51
|
Geng H, Nandakumar KS, Xiong L, Jie R, Dong J, Holmdahl R. Incomplete B Cell Tolerance to Cartilage Oligomeric Matrix Protein in Mice. ACTA ACUST UNITED AC 2013; 65:2301-9. [DOI: 10.1002/art.38046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/30/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Geng
- Central China Normal University; Wuhan China
- Karolinska Institute; Stockholm Sweden
| | | | - Li Xiong
- Central China Normal University; Wuhan China
| | - Rui Jie
- Central China Normal University; Wuhan China
| | - Jiahui Dong
- Central China Normal University; Wuhan China
| | | |
Collapse
|
52
|
Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. Vaccine 2013; 31:3519-27. [PMID: 23742996 DOI: 10.1016/j.vaccine.2013.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/21/2013] [Indexed: 02/01/2023]
Abstract
PNiPAAm is a thermo-responsive polymer with an adjuvant activity. To identify the minimal chemical structure present within PNiPAAm responsible for its adjuvant property, three different constituent polymers with specific functional groups were synthesized through free radical reaction and tested their adjuvant potential along with PNiPAAm. Among them, polymer with isopropyl attached to an amide showed maximal adjuvant activity in rodents followed by polymer with amide or ketone functional groups. However, secondary amine containing polymer did not show any adjuvant activity. In addition, to improve the adjuvant properties of PNiPAAm, we incorporated an affinity ligand, boronate. At first, we synthesized and characterized the dual responsive copolymers PNiPAAm-co-VPBA and PNiPAAm-co-VPBA-co-DMAEMA. Biocompatibility of these copolymers was confirmed both in vitro and in vivo. Mice injected with these copolymers mixed with collagen (CII) developed significant levels of anti-CII antibodies comprising of all the major IgG subclasses and an increased T cell activation. At the injection site, massive infiltration of immune cells was observed. However, only PNiPAAm-co-VPBA-co-DMAEMA-CII induced arthritis in mice after injection of 0.5M fructose confirming the importance of effective release of CII from the polymer for its adjuvant activity. Thus, a fine balance of hydrophobicity and hydrophilicity promotes adjuvant properties and continuous release of antigen, in this case CII, from polymer is essential for its adjuvant activity.
Collapse
|
53
|
Qu C, Puttonen KA, Lindeberg H, Ruponen M, Hovatta O, Koistinaho J, Lammi MJ. Chondrogenic differentiation of human pluripotent stem cells in chondrocyte co-culture. Int J Biochem Cell Biol 2013; 45:1802-12. [PMID: 23735325 DOI: 10.1016/j.biocel.2013.05.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 05/27/2013] [Indexed: 01/05/2023]
Abstract
Chondrogenic differentiation of human embryonic (hESCs) or induced pluripotent stem cells (hiPSCs) has been achieved in embryoid bodies (EBs) by adding selected growth factors to the medium. Also chondrocyte-secreted factors have been considered to promote the chondrogenic differentiation. Hence, we studied whether co-culture with primary chondrocytes can induce hESCs or hiPSCs to differentiate into chondrocyte lineage. Co-culture of hESCs or hiPSCs was established in a transwell insert system in feeder-free culture conditions, while hESCs or hiPSCs grown alone in the wells were used as controls. After 3-week co-culture with weekly replenished chondrocytes, the chondrogenically committed cells (hCCCs) were evaluated by morphology, immunocytochemistry, quantitative real-time RT-PCR, and analysis of chondrogenic, osteogenic and adipogenic differentiation markers. The expressions of chondrocyte- and pluripotency-associated genes were frequently measured during the monolayer expansion of hCCCs from passage 1 to 10. Human CCCs displayed morphology similar to chondrocytes, and expressed chondrocyte-associated genes, which were declined following passaging, similarly to passaged chondrocytes. They also formed a chondrogenic cell pellet, and differentiated into chondrocytic cells, which secreted abundant extracellular matrix. Human CCCs also proliferated rapidly. However, they did not show osteogenic or adipogenic differentiation capacity. Our results show that co-culture of hESCs or hiPSCs with primary chondrocytes could induce specific chondrogenic differentiation.
