51
|
The Influence of Low-Molecular-Weight Monomers (TEGDMA, HDDMA, HEMA) on the Properties of Selected Matrices and Composites Based on Bis-GMA and UDMA. MATERIALS 2022; 15:ma15072649. [PMID: 35407980 PMCID: PMC9000443 DOI: 10.3390/ma15072649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023]
Abstract
Bisphenol A-glycidyl methacrylate (bis-GMA) and urethane dimethacrylate (UDMA) are usually combined with low-viscosity monomers to obtain more desirable viscosity, handling characteristics and general properties. The present study determined the flexural strength (FS), flexural modulus (FM), diametral tensile strength (DTS), and hardness (HV) of five matrices and composites based on these resins. The polymerization shrinkage stress (PSS) was also studied for the composites. The polymer matrices were formed using bis-GMA and UDMA. TEGDMA, HEMA and HDDMA acted as co-monomers. The composites had 45 wt.% of filler content. The highest FS and FM were obtained from the UDMA/bis-GMA/TEGDMA/HEMA matrix and the composite (matrix + filler). The best DTS values were obtained from the UDMA/bis-GMA/HEMA matrix and the composite. One of the lowest values of FS, FM, and DTS was obtained from the UDMA/bis-GMA/HDDMA matrix and the composite. All the composites demonstrated similar hardness values. The lowest polymerization shrinkage stress was observed for the UDMA/bis-GMA/TEGDMA/HEMA composite, and the highest PSS was observed for the UDMA/bis-GMA/TEGDMA/HDDMA composite. The addition of HEMA had a positive effect on the properties of the tested materials, which may be related to the improved mobility of the bis-GMA and UDMA monomers.
Collapse
|
52
|
|
53
|
Ismail HS, Morrow BR, Ali AI, Mehesen RE, Garcia-Godoy F, Mahmoud SH. Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid. RESTORATIVE DENTISTRY & ENDODONTICS 2022; 47:e36. [DOI: 10.5395/rde.2022.47.e36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hoda S. Ismail
- Department of Operative Dentistry Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Brian R. Morrow
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashraf I. Ali
- Department of Operative Dentistry Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Rabab El. Mehesen
- Department of Operative Dentistry Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Adjunct Faculty, The Forsyth Institute, Cambridge, MA, USA
| | - Salah H. Mahmoud
- Department of Operative Dentistry Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
54
|
Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography-An In-Vitro Study. Polymers (Basel) 2021; 13:polym13244395. [PMID: 34960944 PMCID: PMC8704455 DOI: 10.3390/polym13244395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Esthetics, improved colour stability and ease of contour have made photo-activated resin based restorative materials being widely used in routine dental clinical practice. Perhaps improper and inadequate polymerization of resin based composite material might lead to elution of monomer. Thus, the aim of the current study was to quantify the monomer elution from three resin composites. The intended analysis was made using high performance liquid chromatography (HPLC) at two different time periods. Three different materials that were investigated in the current study included Swiss Tech resin composite (Group A), Ceram X (Group B) and Beautifil Injectable composite (Group C). Ten cylindrical samples were fabricated in each study group. In 75% wt of ethanol, the samples were ingressed immediately and stored at room temperature. A 0.5 mL of the samples was assessed at pre-defined time intervals at 24 h and 7th day. Later, assessment of the samples was performed with HPLC and the data was analyzed using statistical test. Bisphenol A-glycidyl methacrylate (Bis-GMA), Triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and Urethane dimethacrylate (UDMA) were quantified in the samples. When analyzing the release monomer, it was found that at the end of 24 h Bis-GMA was eluted more in the injectable resin composite whereas, TEGDMA was eluted from Swiss Tech and Ceram X resin composites. At the end of the 7th day it was evident that Bis-GMA was eluted maximum in all the three resin composites. Thus, monomer release was found to be evident among all three resin composites and it is of utmost important to be assessed in routine clinical practice.
Collapse
|
55
|
Evaluation of the Behavior of Two CAD/CAM Fiber-Reinforced Composite Dental Materials by Immersion Tests. MATERIALS 2021; 14:ma14237185. [PMID: 34885342 PMCID: PMC8658643 DOI: 10.3390/ma14237185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/15/2023]
Abstract
Fiber-reinforced composites are used as restorative materials for prosthetic oral rehabilitation. Gastroesophageal reflux disease (GERD) is an accustomed affection with various oral manifestations. This study aimed to evaluate the behavior of two high-performance CAD/CAM milled reinforced composites (Trinia™, TriLor) in artificial saliva at different pH levels through immersion tests, and to determine if changes in mass or surface morphology at variable pH, specific for patients affected by GERD, appear. After investigating the elemental composition and surface morphology, the specimens were immersed in Carter Brugirard artificial saliva for 21 days at different pH values (5.7, 7.6, and varying the pH from 5.7 to 3). The values of the weighed masses during the immersion tests were statistically processed in terms of mean and standard deviation. Results suggested that irrespective of the medium pH, the two composites presented a similar mass variation in the range of −0.18 (±0.01)–1.82 (±0.02) mg after immersion, suggesting their stability when in contact with artificial saliva, an aspect which was also highlighted by scanning electron microscope (SEM) analysis performed on the immersed surfaces. Novel composite biomaterials can be a proper alternative for metal alloys used for prosthetic frameworks in patients suffering from GERD.
