infrared Nonlinear Optical Compounds with Diamond-like Structures and Balanced Optical Performance. Inorg Chem 2022; 61:11454-11462. [PMID: 35817760 DOI: 10.1021/acs.inorgchem.2c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infrared (IR) nonlinear optical (NLO) crystals are the major materials to widen the output range of solid-state lasers to mid-infrared regions, but they are still inadequate for application due to the difficulties in balancing the large band gaps and strong NLO response. The diamond-like structure is a potential structural template to explore IR NLO materials. Herein, a computational workflow is proposed for exploring compounds with diamond-like structures, a series of LiMgGaSe3 structures were predicted successfully through this workflow, and LiMgGaSe3-I-III exhibited good optical performances in a large band gap (2.75-2.92 eV), strong SHG response (1.2-1.3 × AGS), and suitable birefringence (0.0470-0.0783 at 1064 nm). The in-depth mechanism explorations strongly demonstrate that the synergistic effect of alkaline earth metal tetrahedral [MgSe4] and [GaSe4] units is the main origin of large SHG response. The foregoing results suggest that our workflow can accelerate the discovery of new mid-IR NLO materials with diamond-like structures.
Collapse
Affiliation(s)
- Dongdong Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congwei Xie
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
58
|
Huang X, Yang S, Li X, Liu W, Guo S. Eu
2
P
2
S
6
: The First Rare‐Earth Chalcogenophosphate Exhibiting Large Second‐Harmonic Generation Response and High Laser‐Induced Damage Threshold. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao Huang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Si‐Han Yang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Xiao‐Hui Li
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Wenlong Liu
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| | - Sheng‐Ping Guo
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Road Yangzhou 250002 China
| |
Collapse
|
59
|
Mutailipu M, Li F, Jin C, Yang Z, Poeppelmeier KR, Pan S. Strong Nonlinearity Induced by Coaxial Alignment of Polar Chain and Dense [BO 3 ] Units in CaZn 2 (BO 3 ) 2. Angew Chem Int Ed Engl 2022; 61:e202202096. [PMID: 35258151 DOI: 10.1002/anie.202202096] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/05/2022]
Abstract
Discovery of new efficient nonlinear optical (NLO) materials with large second-order nonlinearity for the short-wave ultraviolet spectral region (λPM ≤266 nm, PM=phase-matching) is still very challenging. Herein, a new beryllium-free borate CaZn2 (BO3 )2 with Sr2 Be2 B2 O7 (SBBO) double-layered like configuration was rationally designed, which not only preserves the structural merits but also eliminates the limitations of the SBBO crystal. CaZn2 (BO3 )2 shows a large PM second harmonic generation (SHG) reponse of 3.8×KDP, which is 38 times higher than that of its barium analogue. This enhancement mainly originates from the 1 [Zn2 O6 ]∞ polar chains with a large net dipole moment and [BO3 ] units with a high NLO active density. Our findings show the great significance of the [ZnO4 ] tetrahedra introduced strategy to design beryllium-free SBBO-type NLO crystals and also verify the feasibility of using simple non-isomorphic substitution to induce giant second-order nonlinearity enhancement.
Collapse
Affiliation(s)
- Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuming Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congcong Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
60
|
Sun D, Wang D, Dang Y, Zhang S, Chen H, Hou R, Wu K, Shen C. Organic-Inorganic Hybrid Noncentrosymmetric (Morpholinium) 2Cd 2Cl 6 Single Crystals: Synthesis, Nonlinear Optical Properties, and Stability. Inorg Chem 2022; 61:8076-8082. [PMID: 35537082 DOI: 10.1021/acs.inorgchem.2c00922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To design nonlinear optical (NLO) materials, we focused on combinations of d10 metal cation (Cd2+)-based chloride and morpholine molecules to form organic-inorganic hybrids. The O of morpholine containing lone-pair electrons can be integrated with Cd2+ by a ligand-to-metal charge transfer (LMCT) strategy to build acentric structures benefiting from the second-order Jahn-Teller effect. Introduction of the high-electronegativity chlorine can make polyhedrons of acentric crystals more distorted and conducive to a strong second harmonic generation (SHG) response. Therefore, (Morpholinium)2Cd2Cl6 crystals were constructed and synthesized by a solvent evaporation method. (Morpholinium)2Cd2Cl6 belongs to the orthorhombic P212121 space group and shows a one-dimensional (1D) structure with distorted [CdCl6] and [CdCl4O2] octahedrons. The short cutoff edge of (Morpholinium)2Cd2Cl6 was determined to be about 230 nm. The SHG response of (Morpholinium)2Cd2Cl6 exhibited an intensity of approximately 0.73 × KDP as estimated by the powder second harmonic generation technique. Furthermore, related theoretical calculations were performed to study the relationship of the band structure, refractive anisotropy, electronic state, and nonlinear optical response. Besides, (Morpholinium)2Cd2Cl6 showed relatively good thermal stability. This work can serve as a guide for the design and synthesis of new large NLO hybrid crystals with d10 transition metals.