Collapse
Affiliation(s)
- Chengjuan Qu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
54
|
Su Z, Shotorbani SS, Jiang X, Ma R, Shen H, Kong F, Xu H. A method of experimental rheumatoid arthritis induction using collagen type II isolated from chicken sternal cartilage. Mol Med Rep 2013; 8:113-7. [PMID: 23673730 DOI: 10.3892/mmr.2013.1476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/09/2013] [Indexed: 11/06/2022] Open
Abstract
At present, collagen‑induced arthritis (CIA) is the best known and most extensively used model for the immunological and pathological characteristics of human rheumatoid arthritis (RA). This model is useful not only in aiding our understanding of the pathogenesis of this disease, but also in the development of new therapies. Bovine, porcine and human collagen has been used to induce CIA; however, response has been identified to vary between strains and injection conditions, and false positive results and reduced potency are common as a result of minor contaminants or deglycosylated protein. Therefore, in the present study, type II collagen (CII) was isolated and purified from chicken sternal cartilage and was found to successfully induce the RA model. Furthermore, T helper 17 (Th17) cells were observed to infiltrate the joint on day 45 following induction by CII. In vitro, expression of toll‑like receptor 2 (TLR2) increased in peritoneal macrophages stimulated by CII. In addition, blockage of TLR2 was identified to markedly decrease levels of TGF‑β and IL‑6 in the cell culture supernatant. The results indicate that CII isolated from chicken sternal cartilage may be recognized by TLR2 on macrophages, leading to TGF‑β and IL‑6 production and subsequent activation of Th17 cells which mediates CIA development.
Collapse
Affiliation(s)
- Zhaoliang Su
- Department of Immunology and Laboratory Immunology, Jiangsu University, Zhenjiang 212013, PR China.
| | | | | | | | | | | | | |
Collapse
|
55
|
Kaitainen S, Mähönen AJ, Lappalainen R, Kröger H, J Lammi M, Qu C. TiO
2
coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication 2013; 5:025009. [DOI: 10.1088/1758-5082/5/2/025009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
56
|
Tomita N, Hattori T, Itoh S, Aoyama E, Yao M, Yamashiro T, Takigawa M. Cartilage-specific over-expression of CCN family member 2/connective tissue growth factor (CCN2/CTGF) stimulates insulin-like growth factor expression and bone growth. PLoS One 2013; 8:e59226. [PMID: 23555635 PMCID: PMC3610707 DOI: 10.1371/journal.pone.0059226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/12/2013] [Indexed: 01/04/2023] Open
Abstract
Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage-related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth.
Collapse
Affiliation(s)
- Nao Tomita
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
| | - Shinsuke Itoh
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Eriko Aoyama
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| | - Mayumi Yao
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University Dental School, Okayama, Japan
| | - Masaharu Takigawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Dental School, Okayama, Japan
- Biodental Research Center, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
57
|
Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, Silvast TS, Lammi MJ, Kiviranta I. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthritis Cartilage 2013; 21:481-90. [PMID: 23257243 DOI: 10.1016/j.joca.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/22/2012] [Accepted: 12/07/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Recombinant human type II collagen (rhCII) gels combined with autologous chondrocytes were tested as a scaffold for cartilage repair in rabbits in vivo. METHOD Autologous chondrocytes were harvested, expanded and combined with rhCII-gel and further pre-cultivated for 2 weeks prior to transplantation into a 4 mm diameter lesion created into the rabbit's femoral trochlea (n = 8). Rabbits with similar untreated lesions (n = 7) served as a control group. RESULTS Six months after the transplantation the repair tissue in both groups filled the lesion site, but in the rhCII-repair the filling was more complete. Both repair groups also had high proteoglycan and type II collagen contents, except in the fibrous superficial layer. However, the integration to the adjacent cartilage was incomplete. The O'Driscoll grading showed no significant differences between the rhCII-repair and spontaneous repair, both representing lower quality than intact cartilage. In the repair tissues the collagen fibers were abnormally organized and oriented. No dramatic changes were detected in the subchondral bone structure. The repair cartilage was mechanically softer than the intact tissue. Spontaneously repaired tissue showed lower values of equilibrium and dynamic modulus than the rhCII-repair. However, the differences in the mechanical properties between all three groups were insignificant. CONCLUSION When rhCII was used to repair cartilage defects, the repair quality was histologically incomplete, but still the rhCII-repairs showed moderate mechanical characteristics and a slight improvement over those in spontaneous repair. Therefore, further studies using rhCII for cartilage repair with emphasis on improving integration and surface protection are required.