Collapse
|
56
|
A Contemporary Evaluation on Posterior Direct Restoration Teaching among Undergraduates in Dental Schools in Malaysia. Dent J (Basel) 2021; 9:dj9100123. [PMID: 34677185 PMCID: PMC8534716 DOI: 10.3390/dj9100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Abstract
There is a current trend to restore posterior teeth with composite resin due to increasing demands on natural tooth colour restoration and increased concern about the safety of amalgam restorations. The objective was to evaluate the current teaching of posterior direct restoration among restorative dental lecturers in Malaysia compared to available international literature. An online questionnaire, which sought information on the teaching of posterior restoration was developed and distributed to 13 dental schools in Malaysia. The response rate for the questionnaire was 53.8%. The most popular posterior restoration teaching methods among the respondents were lecture (95.7%), demonstration (87.0%) and problem-based learning (PBL) (73.9%), while continuous assessment and a practical competency test (82.6%) were the most popular assessment methods. Placing a hard setting calcium hydroxide and GIC base for deep cavity restored by composite restoration was taught in 79.2% of cases. The standard protocols for posterior composite restoration were incremental filling in deep cavity (87.5%), using circumferential metal bands with wooden wedge (91.7%), with a total etch system (95.8%), using a light emitting diode (LED) light curing unit (91.7%), finishing using water cooling (80%) and finishing with a disc (87.5%). Graduates from dental schools in Malaysia received similar theoretical, preclinical and clinical teaching on posterior restoration techniques, although there were variations in the delivery methods, techniques and assessments, pointing to a need for uniformity and consensus.
Collapse
|
57
|
Niu H, Yang DL, Gao T, Wang JX. Efficient prediction of the packing density of inorganic fillers in dental resin composites for excellent properties. Dent Mater 2021; 37:1806-1818. [PMID: 34565583 DOI: 10.1016/j.dental.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The purpose of this study is to develop a mathematical model for efficient prediction of the packing density of different filler formulations in dental resin composites (DRCs), and to study properties of DRCs at the maximum filler loading (MFL), thereby providing an effective guidance for the design of filler formulations in DRCs to obtain excellent properties. METHODS The packing density data generated by discrete element model (DEM) simulation were used to re-derive the parameters of 3-parameter model. The modifier effect was also induced to modify the 3-parameter model. DRCs with 10 filler formulations were selected to test properties at the MFL. The packing densities of binary and ternary mixes in DRCs were calculated by 3-parameter model to explore the regularity of composite packing. RESULTS The predicted packing density was validated by simulation and experimental results, and the prediction error is within 1.40 vol%. The optimization of filler compositions to obtain a higher packing density is beneficial to enhancing the mechanical properties and reducing the polymerization shrinkage of DRCs. In binary mixes, the maximum packing density occurs when the volume fraction of small fillers is 0.35-0.45, and becomes higher with the reduction of particle size ratio. In ternary mixes, the packing density can reach the maximum value when the volume fractions of large and small fillers are in the 0.5-0.75 and 0.15-0.4 ranges, respectively. SIGNIFICANCE The modified 3-parameter model can provide an effective method to design the multi-level filler formulations of DRCs, thereby improving the performance of the materials.
Collapse
Affiliation(s)
- Hao Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan-Lei Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianyu Gao
- School of Automation, China University of Geosciences, Wuhan 430074, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
58
|
Iqbal A, Khattak O, Fayyaz A, Issrani R, Alrasheed OS, Almandel MN, Alruwaili AQ. Choice of Restorative Materials for Direct Posterior Restorations among Undergraduate Saudi College Students. Open Dent J 2021. [DOI: 10.2174/1874210602115010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The most common restorative materials used in dentistry are amalgam and composite. Amalgam is a controversial material owing to its mercury toxicity. With recent advances in the properties of composite materials, there has been a shift towards its use.
Objectives:
The aim of this study was to understand the perceptions of undergraduate dental students in a northern Saudi Arabian dental school about the choice of restorative materials for restoring posterior teeth.