Collapse
Affiliation(s)
- Defu Sun
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Duanliang Wang
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Yangyang Dang
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Shoubao Zhang
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Hanzhang Chen
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Ruoxian Hou
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| | - Kui Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chuanying Shen
- College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
61
|
Xie W, Yun Y, Deng L, Li G, Pan S. Second-Harmonic Generation-Positive Na 2Ga 2SiS 6 with a Broad Band Gap and a High Laser Damage Threshold. Inorg Chem 2022; 61:7546-7552. [PMID: 35511479 DOI: 10.1021/acs.inorgchem.2c00676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of high-power solid-state lasers is in urgent need of new infrared nonlinear optical (IR NLO) materials with a wide band gap and a high laser-induced damage threshold. A new infrared nonlinear optical material Na2Ga2SiS6 has been synthesized for the first time, crystallizing in the Fdd2 (no. 43) noncentrosymmetric space group. Its three-dimensional tunnel framework consists of two typical NLO active motifs [GaS4] and [SiS4], with Na+ cations located inside the tunnels. Na2Ga2SiS6 exhibits comprehensive optical properties, namely, a wide transmission range, a high laser-induced damage threshold (10 × AgGaS2), a type-I phase-matching second-harmonic generation response (0.2 × AgGaS2), and especially a wide band gap (3.93 eV), which is the largest in the A2MIII2MIVQ6 (A = alkali metals; MIII = IIIA elements; MIV = IVA elements; Q = S and Se) family. Therefore, Na2Ga2SiS6 does not produce two-photon absorption under a 1064 nm laser pump and could be used in high-energy laser systems, which makes Na2Ga2SiS6 a promising candidate for high-energy IR NLO applications.
Collapse
Affiliation(s)
- Wenlong Xie
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Yihan Yun
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihan Deng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China
| | - Guangmao Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, and Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
62
|
Liu QQ, Liu X, Wu LM, Chen L. SrZnGeS4: A Dual‐Waveband Nonlinear Material With A Transparency Spanning UV–Vis and Far‐IR Spectral Regions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qian-Qian Liu
- Beijing Normal University College of Chemistry CHINA
| | - Xin Liu
- Beijing Normal University College of Chemistry CHINA
| | - Li-Ming Wu
- Beijing Normal University College of Chemistry CHINA
| | - Ling Chen
- Beijing Normal University chemistry department xinjiekou waidajie num 19 100875 Beijing CHINA
| |
Collapse
|
63
|
Chen J, Wu Q, Tian H, Jiang X, Xu F, Zhao X, Lin Z, Luo M, Ye N. Uncovering a Vital Band Gap Mechanism of Pnictides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105787. [PMID: 35486031 PMCID: PMC9109059 DOI: 10.1002/advs.202105787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/05/2022] [Indexed: 05/22/2023]
Abstract
Pnictides are superior infrared (IR) nonlinear optical (NLO) material candidates, but the exploration of NLO pnictides is still tardy due to lack of rational material design strategies. An in-depth understanding structure-performance relationship is urgent for designing novel and eminent pnictide NLO materials. Herein, this work unravels a vital band gap mechanism of pnictides, namely P atom with low coordination numbers (2 CN) will cause the decrease of band gap due to the delocalization of non-bonding electron pairs. Accordingly, a general design paradigm for NLO pnictides, ionicity-covalency-metallicity regulation is proposed for designing wide-band gap NLO pnictides with maintained SHG effect. Driven by this idea, millimeter-level crystals of MgSiP2 are synthesized with a wide band gap (2.34 eV), a strong NLO performance (3.5 x AgGaS2 ), and a wide IR transparency range (0.53-10.3 µm). This work provides an essential guidance for the future design and synthesis of NLO pnictides, and also opens a new perspective at Zintl chemistry important for other material fields.