Collapse
Affiliation(s)
- H J Pulkkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Croxford AM, Whittingham S, McNaughton D, Nandakumar KS, Holmdahl R, Rowley MJ. Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. ACTA ACUST UNITED AC 2013; 65:650-9. [DOI: 10.1002/art.37805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022]
|
59
|
Geng H, Nandakumar KS, Pramhed A, Aspberg A, Mattsson R, Holmdahl R. Cartilage oligomeric matrix protein specific antibodies are pathogenic. Arthritis Res Ther 2012; 14:R191. [PMID: 22906101 PMCID: PMC3580587 DOI: 10.1186/ar4022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Introduction Cartilage oligomeric matrix protein (COMP) is a major non-collagenous component of cartilage. Earlier, we developed a new mouse model for rheumatoid arthritis using COMP. This study was undertaken to investigate the epitope specificity and immunopathogenicity of COMP-specific monoclonal antibodies (mAbs). Methods B cell immunodominant regions on the COMP molecule were measured with a novel enzyme-linked immunosorbent assay using mammalian expressed full-length mouse COMP as well as a panel of recombinant mouse COMP fragments. 18 mAbs specific to COMP were generated and the pathogenicity of mAbs was investigated by passive transfer experiments. Results B cell immunodominant epitopes were localized within 4 antigenic domains of the COMP but with preferential response to the epidermal growth factor (EGF)-like domain. Some of our anti-COMP mAbs showed interactions with the native form of COMP, which is present in cartilage and synovium. Passive transfer of COMP-specific mAbs enhanced arthritis when co-administrated with a sub-arthritogenic dose of a mAb specific to collagen type II. Interestingly, we found that a combination of 5 COMP mAbs was capable of inducing arthritis in naive mice. Conclusions We have identified the specificities of mAbs to COMP and their contribution to the development of arthritis. These findings will further improve our understanding of the autoantibody mediated immunopathologies occurring widely in rheumatoid arthritis (RA), as well as in other autoimmune disorders.
Collapse
|
60
|
Immunohistochemical composition of the human lunotriquetral interosseous ligament. Appl Immunohistochem Mol Morphol 2012; 20:318-24. [PMID: 22505013 DOI: 10.1097/pai.0b013e31822a8fb3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The human lunotriquetral ligament (LTL) is a functionally important intrinsic hand ligament, which is assumedly subjected to insertion angle changes at the entheses during movement. To clarify whether the current model of the ligament's mechanical environment is reflected in its structural composition, we determined the regional distribution of extracellular matrix-related antigens. METHODS The extracellular matrix was immunohistochemically investigated in 12 LTLs from both wrists of 6 human donors (Mean age: 60 y). RESULTS The dorsal, proximal, and volar portions of the ligament immunolabeled for type I, III collagen and versican. Both entheses labeled strongly for type II collagen, aggrecan, and link protein and were distinctly cartilaginous. The ligament midsubstance was positive for collagen II in 30%, for aggrecan in 40%, and for keratocan and lumican in 100% of specimens. In contrast, keratocan and lumican were absent from the fibrocartilaginous entheses and the articular cartilage. Ligament insertion at a carpal bone occurs either directly through fibrocartilage or indirectly through a bilayered configuration of fibrocartilage and hyaline-like cartilage. The hyaline-like cartilage is continuous with the neighboring articular cartilage. CONCLUSIONS The LTL has an extracellular matrix comparable with that of ligaments experiencing a combination of tensile and shear/compressive load at the attachment sites. All regions of the LTL exhibit fibrocartilaginous entheses; purely fibrous attachment sites are rare. The ligament midsubstance shows a more fibrous phenotype than the entheses and expresses keratocan and lumican, which previously have not been recorded in any human hand ligament.