Methodology:
The study included undergraduate students studying in 4th and 5th year dental program in College of Dentistry, Jouf University. A four-item questionnaire with 18 close-ended questions was developed by the investigators, which were hand delivered to all the students. Data analysis is presented through tables and descriptive methods.
Results:
A total of 98 (out of 131) undergraduate students participated in this study. Overall, the students reported a significantly strong influence of the type of restorative materials in relation to the cavity size and margin of the restorations along with the esthetics factor(p<0.05). There was slight influence on the student’s choice because of the instructor's influence, whereas the students felt they were knowledgeable and had appropriate training to use either amalgam or composite. The study also found that patient’s preference had a strong influence on choosing composite material. The students were mostly not influenced while choosing the material as far as the safety of it was concerned. However, the patient’s influence was slight when it came to the choice of the material. A significant difference was noted among the students when it came to pregnancy-related safety concerns where the choice of material was not influenced by either amalgam or composite (p=.002).
Conclusion:
The undergraduate dental students at College of Dentistry, Jouf University are comfortable in using both amalgam and composite as a posterior restorative material. They are knowledgeable about both the materials and are adequately trained to use either one.
Collapse
|
59
|
Li B, Tian L, Pan L, Li J. Molecular dynamics investigation of structural and mechanical properties of silica nanorod reinforced dental resin composites. J Mech Behav Biomed Mater 2021; 124:104830. [PMID: 34530300 DOI: 10.1016/j.jmbbm.2021.104830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
In this work, molecular dynamics simulations are conducted to investigate the structural and mechanical properties of dental materials, i.e., the silica nanorod reinforced Bis-GMA/TEGDMA resin composite. The effects of loading content and size of the silica nanorods on the composite stiffness were performed by examining resin chain conformation, hydrogen bonds and matrix/filler binding energy. It is revealed that the presence of the silica nanorod causes polymer chain expansion, endowing the resins with higher stiffness. Moreover, the volumetric hydrogen bonds and binding energy increase considerably with the loading content, but decrease gradually with the diameter or show almost independence of the length. Furthermore, the composite moduli were quantified by the micromechanics models and the transverse moduli were well predicted by the Counto model, signifying a perfect bonding between the matrix and nanorod. The chain expansion and energetic matrix/filler interactions are believed to contribute to the significant mechanical reinforcement of the composites with the loading content. However, the length of the nanorod has a little effect on the composite moduli due to the unaltered interfacial interaction. In contrast, a smaller diameter is supposed to give a larger modulus, and this is not observed in this work due to the synergic effects of improved matrix/filler interaction and actual reduced filler volume fraction. The mechanical enhancement by the rod-like structures is more influenced by the loading content, but less so by the size of the nanorod, and it also exhibits superior mechanical performance as compared to nanoparticles. The findings thus extend the current understanding of the nanostructure and mechanical properties of silica nanorod reinforced dental resin composites from an atomic/molecular perspective.
Collapse
Affiliation(s)
- Bei Li
- School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, Wuhan, 430070, China; State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lili Tian
- School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lei Pan
- School of Materials Science and Engineering, Research Center for Materials Genome Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianjun Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
60
|
Sumaji JN, Bella E, Tjandrawinata R. Effects of Chili Sauce on the Absorbency and Diametral Tensile Strength of Nanocomposite. 2021 IEEE INTERNATIONAL CONFERENCE ON HEALTH, INSTRUMENTATION & MEASUREMENT, AND NATURAL SCIENCES (INHENCE) 2021:1-5. [DOI: 10.1109/inhence52833.2021.9537272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Joanna Nadia Sumaji
- Universitas Trisakti,Undergraduate Program Faculty of Dentistry,Jakarta,Indonesia
| | - Esa Bella
- Universitas Trisakti,Undergraduate Program Faculty of Dentistry,Jakarta,Indonesia
| | | |
Collapse
|
61
|
Martins ARM, Silva ID, Machado‐Santos L, Vitti RP, Sinhoreti MAC, Brandt WC. Isobornyl methacrylate as diluent co‐monomer on physical‐mechanical properties of dental resin composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aurealice Rosa Maria Martins
- Department of Restorative Dentistry, Piracicaba Dental School University of Campinas Piracicaba São Paulo Brazil
| | - Isaias Donizeti Silva
- School of Dentistry, Implantology Area Santo Amaro University São Paulo São Paulo Brazil