Collapse
Affiliation(s)
- Jindong Chen
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences FuzhouFujian350002China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qingchen Wu
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Haotian Tian
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences FuzhouFujian350002China
| | - Xiaotian Jiang
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Centre of Chemistry for Energy MaterialsCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Feng Xu
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences FuzhouFujian350002China
| | - Xin Zhao
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences FuzhouFujian350002China
| | - Zheshuai Lin
- Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and PhysicsFujian Institute of Research on the Structure of MatterChinese Academy of Sciences FuzhouFujian350002China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal MaterialsInstitute of Functional CrystalTianjin University of TechnologyTianjin300384China
| |
Collapse
|
64
|
Wang P, Chu Y, Tudi A, Xie C, Yang Z, Pan S, Li J. The Combination of Structure Prediction and Experiment for the Exploration of Alkali-Earth Metal-Contained Chalcopyrite-Like IR Nonlinear Optical Material. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106120. [PMID: 35404514 PMCID: PMC9130896 DOI: 10.1002/advs.202106120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Design and fabrication of new infrared (IR) nonlinear optical (NLO) materials with balanced properties are urgently needed since commercial chalcopyrite-like (CL) NLO crystals are suffering from their intrinsic drawbacks. Herein, the first defect-CL (DCL) alkali-earth metal (AEM) selenide IR NLO material, DCL-MgGa2 Se4 , has been rationally designed and fabricated by a structure prediction and experiment combined strategy. The introduction of AEM tetrahedral unit MgSe4 effectively widens the band gap of DCL compounds. The title compound exhibits a wide band gap of 2.96 eV, resulting in a high laser induced damage threshold (LIDT) of ≈3.0 × AgGaS2 (AGS). Furthermore, the compound shows a suitable second harmonic generation (SHG) response (≈0.9 × AGS) with a type-I phase-matching (PM) behavior and a wide IR transparent range. The results indicate that DCL-MgGa2 Se4 is a promising mid-to-far IR NLO material and give some insights into the design of new CL compound with outstanding IR NLO properties based on the AEM tetrahedra and the structure predication and experiment combined strategy.
Collapse
Affiliation(s)
- Peng Wang
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
| | - Yu Chu
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Abudukadi Tudi
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Congwei Xie
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Skolkovo Institute of Science and TechnologySkolkovo Innovation Center3 Nobel StreetMoscow143026Russian Federation
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Junjie Li
- CAS Key Laboratory of Functional Materials and Devices for Special EnvironmentsXinjiang Technical Institute of Physics & Chemistry CASXinjiang Key Laboratory of Electronic Information Materials and DevicesUrumqi830011P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
65
|
The Growth of High-Quality Hexagonal GaTe Nanosheets Induced by ZnO Nanocrystals. CRYSTALS 2022. [DOI: 10.3390/cryst12050627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The monoclinic and hexagonal gallium tellurides (m-GaTe and h-GaTe) show different applications in optoelectronic devices. Compared to the m-GaTe, the h-GaTe is a metastable phase, which generally exists in ultrathin samples and is difficult to obtain by direct chemical reaction. Herein, a hexagonal ZnO-induced crystal growth strategy was used for the design and fabrication of h-GaTe. The high-quality h-GaTe nanosheets were successfully grown on the (001) surface of hexagonal ZnO by the chemical vapor deposition method under ambient pressure. The SEM, XPS, XRD, and HRTEM characterizations uncovered a flower-like nanosheet morphology and a hexagonal crystal structure for the obtained GaTe samples. Meanwhile, the conductive atomic force microscope measurement indicates that the obtained h-GaTe nanosheet is a p-type semiconductor. Based on the electron localization function simulation, the lattice-induced crystal growth of h-GaTe was demonstrated. The results give an insight into the synthesis of metastable phase crystal and open an avenue for fabricating new two-dimensional devices by p-type h-GaTe.