Collapse
|
61
|
Kelkka T, Hultqvist M, Nandakumar KS, Holmdahl R. Enhancement of antibody-induced arthritis via Toll-like receptor 2 stimulation is regulated by granulocyte reactive oxygen species. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:141-50. [PMID: 22642907 DOI: 10.1016/j.ajpath.2012.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/09/2012] [Accepted: 03/12/2012] [Indexed: 01/21/2023]
Abstract
The suppressive role of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) complex-derived reactive oxygen species (ROS) in adaptive immunity-driven arthritis models is well established. In this study, we aimed to investigate the role of NOX2 complex-derived ROS in a model of innate immunity-driven arthritis and to identify the ROS-regulated innate receptors that control arthritis. We used collagen antibody-induced arthritis (CAIA), which is a T and B lymphocyte-independent model of the effector phase of arthritis and is induced by well-defined monoclonal arthritogenic antibodies and enhanced by injection of lipopolysaccharide (LPS). CAIA was induced in both wild-type and Ncf1 mutant mice that lack phagocyte oxidative burst, and stimulated with LPS and other agents to activate innate immune responses. We found that both LPS and lipomannan enhanced CAIA more potently in the presence of functional phagocyte ROS production than in its absence. The ROS-dependent enhancement of CAIA was regulated by TLR2, but not by TLR4 stimulation, and was driven by granulocytes, whereas macrophages did not contribute to the phenotype. In addition, we report that collagen-induced arthritis was not affected by the functionality of the TLR4. We report that TLR2 signaling as an important ROS-regulated proinflammatory pathway leads to severe neutrophil-dependent inflammation in murine CAIA and conclude that the TLR2 pathway is modulated by phagocyte ROS to stimulate the development of arthritis.
Collapse
|
62
|
Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures. Cell Tissue Res 2012; 348:109-17. [DOI: 10.1007/s00441-012-1366-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|
63
|
Kim HO, Lee SI. Experimental Animal Models for Rheumatoid Arthritis: Methods and Applications. JOURNAL OF RHEUMATIC DISEASES 2012. [DOI: 10.4078/jrd.2012.19.4.189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun-Ok Kim
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Sang-Il Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| |
Collapse
|
64
|
Abstract
The role of B cells in autoimmune diseases involves different cellular functions, including the well-established secretion of autoantibodies, autoantigen presentation and ensuing reciprocal interactions with T cells, secretion of inflammatory cytokines, and the generation of ectopic germinal centers. Through these mechanisms B cells are involved both in autoimmune diseases that are traditionally viewed as antibody mediated and also in autoimmune diseases that are commonly classified as T cell mediated. This new understanding of the role of B cells opened up novel therapeutic options for the treatment of autoimmune diseases. This paper includes an overview of the different functions of B cells in autoimmunity; the involvement of B cells in systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes; and current B-cell-based therapeutic treatments. We conclude with a discussion of novel therapies aimed at the selective targeting of pathogenic B cells.
Collapse
Affiliation(s)
- Christiane S. Hampe
- Department of Medicine, University of Washington, SLU-276, 850 Republican, Seattle, WA 98109, USA
- *Christiane S. Hampe:
| |
Collapse
|
65
|
Abstract
This paper reviews work carried out in the Centre for Biospectroscopy, Monash University, at the Infrared Microspectroscopy Beamline on the Australian Synchrotron since the first synchrotron light. It discusses the attributes and advantages of the beamline for chemical spectroscopy and imaging of cellular and tissue samples and briefly summarizes new techniques that will come online in the near future.