| | - Luciana Machado‐Santos
- Department of Prosthodontics, School of Dentistry University of Taubaté Taubaté São Paulo Brazil
| | - Rafael Pino Vitti
- School of Dentistry Herminio Ometto University Center Araras São Paulo Brazil
| | | | - William Cunha Brandt
- School of Dentistry, Implantology Area Santo Amaro University São Paulo São Paulo Brazil
| |
Collapse
|
62
|
Zhang H, Zhao S, Li A, Bian K, Shen S, Tao M, Shi P. Structure-dependent antimicrobial mechanism of quaternary ammonium resins and a novel synthesis of highly efficient antimicrobial resin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144450. [PMID: 33453537 DOI: 10.1016/j.scitotenv.2020.144450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 05/10/2023]
Abstract
The demand for powerful and multifunctional water-treatment materials and reagents is increasing, because we are facing worse raw water quality, various tolerant bacteria, and risky disinfection by-products (DBPs) in drinking water. Quaternary ammonium resins (QARs) are promising candidates for water disinfection and purification, but their limited bactericidal capacities are difficult to improve because of the lack of guidelines for enhancing antibacterial efficiency. Therefore, we first systematically studied the structure-dependent antimicrobial mechanism of QARs and found that the best resin skeleton is acrylic-type, the optimal bactericidal alkyl is hexyl or octyl, the most applicable sizes are 80-100 meshes, the best counter anion is iodide ion, and the optimum quaternization reagent is iodoalkane. Moreover, the antibacterial capacity was demonstrated to depend on surficial N+ groups, correlating with surficial N+ charge density (R2 of 0.98) but not with exchange capacity (R2 of 0.26), physical adsorption of resin skeleton, or electrostatic adsorption of N+ groups. Based on these principles, we synthesized a new resin, Ac-81, with a surficial antibacterial design, which simultaneously exhibited better antimicrobial efficiency (two orders of magnitude) as well as higher contaminant removal potential (61.92%) compared to the traditional Ac-8C antibacterial resin. Furthermore, the new resin showed remarkable broad-spectrum antibacterial effects against Gram-negative E. coli and P. aeruginosa and Gram-positive B. subtilis and S. aureus in simulated water and actual water. Simultaneously, water quality was significantly improved, with HCO3-, SO42-, TN, TP, and TOC reduced by 79-90%, >99%, 66-85%, >99%, and 22-26%, respectively. Ac-81 is characterized by facile reusability, high treatment capacity of 1500 bed volume, and good adaptability for treating actual water, providing a promising alternative for drinking-water disinfection and purification.
Collapse
Affiliation(s)
- Huaicheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shudi Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shanqi Shen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Meng Tao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
63
|
Sarikaya R, Ye Q, Song L, Tamerler C, Spencer P, Misra A. Probing the mineralized tissue-adhesive interface for tensile nature and bond strength. J Mech Behav Biomed Mater 2021; 120:104563. [PMID: 33940485 DOI: 10.1016/j.jmbbm.2021.104563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/20/2022]
Abstract
The mechanical performance of the dentin-adhesive interface contributes significantly to the failure of dental composite restorations. Rational material design can lead to enhanced mechanical performance, but this requires accurate characterization of the mechanical behavior at the dentin-adhesive interface. The mechanical performance of the interface is typically characterized using bond strength tests, such as the micro-tensile test. These tests are plagued by multiple limitations including large variations in the test results. The challenges associated with conventional tensile tests limit our ability to unravel the complex relationships that affect mechanical behavior at the dentin-adhesive interface. This study used the diametral compression test to overcome the challenges inherent in conventional bond strength tests. The bovine femur cortical bone tissue was considered as a surrogate material (the mineralized tissue) for human dentin. Two different adhesive formulations, which differed by means of their self-strengthening properties, were studied. The tensile behavior of the mineralized tissue, the adhesive polymer, and the bond strength of the mineralized tissue - adhesive interface was determined using the diametral compression test. The diametral compression test improved the repeatability for both the tensile and bond strength tests. The rate dependent mechanical behavior was observed for both single material and interfacial material systems. The tensile strength and bond strength of the mineralized tissue-adhesive interface was greater for the self-strengthening formulation as compared to the control.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Department of Mechanical and Aerospace Engineering, Trine University, 1 University Ave, Angola, IN, 46703, USA; Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Qiang Ye
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas, 1530 W. 15th St, Lawrence, KS, 66045, USA.