Collapse
|
66
|
Xu QT, Han SS, Li JN, Guo SP. NaGa 3Se 5: An Infrared Nonlinear Optical Material with Balanced Performance Contributed by Complex {[Ga 3Se 5] -} ∞ Anionic Network. Inorg Chem 2022; 61:5479-5483. [PMID: 35344370 DOI: 10.1021/acs.inorgchem.2c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-order nonlinear optical (NLO) materials are extensively applied in laser-related techniques. For developing IR NLO materials, chalcogenides are the main candidates. Here, NaGa3Se5 was explored as inspired by its unique anionic structure. It crystallizes with the orthorhombic chiral P212121 structure, featuring 12 types of GaSe4 tetrahedra built into a three-dimensional {[Ga3Se5]-}∞ anionic network, representing a new NLO-functional motif. NaGa3Se5 exhibits large and phase-matchable NLO response 1.37 × AgGaS2. It has the largest band gap among the noncentrosymmetric A-MIII-Se (A = alkali metal; M = Ga, In) compounds. The NLO properties' origin is explored via theoretical analysis. The success of NaGa3Se5 contributes a practical case for exploring new NLO materials.
Collapse
Affiliation(s)
- Qian-Ting Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shan-Shan Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jia-Nuo Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Sheng-Ping Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
67
|
Tang C, Xing W, Wang N, Tang J, Lin Z, Wu J, Yin W, Kang B. The synthesis and structure-property relation analysis of metal chalcohalide crystals Cs 2InPS 4X 2 (X = Cl, Br) with mixed anions. Dalton Trans 2022; 51:4728-4733. [PMID: 35244121 DOI: 10.1039/d2dt00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inorganic metal chalcohalides are significant semiconductive materials for photovoltaics, photodetetion and infrared optics. Thus it is considerably rewarding to develop a new synthetic strategy to provide more degrees of freedom for atomic coordination to tune the optical and electronic properties of metal chalcohalides. In this work, the mixed-anion strategy is performed to synthesize two new metal chalcohalides Cs2InPS4X2 (X = Cl, Br) with mixed-anion structure by the reaction of InPS4 and CsX. Single-crystal X-ray diffraction analysis shows that they are isostructural and crystallize in the centrosymmetric space group P21/n, consisting of zero-dimensional structure [In2P2S8X4]4- (X = Cl, Br) built from tetrahedral [PS4]3- and octahedral [InS4X2]7- (X = Cl, Br) through edge-sharing, with Cs cations filling in intervening voids. The UV-vis-NIR diffuse reflectance spectroscopy measurement reveals that Cs2InPS4Cl2 and Cs2InPS4Br2 exhibit large optical bandgaps of 3.21 eV and 3.12 eV, respectively. The electronic structure calculations show that the bandgap mainly originates from the [InS4X2]7- (X = Cl, Br) mixed-anion groups. First-principles calculations indicate that the birefringence of Cs2InPS4Cl2 and Cs2InPS4Br2 is ∼0.08 and ∼0.05 at 2090 nm, respectively. Furthermore, thermal analysis reveals that the Cs2InPS4X2 (X = Cl, Br) are thermostable up to 400 °C. This discovery enriches the structural diversity of inorganic chalcohalides and provides an insight for the exploration of new semiconductive materials.
Collapse
Affiliation(s)
- Chunlan Tang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China. .,Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China.
| | - Wenhao Xing
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China.
| | - Naizheng Wang
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China.,Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Tang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China.
| | - Zheshuai Lin
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China.,Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jieyun Wu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China.
| | - Wenlong Yin
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China. .,Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| | - Bin Kang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, P.R. China. .,Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, P. R. China
| |
Collapse
|
68
|
Bardelli S, Ye Z, Wang F, Zhang B, Wang J. Synthesis, Crystal and Electronic Structures, and Nonlinear Optical Properties of Y4Si3S12. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefano Bardelli
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States UNITED STATES
| | - Zhengyang Ye
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States UNITED STATES
| | - Fei Wang
- Department of Chemistry, Missouri State University, Springfield, Missouri, 65897, United States UNITED STATES
| | - Bingbing Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China UNITED STATES
| | - Jian Wang
- Wichita State University Chemistry 1845 Fairmount Ave BOX051 67260 Wichita UNITED STATES
| |
Collapse
|
69
|
Mutailipu M, Li F, Jin C, Yang Z, Poeppelmeier KR, Pan S. Strong Nonlinearity Induced by Coaxial Alignment of Polar Chain and Dense [BO
3
] Units in CaZn
2
(BO
3
)
2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Miriding Mutailipu