Collapse
|
66
|
Dobritzsch D, Lindh I, Uysal H, Nandakumar KS, Burkhardt H, Schneider G, Holmdahl R. Crystal structure of an arthritogenic anticollagen immune complex. ACTA ACUST UNITED AC 2011; 63:3740-8. [DOI: 10.1002/art.30611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
67
|
Cao D, Khmaladze I, Jia H, Bajtner E, Nandakumar KS, Blom T, Mo JA, Holmdahl R. Pathogenic Autoreactive B Cells Are Not Negatively Selected toward Matrix Protein Collagen II. THE JOURNAL OF IMMUNOLOGY 2011; 187:4451-8. [DOI: 10.4049/jimmunol.1101378] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
68
|
Shakya AK, Kumar A, Klaczkowska D, Hultqvist M, Hagenow K, Holmdahl R, Nandakumar KS. Collagen type II and a thermo-responsive polymer of N-isopropylacrylamide induce arthritis independent of Toll-like receptors: a strong influence by major histocompatibility complex class II and Ncf1 genes. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2490-500. [PMID: 21933654 DOI: 10.1016/j.ajpath.2011.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/16/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
We established and characterized an arthritis mouse model using collagen type II (CII) and a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm). The new PNiPAAm adjuvant is TLR-independent, as all immunized TLR including MyD88-deficient mice developed an anti-CII response. Unlike other adjuvants, PNiPPAm did not skew the cytokine response (IL-1β, IFN-γ, IL-4, and IL-17), as there was no immune deviation towards any one type of immune spectrum after immunization with CII/PNiPPAm. Hence, using PNiPAAm, we studied the actual immune response to the self-protein, CII. We observed arthritis and autoimmunity development in several murine strains having different major histocompatibility complex (MHC) haplotypes after CII/PNiPAAm immunization but with a clear MHC association pattern. Interestingly, C57Bl/6 mice did not develop CII-induced arthritis, with PNiPAAm demonstrating absolute requirement for a classical adjuvant. Presence of a gene (Ncf1) mutation in the NADPH oxidation complex has a profound influence in arthritis and using PNiPAAm we could show that the high CIA severity in Ncf1 mutated mice is independent of any classical adjuvant. Macrophages, neutrophils, eosinophils, and osteoclasts but not mast cells dominated the inflamed joints. Furthermore, arthritis induction in the adjuvant-free, eosinophil-dependent Vβ12 DBA/1 mice could be shown to develop arthritis independent of eosinophils using CII/PNiPAAm. Thus, biocompatible and biodegradable PNiPAAm offers unique opportunities to study actual autoimmunity independent of TLR and a particular cytokine phenotype profile.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | | | | | | | | | | | | |
Collapse
|
69
|
Cheng CP, Sytwu HK, Chang DM. Decoy receptor 3 attenuates collagen-induced arthritis by modulating T cell activation and B cell expansion. J Rheumatol 2011; 38:2522-35. [PMID: 21885501 DOI: 10.3899/jrheum.110245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To investigate the immune-modulated effects of decoy receptor 3 (DCR3) in an experimental model of rheumatoid arthritis (RA). METHODS We delivered DCR3 plasmid into collagen-induced arthritis (CIA) mice using the hydrodynamic method and evaluated the serum level of DCR3 protein by ELISA. After immunization, we assessed disease severity of arthritis incidence, arthritis scores, paw thickness, and means of arthritic limbs, and used hematoxylin and eosin staining to observe synovial hyperplasia. We analyzed numbers of murine splenocytes and inguinal lymphocyte cells, cell populations, and serum proinflammatory cytokines by flow cytometry. We investigated B cell proliferation by carboxyfluorescein succinimidyl ester assay. We evaluated serum levels of total IgG2a and type II collagen-specific IgG and IgG2a using ELISA. RESULTS DCR3 expression in sera significantly attenuated disease severity in CIA mice. We found that DCR3 inhibited the volume of inguinal lymph nodes, numbers of CD19+ B cells, and populations of interferon-γ, interleukin 4 (IL-4), IL-17A, and Foxp3-producing CD4+ T cell in vivo. We found that DCR3 inhibited Pam3CSK4 (Toll-like receptor 1/2 ligand)-induced B220+ B cell proliferation in vitro. DCR3 treatment reduced the serum level of IL-6, total IgG2a, and CII-specific IgG2a antibody. CONCLUSION We postulated that the protective effects of DCR3 in CIA resulted from modulation of the immune system by maintaining the B/T cell balance and decreasing lymphocyte expansion. We suggest DCR3 as a prophylactic and potential therapeutic agent in the treatment of RA.
Collapse
Affiliation(s)
- Chia-Pi Cheng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
70
|
Conigliaro P, Benson RA, Patakas A, Kelly SM, Valesini G, Holmdahl R, Brewer JM, McInnes IB, Paul Garside. Characterization of the anticollagen antibody response in a new model of chronic polyarthritis. ACTA ACUST UNITED AC 2011; 63:2299-308. [DOI: 10.1002/art.30413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
71
|
Croxford AM, Nandakumar KS, Holmdahl R, Tobin MJ, McNaughton D, Rowley MJ. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066004. [PMID: 21721805 DOI: 10.1117/1.3585680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm(-1) at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.