| |
Collapse
|
64
|
Sustained Antibacterial Effect and Wear Behavior of Quaternary Ammonium Contact-Killing Dental Polymers after One-Year of Hydrolytic Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study intended to investigate the long-term antibacterial effect, mechanical performance, and surface topography of new anticaries dental composites. While most artificial aging studies of dental resins lasted for 30–90 days, this study prolonged the water-aging to one year to be more clinically relevant. The base resin was loaded with dimethylaminohexadecyl methacrylate (DMAHDM) at 3 or 5 wt.% and nano-sized amorphous calcium phosphate (NACP) at 20 wt.%. Composites were subjected to one-year water storage and wear. Following water aging, samples were evaluated for flexural strength, elastic modulus, and microbiological assays. Biofilm plate counting method, metabolic assay, colorimetric quantification of lactic acid, and Baclight bacterial viability assay were measured after one year. Topography changes (ΔRa, ΔRq, ΔRv, ΔRt) were examined after wear and observed by scanning electron microscopy. Biofilm assays and topography changes data were analyzed via one-way ANOVA and Tukey’s tests. Mechanical properties and normalized data were verified using a t-test. The flexural strength values for the formulations that contained 5% DMAHDM-20% NACP, 3% DMAHDM, and 5% DMAHDM were reduced significantly (p < 0.05) in relation to the baseline but the values were still above the ISO standards. No significant differences were observed between the groups concerning the topography changes, except for the ΔRt, where there was a significant increase in the 5% DMAHDM-20% NACP group. All the groups demonstrated robust biofilm-inhibition, with slightly reduced antibacterial properties following water aging. The aged samples reduced the total microorganisms, total streptococci, and mutans streptococci by 1.5 to 3-log, compared to the experimental control. The new formulations containing DMAHDM and NACP were able to sustain the antibacterial performance after one-year of aging. Mechanical properties and surface topography were slightly affected over time.
Collapse
|
65
|
Huang Y, Song B, Zhou X, Chen H, Wang H, Cheng L. Dental Restorative Materials for Elderly Populations. Polymers (Basel) 2021; 13:polym13050828. [PMID: 33800358 PMCID: PMC7962827 DOI: 10.3390/polym13050828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/26/2023] Open
Abstract
The incidence of dental caries, especially root caries, has risen in elderly populations in recent years. Specialized restorative materials are needed due to the specific site of root caries and the age-related changes in general and oral health in the elderly. Unfortunately, the restorative materials commonly used clinically cannot fully meet the requirements in this population. Specifically, the antibacterial, adhesive, remineralization, mechanical, and anti-aging properties of the materials need to be significantly improved for dental caries in the elderly. This review mainly discusses the strengths and weaknesses of currently available materials, including amalgam, glass ionomer cement, and light-cured composite resin, for root caries. It also reviews the studies on novel anti-caries materials divided into three groups, antimicrobial, remineralization, and self-healing materials, and explores their potential in the clinical use for caries in the elderly. Therefore, specific restorative materials for caries in the elderly, especially for root caries, need to be further developed and applied in clinical practice.
Collapse
Affiliation(s)
- Yuyao Huang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bingqing Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hui Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China;
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (Y.H.); (B.S.); (X.Z.)
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.W.); (L.C.)
| |
Collapse
|
66
|
Padunglappisit C, Posaya-Anuwat S, Sompoch V, Piyawiwattanakoon P, Panpisut P. Effects of Different Amine Activators on the Monomer Conversion, Biaxial Flexural Strength, and Color Stability of Experimental Provisional Dental Restorations. Eur J Dent 2021; 15:488-494. [PMID: 33535248 PMCID: PMC8382472 DOI: 10.1055/s-0040-1721908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objective
The aim was to assess the effect of different amine activators including N, N-dimethyl-p-toluidine (DMPT) or Na-N-tolyglycine glycidyl methacrylate (NTGGMA) on chemical-activated monomer conversion, biaxial flexural strength (BFS), and color stability of composites for provisional dental restorations.
Materials and Methods
Two formulations of composites containing either DMPT (D-temp) or NTGGMA (N-temp) were prepared. The degree of monomer conversion was assessed. The BFS of the materials was tested using the ball-on-ring testing jig. The color difference (∆E
00
) of the materials after immersion in water was also determined. The commercial comparisons were Unifast (UF), Protemp (PT), Luxacrown, and Luxatemp (LT).
Results
The monomer conversion of D-temp (57.4 ± 1.3%) was comparable to that of N-temp (59.0 ± 1.3%). The conversion of both D-temp and N-temp were higher than that of PT (48.1 ± 3.4%) and LT (48.0 ± 1.6%). BFS of both D-temp (164.2 ± 18.1 MPa) and N-temp (168.6 ± 8.9 MPa) were comparable but higher than that of UF (119.8 ± 13.6 MPa). ∆E
00
of D-temp (2.7 ± 0.7) and N-temp (2.5 ± 0.8) were comparable but higher than that of other commercial materials (0.6–1.2).
Conclusion
The use of DMPT or NTGGMA showed negligible effect on monomer conversion, BFS, and color stability of the experimental provisional restorations. The conversion and BFS of the experimental materials were in the range of that obtained from commercial bis-acryl-based materials. However, the color stability of the experimental materials was lower than that of commercial materials.