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Key Laboratory of Electronic Information Materials and Devices Xinjiang Technical Institute of Physics & Chemistry CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Fuming Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Key Laboratory of Electronic Information Materials and Devices Xinjiang Technical Institute of Physics & Chemistry CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Congcong Jin
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Key Laboratory of Electronic Information Materials and Devices Xinjiang Technical Institute of Physics & Chemistry CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Key Laboratory of Electronic Information Materials and Devices Xinjiang Technical Institute of Physics & Chemistry CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Kenneth R. Poeppelmeier
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208–3113 USA
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments Xinjiang Key Laboratory of Electronic Information Materials and Devices Xinjiang Technical Institute of Physics & Chemistry CAS 40-1 South Beijing Road Urumqi 830011 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
70
|
Wang F, Liang F, Liu W, Fu Y, Lu D, Zhang G, Wang J, Yu H, Zhang H, Wu Y. Anion-Centered Polyhedron Strategy for Strengthening Photon Emission Induced by Electron-Phonon Coupling. Inorg Chem 2022; 61:4071-4079. [PMID: 35188388 DOI: 10.1021/acs.inorgchem.1c03875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-phonon coupling emerges as a growing frontier in the heart of condensed matter from physical symmetry to the electronic quantum state, but its quantitative strength dependence on the chemical structure has not been assessed. Here, we originally proposed the anion-centered polyhedron (ACP) strategy for elaborating the electron-phonon coupling interaction in rare-earth (RE) materials comprising three chemical factors, RE-O bond length, the effective charge of the coordinated atom, and structural dimensionality. Using Gd3+ cation with 4f7 configuration as a fluorescence probe, we found that the "free-O"-centered polyhedron is the most crucial motif in strengthening the phonon-assisted energy transfer and photon emission. The temperature-dependent Huang-Rhys S factors were calculated to identify the electron-phonon coupling intensity based on the fluorescence spectrum quantitatively. Finally, beyond conventional wisdom, a series of structural criteria were presented, serving as useful guidelines for discovering strongly coupled rare-earth optical materials. Our study breaks the long-time "blind"-searching diagram and provides reliable principles for many functional materials associated with electron-phonon coupling, such as superconductors, multiferroics, and phosphors.
Collapse
Affiliation(s)
- Fangyan Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Fei Liang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wang Liu
- Key Lab Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Fu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dazhi Lu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Guochun Zhang
- Key Lab Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyang Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Haohai Yu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Huaijin Zhang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yicheng Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
71
|
Ahmed B, Ok KM. Novel layered heterobimetallic fluorides with large optical band gaps. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Yang LQ, Jiang XM, Pei SM, Chen WF, Liu BW, Guo GC. Optimizing the Nonlinear Optical Performance of an A-N-M-Q (A: Alkali Metal; N: d10 Metal; M: Main Group Metal; Q: Chalcogen) System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4352-4359. [PMID: 35025213 DOI: 10.1021/acsami.1c23843] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exploring new infrared nonlinear optical (IR NLO) materials with superior overall properties is scientifically and technically important. However, large second-order harmonic generation (SHG) efficiencies and high laser-induced damage thresholds (LIDT) are incompatible, which makes realizing this goal a challenge. The IR NLO performance of an A-NIIB-MIIIA-Q (Q: chalcogen) system was optimized by simultaneously modulating A/(M + N) and M/N ratios (A: alkali metal; N, M: tetra-coordinated metals), and SHG-LIDT balance was achieved. Three new sulfides, KCd3Ga5S11 (1), RbCd4Ga3S9 (2), and Cs2Cd2Ga8S15 (3), containing the same CdS4 and GaS4 but with different A/(Ga + Cd) and Ga/Cd ratios were obtained. Among these compounds, compound 3 exhibits both the largest SHG efficiency (0.5 × AgGaS2) and LIDT (35 × AgGaS2), which can be ascribed to the Ga/Cd modulation for enhancing the NLO functional motif distortions and SHG efficiency as well as the A/(Ga + Cd) modulation for enlarging the band gap and LIDT. Remarkably, compound 3 is the first phase-matchable IR NLO material in the A-NIIB-MIIIA-Q family. This article proposes a novel avenue to explore infrared nonlinear materials with superior comprehensive properties by modulating the A/(M + N) and M/N ratios.