Collapse
Affiliation(s)
- Allyson M Croxford
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
72
|
Shakya AK, Kumar A, Nandakumar KS. Adjuvant properties of a biocompatible thermo-responsive polymer of N-isopropylacrylamide in autoimmunity and arthritis. J R Soc Interface 2011; 8:1748-59. [PMID: 21543351 DOI: 10.1098/rsif.2011.0114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To evaluate the thermo-responsive poly(N-isopropylacrylamide) (PNiPAAm) polymer as an adjuvant, we synthesized PNiPAAm through free radical polymerization and characterized it both in vitro and in vivo. The polymer when mixed with collagen type II (CII) induced antigen-specific autoimmunity and arthritis. Mice immunized with PNiPAAm-CII developed significant levels of CII-specific IgG response comprising major IgG subclasses. Antigen-specific cellular recall response was also enhanced in these mice, while negligible level of IFN-γ was detected in splenocyte cultures, in vitro. PNiPAAm-CII-immunized arthritic mouse paws showed massive infiltration of immune cells and extensive damage to cartilage and bone. As determined by immunostaining, most of the CII protein retained its native configuration after injecting it with PNiPAAm in naive mice. Physical adsorption of CII and the high-molecular-weight form of moderately hydrophobic PNiPAAm induced a significant anti-CII antibody response. Similar to CII, mice immunized with PNiPAAm and ovalbumin (PNiPAAm-Ova) induced significant anti-ovalbumin antibody response. Comparable levels of serum IFN-γ, IL-1β and IL-17 were observed in ovalbumin-immunized mice with complete Freund, incomplete Freund (CFA and IFA) or PNiPAAm adjuvants. However, serum IL-4 levels were significantly higher in PNiPAAm-Ova and CFA-Ova groups compared with the IFA-Ova group. Thus, we show for the first time, biocompatible and biodegradable thermo-responsive PNiPAAm can be used as an adjuvant in several immunological applications as well as in better understanding of the autoimmune responses against self-proteins.
Collapse
Affiliation(s)
- Akhilesh Kumar Shakya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | | | | |
Collapse
|
73
|
Lindvall T, Nandakumar KS, Yousefi K, Holmdahl R, Andersson A. An encephalomyelitis-specific locus on chromosome 16 in mouse controls disease development and expression of immune-regulatory genes. J Neuroimmunol 2011; 235:40-7. [PMID: 21543122 DOI: 10.1016/j.jneuroim.2011.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 03/23/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
A locus on mouse chromosome 16 was found to control experimental autoimmune encephalomyelitis (EAE) in studies using congenic mice. Genes within the congenic region control encephalomyelitis but not arthritis, indicating the presence of genes in this region involved in central nervous system (CNS) specific mechanisms. Flow cytometry analyses of expression of two candidate genes within the linked locus, Cd200 and Btla, demonstrated a significantly lower expression of CD200 on CD4+ T cells and higher expression of BTLA on B cells from the congenic mice. These results suggest that genes within this mouse chromosome 16 locus specifically control EAE development possibly through immune-regulatory cell-surface molecules.