Collapse
Affiliation(s)
| | | | - Varisara Sompoch
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | | | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.,Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
67
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
68
|
Mok ZH, Proctor G, Thanou M. Emerging nanomaterials for dental treatments. Emerg Top Life Sci 2020; 4:613-625. [PMID: 33200780 PMCID: PMC7752085 DOI: 10.1042/etls20200195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
The emergence of nanomaterials for dental treatments is encouraged by the nanotopography of the tooth structure, together with the promising benefits of nanomedicine. The use of nanoparticles in dentistry, also termed as 'nanodentistry', has manifested in applications for remineralisation, antimicrobial activity, local anaesthesia, anti-inflammation, osteoconductivity and stem cell differentiation. Besides the applications on dental tissues, nanoparticles have been used to enhance the mechanical properties of dental composites, improving their bonding and anchorage and reducing friction. The small particle size allows for enhanced permeation into deeper lesions, and reduction in porosities of dental composites for higher mechanical strength. The large surface area to volume ratio allows for enhanced bioactivity such as bonding and integration, and more intense action towards microorganisms. Controlled release of encapsulated bioactive molecules such as drugs and growth factors enables them to be delivered more precisely, with site-targeted delivery for localised treatments. These properties have benefitted across multiple fields within dentistry, including periodontology and endodontics and reengineering of dental prosthetics and braces. This review summarises the current literature on the emerging field of nanomaterials for dental treatments.
Collapse
Affiliation(s)
- Zi Hong Mok
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| | - Gordon Proctor
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, U.K
| | - Maya Thanou
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, U.K
| |
Collapse
|
69
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Vohra F. Evaluation of Synergic Potential of rGO/SiO 2 as Hybrid Filler for BisGMA/TEGDMA Dental Composites. Polymers (Basel) 2020; 12:polym12123025. [PMID: 33348853 PMCID: PMC7765991 DOI: 10.3390/polym12123025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023] Open
Abstract
Graphene and graphene oxide based nanomaterials have attained immense significance in research because of their matchless physiochemical characteristics. Although potential biomedical applications of graphene have been extensively studied, however, dentistry related applications were rarely explored. This study aimed to investigate the effect of various percentages of surface modified reduce graphene oxide (S-rGO) in combination with SiO2 nanoparticles (bulk filler) on numerous physio-mechanical characteristics of acrylate-based (BisGMA/TEGDMA: 1:1 by wt.) composites. BisGMA/TEGDMA reinforced with 30 wt.% surface modified fumed-silica (S-A200) was considered as control group (base composite). Various concentrations (0, 0.5, 1, 2, 4 wt.%) of S-rGO were incorporated into the base composite via solution casting and high-speed mixing. The obtained composites were characterized for rheological properties before curing by using Rheometer (Anton Paar, USA) in the oscillatory mode under a frequency sweep over a range of angular frequency of 0.1–100 rad/s at 25 °C. The degree of conversion (DC) was measured by using Fourier transform infrared spectroscopy (FTIR). A Nano-indentation test was carried out to obtain nano-hardness and elastic modulus. The surface roughness was measured by optical microscope (Bruker®), 3D non-contact surface profilometer. The structural and morphological properties were studied by using Scanning Electron Microscopy (SEM). The mean and standard deviation were calculated and a simple mean comparisons test was performed for comparison using SPSS. The results revealed that the addition of a tiny proportion of S-rGO considerably increased the nano-indentation hardness, elastic modulus and DC. Conversely, a gradual reduction in viscosity was observed with increasing S-rGO concentration. The study demonstrates that a small fraction of S-rGO in combination with SiO2 could enhance physical, mechanical and rheological properties of acrylate based composites. Thus S-rGO/SiO2 combination could be used as a potential hybrid filler for dental nanocomposites.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
- Correspondence: (A.A.); (R.K.)
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
- Correspondence: (A.A.); (R.K.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
| | - Leonel S. Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
| | - Fahim Vohra
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.-B.A.-O.); (W.S.S.); (L.S.B.); (F.V.)
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
70
|
Niu H, Yang DL, Sun Q, Pu Y, Gao T, Wang JX. A new method for predicting the maximum filler loading of dental resin composites based on DEM simulations and experiments. Dent Mater 2020; 36:e375-e385. [PMID: 32980130 DOI: 10.1016/j.dental.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/19/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The inorganic fillers in dental resin composites can enhance their mechanical properties and reduce polymerization shrinkage. When the usage amount of inorganic fillers is closed to maximum filler loading (MFL), the composites will usually achieve optimal performances. This study aims to develop a method that can predict the MFL of dental resin composites for the optimization of filler formulations. METHODS A method based on discrete element method (DEM) simulations and experiments was firstly developed to predict the MFL of spherical silica particles for single-level and multi-level filling. RESULTS The results indicate that the presence of modifier can increase the MFL, and the MFL increment can be exponentially changed with the content of the modifier. Compared with the single-level filling, the addition of secondary fillers is beneficial to increase the MFL, and the increment can be affected by the particle size and size ratio. The prediction results show a good agreement with the experiment results. SIGNIFICANCE The accuracy of prediction results indicates a great potential of DEM simulations as a numerical experimental method in studying the MFL, and provides an effective method for the optimization of filler formulations.