Collapse
Affiliation(s)
- Long-Qi Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
- Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
| | - Shao-Min Pei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
| | - Wen-Fa Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
| | - Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fuzhou, Fujian 350002, People's Republic of China
- Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
73
|
Zhang Y, Bian Q, Wu H, Yu H, Hu Z, Wang J, Wu Y. Designing A New Infrared Nonlinear Optical Material, β‐BaGa
2
Se
4
Inspired by the Phase Transition of the BaB
2
O
4
(BBO) Crystal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yujie Zhang
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Qiang Bian
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials Institute of Functional Crystal College of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
74
|
Qiu ZX, Pei SM, Chen WF, Jiang XM, Liu BW, Guo GC. AAg3Ga8Se14 (A = Rb, Cs): Second-Harmonic Generation Responses Realized through the Parallel Arrangement of AgSe4 and GaSe4 Tetrahedrons. Dalton Trans 2022; 51:11048-11053. [DOI: 10.1039/d2dt01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new quaternary selenides AAg3Ga8Se14, (A = Rb, 1; Cs, 2) were synthesised via sold-state reaction in sealed silica tubes. Compounds 1 and 2 crystallised in the monoclinic space group...
Collapse
|
75
|
Geng ZL, Zhou ZQ, Tang HX, Bao WX, Fu RB, Wu XT. APb 2(C 7H 3NO 4) 2I (A = K, Rb, Cs): rare stable nonlinear optical crystals with second-harmonic generation response and highly distorted lead core coordination polyhedra. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
APb2(C7H3NO4)2I (A = K, Rb, Cs) features a 3D NCS cubic framework consisting of highly distorted [PbNO5] and [PbNO4I] coordination polyhedra, a moderate SHG response, a wide transparent window and a high thermal stability above 300 °C.
Collapse
Affiliation(s)
- Zi-Long Geng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zi-Qi Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hong-Xin Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Xiu Bao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Rui-Biao Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
76
|
Ji B, Sarkar A, Wu K, Swindle A, Wang J. A2P2S6 (A=Ba, Pb): A Good Platform to Study Polymorph Effect and Lone Pairs Effect to Form Acentric Structure. Dalton Trans 2022; 51:4522-4531. [DOI: 10.1039/d1dt04317j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three ternary thiophosphates α-Ba2P2S6, β-Ba2P2S6, and Pb2P2S6, were synthesized via a high temperature salt flux method or an I2 transport reaction. β-Ba2P2S6 and Pb2P2S6 were previously structurally characterized without investigating...
Collapse
|
77
|
Luo L, Wang L, Bai C, Zhou J, Wei L, Su X. Na 4Ga 8S 14: A Ga-riched wide band gap ternary alkali-metal sulfide with unique [Ga 12S 42] 12-menbered rings. Dalton Trans 2022; 51:4903-4908. [DOI: 10.1039/d2dt00295g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ga-riched ternary alkali-metal sulfide Na4Ga8S14 has been synthesized by high temperature solid-state reaction. It crystallizes in the centrosymmetric Pbca (no. 61) space group with cell parameters a = 13.5260(4)...
Collapse
|
78
|
Bai C, Chu Y, Zhou J, Wang L, Luo L, Pan S, Li J. Two New Tellurite Halides with Cationic Layers: Syntheses, Structures, and Characterizations of CdPb2Te3O8Cl2 and Cd13Pb8Te14O42Cl14. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01251g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new tellurite halides, CdPb2Te3O8Cl2 and Cd13Pb8Te14O42Cl14 with mixed cationic layered structures, have been synthesized by high-temperature solution method. CdPb2Te3O8Cl2 crystallizes in the noncentrosymmetric Aba2 space group, built by [CdPb2Te3O8]...
Collapse
|
79
|
Zhou ZQ, Fu RB, Tang HX, Ma ZJ, Wu XT. An excellent lead oxyiodide with a strong second-harmonic generation response and a large birefringence induced by the oriented arrangement of highly distorted [PbO 4I 2] polyhedra. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K2I[PbI(OOCCH2COO)] featuring the strongest second-harmonic generation response among malonates, a large birefringence, a wide transparent window and good stability is induced by the oriented arrangement of highly distorted bifunctional [PbO4I2] polyhedra.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Rui-Biao Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Hong-Xin Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zu-Ju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
80
|
Zhang R, Su X, Zhang J, Xiong M, Huang Y. RbMo 2P 3O 14 with large birefringence mainly induced by highly distorted [MoO 6] in uncommon [Mo 2P 3O 14] ∞ layers. Dalton Trans 2021; 50:17559-17565. [PMID: 34816843 DOI: 10.1039/d1dt03285b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The introduction of d0 transition metal Mo6+ cations into a phosphate generates a new acentric molybdophosphate, RbMo2P3O14. It shows uncommon [Mo2P3O14]∞ layers composed of isolated [MoO6] octahedra and [P3O10] groups. To the best of our acknowledge, it exhibits the largest birefringence (a calculated value of 0.166 at 546 nm) among reported molybdophosphates. In addition, it also possesses a shorter UV cut-off edge (about 250 nm) than other molybdates and molybdophosphates, indicating that it can be used as a birefringent crystal in the UV optical region. First-principles electronic structure analysis suggests that the large birefringence mainly originates from highly distorted [MoO6].