Collapse
Affiliation(s)
- Therese Lindvall
- Department of Experimental Medical Science, Unit for Medical Inflammation Research, BMC I11, Lund University, S-22184 Lund, Sweden
| | | | | | | | | |
Collapse
|
74
|
Chao PHG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G. Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2011; 95:84-90. [PMID: 20725950 DOI: 10.1002/jbm.b.31686] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cartilage tissue engineering based on cultivation of immature chondrocytes in agarose hydrogel can yield tissue constructs with biomechanical properties comparable to native cartilage. However, agarose is immunogenic and nondegradable, and our capability to modify the structure, composition, and mechanical properties of this material is rather limited. In contrast, silk hydrogel is biocompatible and biodegradable, and it can be produced using a water-based method without organic solvents that enables precise control of structural and mechanical properties in a range of interest for cartilage tissue engineering. We observed that one particular preparation of silk hydrogel yielded cartilaginous constructs with biochemical content and mechanical properties matching constructs based on agarose. This finding and the possibility to vary the properties of silk hydrogel motivated this study of the factors underlying the suitability of hydrogels for cartilage tissue engineering. We present data resulting from a systematic variation of silk hydrogel properties, silk extraction method, gel concentration, and gel structure. Data suggest that silk hydrogel can be used as a tool for studies of the hydrogel-related factors and mechanisms involved in cartilage formation, as well as a tailorable and fully degradable scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Pen-Hsiu Grace Chao
- Institute of Biomedical Engineering, School of Engineering and School of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
75
|
Klaczkowska D, Raposo B, Nandakumar KS. Heterogeneous Stock Mice are Susceptible to Encephalomyelitis and Antibody-initiated Arthritis but not to Collagen- and G6PI-induced Arthritis. Scand J Immunol 2010; 73:46-52. [DOI: 10.1111/j.1365-3083.2010.02479.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
76
|
Croxford AM, Crombie D, McNaughton D, Holmdahl R, Nandakumar KS, Rowley MJ. Specific antibody protection of the extracellular cartilage matrix against collagen antibody-induced damage. ACTA ACUST UNITED AC 2010; 62:3374-84. [PMID: 20662051 DOI: 10.1002/art.27671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The type II collagen (CII)-specific monoclonal antibodies (mAb) M2139 and CIIC1 induce arthritis in vivo and degrade bovine cartilage explants in vitro, whereas mAb CIIF4 is nonarthritogenic and prevents arthritis development when given in combination with M2139 and CIIC1. To determine the nature of the protective capacity of CIIF4 antibody, we examined the effects of adding CIIF4 to cartilage explants cultured in vitro with M2139 and CIIC1. METHODS Bovine cartilage explants were cultured in the presence of M2139 and CIIC1, with or without CIIF4. Histologic changes were examined, and chemical changes to collagens and proteoglycans were assessed by Fourier transform infrared microspectroscopy (FTIRM). Fresh cartilage and cartilage that had been freeze-thawed to kill chondrocytes cultured with or without the addition of GM6001, a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), were compared using FTIRM analysis. RESULTS M2139 and CIIC1 caused progressive degradation of the cartilage surface and loss of CII, even in the absence of viable chondrocytes. CIIF4 did not cause cartilage damage, and when given with the arthritogenic mAb, it prevented their damage and permitted matrix regeneration, a process that required viable chondrocytes. Inhibition of MMP activity reduced cartilage damage but did not mimic the effects of CIIF4. CONCLUSION CII-reactive antibodies can cause cartilage damage or can be protective in vivo and in vitro, depending on their epitope specificity. Since CII antibodies of similar specificity also occur in rheumatoid arthritis in humans, more detailed studies should unravel the regulatory mechanisms operating at the effector level of arthritis pathogenesis.
Collapse
|
77
|
Nandakumar KS, Jansson A, Xu B, Rydell N, Ahooghalandari P, Hellman L, Blom AM, Holmdahl R. A recombinant vaccine effectively induces c5a-specific neutralizing antibodies and prevents arthritis. PLoS One 2010; 5:e13511. [PMID: 20975959 PMCID: PMC2958150 DOI: 10.1371/journal.pone.0013511] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/17/2010] [Indexed: 11/19/2022] Open
Abstract
Objectives To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a. Methods We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology. Results Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered. Conclusions Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Experimental Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Lammi MJ, Kiviranta I. Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo. Osteoarthritis Cartilage 2010; 18:1077-87. [PMID: 20472086 DOI: 10.1016/j.joca.2010.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 04/20/2010] [Accepted: 05/03/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Our goal was to test the recombinant human type II collagen (rhCII) material as a gel-like scaffold for chondrocytes in a nude mouse model in vivo. DESIGN Isolated bovine chondrocytes (6x10(6)) were seeded into rhCII gels (rhCII-cell) and injected subcutaneously into the backs of nude mice. For comparison, chondrocytes (6x10(6)) in culture medium (Med-cell) and cell-free rhCII gels (rhCII-gel) were similarly injected (n=24 animals, total of three injections/animal). After 6 weeks, the tissue constructs were harvested and analyzed. RESULTS Chondrocytes with or without rhCII-gel produced white resilient tissue, which in histological sections had chondrocytes in lacunae-like structures. Extracellular matrix stained heavily with toluidine blue stain and had strongly positive collagen type II immunostaining. The tissue did not show any evidence of vascular invasion or mineralization. The cell-free rhCII-gel constructs showed no signs of cartilage tissue formation. Cartilage tissue produced by Med-cell was thin and macroscopically uneven, while the rhCII-cell construct was smooth and rounded piece of neotissue. RhCII-cell constructs were statistically thicker than Med-cell ones. However, no statistical differences were found between the groups in terms of glycosaminoglycan (GAG) content or biomechanical properties. CONCLUSIONS These results show that rhCII-gel provides good expansion and mechanical support for the formation of cartilage neotissue. RhCII material may allow favorable conditions in the repair of chondral lesions.