Collapse
Affiliation(s)
- Hao Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Dan-Lei Yang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qian Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Yuan Pu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Tianyu Gao
- School of Automation, China University of Geosciences, Wuhan 430074, PR China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China; Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
71
|
Abdelaziz KM, Mir S, Khateeb SU, Baba SM, Alshahrani SS, Alshahrani EA, Alsafi ZA. Influences of Successive Exposure to Bleaching and Fluoride Preparations on the Surface Hardness and Roughness of the Aged Resin Composite Restoratives. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E476. [PMID: 32947937 PMCID: PMC7557809 DOI: 10.3390/medicina56090476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 11/21/2022]
Abstract
Background and Objectives: Surfaces of composite restorations are adversely affected upon bleaching and topical fluoride application. Such a procedure is normally carried out in the presence of restorations already serving in a different oral environment, although previous in vitro studies only considered the freshly-prepared composite specimens for assessment. The current study accordingly aimed to evaluate both the surface hardness and roughness of aged composite restoratives following their successive exposure to bleaching and topical fluoride preparations. Materials and Methods: Disc specimens were prepared from micro-hybrid, nano-filled, flowable and bulk-fill resin composites (groups 1-4, n = 60 each). All specimens were subjected to artificial aging before their intermittent exposure to surface treatment with: none (control), bleach or topical fluoride (subgroups 1-3, n = 20). All surface treatments were interrupted with two periods of 5000 thermal cycles. Specimens' surfaces were then tested for both surface hardness (Vickers hardness number (VHN), n = 10) and roughness (Ra, n = 10). The collected VHNs and Ras were statistically analyzed using two-way ANOVA and Tukey's comparisons at α = 0.05 to confirm the significance of differences between subgroups. Results: None of the tested composites showed differences in surface hardness and roughness between the bleached and the non-treated specimens (p > 0.05), but the bleached flowable composite specimens only were rougher than their control (p < 0.000126). In comparison to the control, fluoride treatment not only reduced the surface hardness of both micro-hybrid (p = 0.000129) and flowable (p = 0.0029) composites, but also increased the surface roughness of all tested composites (p < 0.05). Conclusion: Aged composite restoratives provide minimal surface alterations on successive bleaching and fluoride applications. Flowable resin composite is the most affected by such procedures. Although bleaching seems safe for other types of composites, the successive fluoride application could deteriorate the aged surfaces of the tested resin composites.
Collapse
Affiliation(s)
- Khalid M. Abdelaziz
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.M.); (S.U.K.); (S.M.B.)
| | - Shugufta Mir
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.M.); (S.U.K.); (S.M.B.)
| | - Shafait Ullah Khateeb
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.M.); (S.U.K.); (S.M.B.)
| | - Suheel M. Baba
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.M.); (S.U.K.); (S.M.B.)
| | - Saud S. Alshahrani
- Intern, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.S.A.); (E.A.A.); (Z.A.A.)
| | - Eman A. Alshahrani
- Intern, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.S.A.); (E.A.A.); (Z.A.A.)
| | - Zahra A. Alsafi
- Intern, College of Dentistry, King Khalid University, Abha 61471, Saudi Arabia; (S.S.A.); (E.A.A.); (Z.A.A.)
| |
Collapse
|
72
|
Haugen HJ, Marovic D, Par M, Khai Le Thieu M, Reseland JE, Johnsen GF. Bulk Fill Composites Have Similar Performance to Conventional Dental Composites. Int J Mol Sci 2020; 21:ijms21145136. [PMID: 32698509 PMCID: PMC7404092 DOI: 10.3390/ijms21145136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of the study was to perform comprehensive characterization of two commonly used bulk fill composite materials (SDR Flow (SDR) and Filtek™ Bulk Fill Flowable Restorative (FBF) and one conventional composite material (Tetric EvoCeram; TEC). Eleven parameters were examined: flexural strength (FS), flexural modulus (FM), degree of conversion, depth of cure, polymerisation shrinkage (PS), filler particle morphology, filler mass fraction, Vickers hardness, surface roughness following simulated toothbrush abrasion, monomer elution, and cytotoxic reaction of human gingival fibroblasts, osteoblasts, and cancer cells. The degree of conversion and depth of cure were the highest for SDR, followed by FBF and TEC, but there was no difference in PS between them. FS was higher for bulk fill materials, while their FM and hardness were lower than those of TEC. Surface roughness decreased in the order TEC→SDR→FBF. Bisphenol A-glycidyl methacrylate (BisGMA) and urethane dimethacrylate were found in TEC and FBF eluates, while SDR released BisGMA and triethylene glycol dimethacrylate. Conditioned media accumulated for 24 h from FBF and TEC were cytotoxic to primary human osteoblasts. Compared to the conventional composite, the tested bulk fill materials performed equally or better in most of the tests, except for their hardness, elastic modulus, and biocompatibility with osteoblasts.