Collapse
Affiliation(s)
- Rui Zhang
- School of Physical Science and Technology, Yili Normal University, Yining 835000, China. .,Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal University, Yining 835000, China
| | - Xin Su
- School of Physical Science and Technology, Yili Normal University, Yining 835000, China. .,Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal University, Yining 835000, China
| | - Jie Zhang
- Department of Physics, Changji University, Changji, Xinjiang 831100, China
| | - Mingyao Xiong
- School of Physical Science and Technology, Yili Normal University, Yining 835000, China. .,Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal University, Yining 835000, China
| | - Yineng Huang
- School of Physical Science and Technology, Yili Normal University, Yining 835000, China. .,Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yi Li Normal University, Yining 835000, China
| |
Collapse
|
81
|
Liu BW, Jiang XM, Pei SM, Chen WF, Yang LQ, Guo GC. Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map. MATERIALS HORIZONS 2021; 8:3394-3398. [PMID: 34676385 DOI: 10.1039/d1mh01434j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nonlinear optical (NLO) efficiency (dij) and laser-induced damage threshold (LIDT) of a material are mainly determined by their covalency and ionicity, respectively, the incompatibility between which makes balancing the dij and LIDT challenging in an IR NLO material. The topological feature (fractal dimension) of the electron localization function (ELF) map (distribution of covalency and ionicity) was evaluated for a series of NLO materials, and, phenomenologically, the fine mixing of covalency and ionicity will benefit a balanced dij and LIDT. Chemical bonds with different interaction strengths were introduced simultaneously to mix the covalency and iconicity finely, and three new IR NLO sulfides, A2Ba3Li6Ga28S49 (A = K, 1; Rb, 2; Cs, 3), were obtained. They exhibit a strong NLO efficiency (1.9-2.1 × AgGaS2 at 1064 nm and 0.5-0.6 × AgGaS2 at 1910 nm) and high LIDTs (16.7-18.0 × AgGaS2), which fulfill the criteria of being promising IR NLO candidates. This study provides a new method for designing high-performance IR NLO materials based on the topological features of the ELF.
Collapse
Affiliation(s)
- Bin-Wen Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xiao-Ming Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Shao-Min Pei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Wen-Fa Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Long-Qi Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
82
|
Zhang Y, Bian Q, Wu H, Yu H, Hu Z, Wang J, Wu Y. Designing A New Infrared Nonlinear Optical Material, β-BaGa 2 Se 4 Inspired by the Phase Transition of the BaB 2 O 4 (BBO) Crystal. Angew Chem Int Ed Engl 2021; 61:e202115374. [PMID: 34783430 DOI: 10.1002/anie.202115374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/09/2022]
Abstract
Infrared nonlinear optical (IR NLO) crystals play a significant role in the development of IR laser technology. But rationally designing a new IR NLO crystal remains a huge challenge because of the unpredictability of inorganic structures. Herein, inspired by phase transformation of the famous BaB2 O4 (BBO) crystal, a temperature-induced centrosymmetric (CS) to noncentrosymmetric (NCS) transformation approach is employed in CS BaGa2 Se4 to uncover a new NCS ternary chalcogenide, β-BaGa2 Se4 which can exhibit the well-balanced NLO properties, including moderate phase-matching SHG response (≈0.6×AgGaS2 ), high LDT (10×AgGaS2 ), and large birefringence (Δn=0.18 in the visible region). Therefore, β-BaGa2 Se4 will be a promising IR NLO crystal. The analysis for the structure-property relationship shows that the excellent NLO properties of β-BaGa2 Se4 mainly originate from edge-sharing GaSe4 tetrahedral chains, which are different from B3 O6 groups in β-BBO and respect a new direction for the design of IR NLO crystals. So, we believe that the current research provides not only a new IR NLO crystal but also some insights for the design of new IR NLO crystals.