Collapse
Affiliation(s)
- Håvard J. Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0376 Oslo, Norway; (H.J.H.); (M.K.L.T.); (J.E.R.); (G.F.J.)
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
- Correspondence:
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia;
| | - Minh Khai Le Thieu
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0376 Oslo, Norway; (H.J.H.); (M.K.L.T.); (J.E.R.); (G.F.J.)
| | - Janne E. Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0376 Oslo, Norway; (H.J.H.); (M.K.L.T.); (J.E.R.); (G.F.J.)
| | - Gaute Floer Johnsen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, NO-0376 Oslo, Norway; (H.J.H.); (M.K.L.T.); (J.E.R.); (G.F.J.)
| |
Collapse
|
73
|
González-López JA, Pérez-Mondragón AA, Cuevas-Suárez CE, Trejo-Carbajal N, Herrera-González AM. Evaluation of dental composites resins formulated with non-toxic monomers derived from catechol. J Mech Behav Biomed Mater 2020; 104:103613. [DOI: 10.1016/j.jmbbm.2019.103613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
|
74
|
Hutchison C, Cave V. 10 year comparison of glass ionomer and composite resin restoration materials in class 1 and 2 cavities. Evid Based Dent 2019; 20:113-114. [PMID: 31863046 DOI: 10.1038/s41432-019-0059-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Data sources A prospective randomised, double-blinded controlled trial Study selection Those requiring routine dental care in Sihhiye, Turkey were eligible to participate. Eighty-seven participants were identified and assessed for eligibility by calibrated researchers who ensured that the inclusion and exclusion criteria were met. Fifty-nine participants were successfully recruited with an average age of 24 years (range 15-37).Restoration type were randomly allocated [glass ionomer (GI) or composite resin (CR)] using a table of random numbers with software 'Research Randomised Program' and four experimental groups were created.Two dentists with 5 years experience were calibrated by them placing ten trial restorations , which were not included in the study. One hundred and forty restorations were then placed adhering to a strict treatment protocol. Cavities which did not meet the specifications of the criteria were excluded. The study received ethical approval by the Human Ethics in Clinical Research Committee of the University.Data extraction and synthesis Restorations were assessed at baseline (1 week), 1, 2, 3, 4, 5, 6, 8 and 10 years by blinded calibrated examiners with the aid of colour photographs using an objective criteria. Scanning electron microscopy (SEM) analysis was performed for one randomly selected restoration per group at each assessment. Data analysis adhered to the intention-to-treat CONSORT protocol. The restoration retention rates were calculated, and statistical analysis preformed using IBM SPSS version 22.0. The performance of the restorative materials over the study period were analysed with Cochran's Q test, according to USPHS criteria. Whilst the McNemar test was used to assess aspects of each material with baseline for each cavity type in addition to difference between cavity types. Marginal adaption, marginal discolouration and colour scores in each study group were compared with the p value set at 0.05.Results Eighty-seven patients with 203 lesions were included in the study, with 59 (140 lesions) eligible. Eleven patients were excluded for not meeting the inclusion/ exclusion criteria with 17 refusing to participate. Four randomly allocated groups were created at baseline, as combinations of cavity type and restorative material. 86.4% (n=51) of participants were evaluated after 10 years. The cumulative failure rate (CRF) was 3.17%.Marginal discolouration was observed in all groups at 10 years. With a significant difference observed between Class I and Class II cavities with GI restorations (p = 0.022). In addition, a significant change in colour match in GI restorations after 10 years(<0.005) was found.Over the ten-year period, no significant change was observed in terms of marginal adaption, anatomical form, secondary caries, postoperative sensitivity, surface texture, and retention for either restorative material (p >0.05) or with SEM inspections.Conclusions Both GI and CR are suitable and similar restorative materials for class 1 and class 2 cavities. However, differences can occur in colour change within the materials with glass ionomer restorations showing greater colour change from baseline over this period.
Collapse
Affiliation(s)
- C Hutchison
- Glasgow Dental Hospital and School, Glasgow, Scotland, UK.
| | - V Cave
- Glasgow Dental Hospital and School, Glasgow, Scotland, UK
| |
Collapse
|