Collapse
Affiliation(s)
- Yujie Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qiang Bian
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongping Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongwei Yu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiyang Wang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yicheng Wu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
83
|
Bai C, Cheng B, Zhang K, Zhang M, Pan S, Li J. A new broad-band infrared window material CdPbOCl 2 with excellent comprehensive properties. Dalton Trans 2021; 50:16401-16405. [PMID: 34734934 DOI: 10.1039/d1dt03215a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a new IR window material CdPbOCl2 is rationally designed and fabricated by a heavy-metal oxide and halide combined strategy. The millimeter-scale CdPbOCl2 single crystal exhibits a wide IR transparent region (1.4-18.0 μm) and excellent comprehensive properties. The results provide an insight into the exploration of broad-band IR window materials.
Collapse
Affiliation(s)
- Chen Bai
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, China.,CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Bingliang Cheng
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kewang Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Min Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
84
|
Yuan FY, Huang YZ, Zhang H, Lin CS, Chai GL, Cheng WD. Ba 4GeSb 2Se 11: An Infrared Nonlinear Optical Crystal with a V-Shaped Se 32- Group Possessing a Large Contribution to the SHG Response. Inorg Chem 2021; 60:15593-15598. [PMID: 34590833 DOI: 10.1021/acs.inorgchem.1c02197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quaternary selenide Ba4GeSb2Se11 was prepared by a high-temperature solid state reaction method. Ba4GeSb2Se11 crystallizes in an acentric orthorhombic space group Cmc21 with the lattice constants a = 9.370(11) Å, b = 25.850(0) Å, and c = 8.798(10) Å. The compound is composed of a [SbSe3]3- trigonal pyramid, [GeSbSe5]3- dimers, V-shaped Se32-, and the adjacent Ba2+ ions. It has indirect band gap of 1.35 eV and exhibits a second harmonic generation intensity of about 0.2 times that of the benchmark compound AgGaS2 at the same particle size. Interestingly, theoretical analyses show that the central Se atom of Se32- has the largest contribution (8.1%) to d31 compared to that of other Se atoms, which may be due to its easy swing in the a-axis direction.
Collapse
Affiliation(s)
- Fang-Yu Yuan
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Yi-Zhi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Chen-Sheng Lin
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Guo-Liang Chai
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| | - Wen-Dan Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
85
|
Gao H, Zhang K, Abudurusuli A, Bai C, Yang Z, Lai K, Li J, Pan S. Syntheses, Structures and Properties of Alkali and Alkaline Earth Metal Diamond-Like Compounds Li 2MgMSe 4 (M = Ge, Sn). MATERIALS (BASEL, SWITZERLAND) 2021; 14:6166. [PMID: 34683761 PMCID: PMC8537313 DOI: 10.3390/ma14206166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023]
Abstract
Two new diamond-like (DL) chalcogenides, Li2MgGeSe4 and Li2MgSnSe4, have been successfully synthesized using a conventional high-temperature solid-state method. The two compounds crystallize in the non-centrosymmetric space group Pmn21 with a = 8.402 (14) Å, b = 7.181 (12) Å, c = 6.728 (11) Å, Z = 2 for Li2MgSnSe4, and a = 8.2961 (7) Å, b = 7.0069 (5) Å, c = 6.6116 (6) Å, Z = 2 for Li2MgGeSe4. The calculated results show that the second harmonic generation (SHG) coefficients of Li2MgSnSe4 (d33 = 12.19 pm/v) and Li2MgGeSe4 (d33 = -14.77 pm/v), mainly deriving from the [MSe4] (M = Ge, Sn) tetrahedral units, are close to the one in the benchmark AgGaS2 (d14 = 13.7 pm/V). The calculated band gaps for Li2MgSnSe4 and Li2MgGeSe4 are 2.42 and 2.44 eV, respectively. Moreover, the two compounds are the first series of alkali and alkaline-earth metal DL compounds in the I2-II-IV-VI4 family, enriching the structural diversity of DL compounds.
Collapse
Affiliation(s)
- Hongbo Gao
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
- Department of Physics, Changji University, Changji 831100, China;
| | - Kewang Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
- College of Physical Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Ailijiang Abudurusuli
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Bai
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
| | - Kangrong Lai
- Department of Physics, Changji University, Changji 831100, China;
| | - Junjie Li
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China; (H.G.); (K.Z.); (A.A.); (C.B.); (Z.Y.)
| |
Collapse
|