Collapse
Affiliation(s)
- H J Pulkkinen
- Institute of Biomedicine, Anatomy, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
79
|
Ockert B, Braunstein V, Sprecher C, Shinohara Y, Kirchhoff C, Milz S. Attachment sites of the coracoclavicular ligaments are characterized by fibrocartilage differentiation: a study on human cadaveric tissue. Scand J Med Sci Sports 2010; 22:12-7. [DOI: 10.1111/j.1600-0838.2010.01142.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
80
|
He Y, Li J, Zhuang W, Yin L, Chen C, Li J, Chi F, Bai Y, Chen XP. The inhibitory effect against collagen-induced arthritis by Schistosoma japonicum infection is infection stage-dependent. BMC Immunol 2010; 11:28. [PMID: 20537152 PMCID: PMC2891676 DOI: 10.1186/1471-2172-11-28] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/10/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A long-term existing schistosome infection can aid in maintaining immuno-homeostasis, thus providing protection against various types of autoimmune diseases to the infected host. Such benefits have often been associated with acute or egg stage infection and with the egg-induced Th2 response. However, since schistosome infection undergoes different stages, each associated with a specific induction of Th responses, the requirements for the ability of the different stages of schistosome infection to protect against autoimmune disease has not been elucidated. The present study was designed to study whether different stages of schistosome infection offer unique protection in collagen-induced arthritis and its mechanisms. RESULTS Arthritis susceptible strain DBA/1 male mice were infected with Schistosoma japonicum for either 2 weeks resulting in early stage infection or for 7 weeks resulting in acute or egg stage infection. Following Schistosoma japonicum infection, collagen II was administered to induce collagen-induced arthritis, an animal model for human rheumatoid arthritis. Infection by Schistosoma japonicum significantly reduced the severity and the incidence of experimental autoimmune collagen-induced arthritis. However, this beneficial effect can only be provided by a pre-established acute stage of infection but not by a pre-established early stage of the infection. The protection against collagen-induced arthritis correlated with reduced levels of anti-collagen II IgG, especially the subclass of IgG2a. Moreover, in protected mice increased levels of IL-4 were present at the time of collagen II injection together with sustained higher IL-4 levels during the course of arthritis development. In contrast, in unprotected mice minimal levels of IL-4 were present at the initial stage of collagen II challenge together with lack of IL-4 induction following Schistosoma japonicum infection. CONCLUSION The protective effect against collagen-induced arthritis provided by Schistosoma japonicum infection is infection stage-dependent. Furthermore, the ability of schistosomiasis to negatively regulate the onset of collagen-induced arthritis is associated with a dominant as well as long-lasting Th2 response at the initiation and development of autoimmune joint and systemic inflammation.
Collapse
Affiliation(s)
- YunKun He
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Jia Li
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - WenJia Zhuang
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Lan Yin
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - ChunXia Chen
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Jun Li
- Department of Pathogen Biology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - FengLi Chi
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - YanShuang Bai
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Xiao-Ping Chen
- Department of Immunology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
81
|
Van de Velde NC, Mottram PL, Powell MS, Lim B, Holmdahl R, Hogarth PM. Transgenic mice expressing human FcgammaRIIa have enhanced sensitivity to induced autoimmune arthritis as well as elevated Th17 cells. Immunol Lett 2010; 130:82-8. [PMID: 20005897 DOI: 10.1016/j.imlet.2009.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
Abstract
The major human Fc receptor, huFcgammaRIIa, is implicated in the development of autoimmune arthritis in humans but until recently has not been studied in mouse models. We evaluated potential roles of FcgammaRIIa by using transgenic mice expressing the receptor. We examined two models of induced autoimmune arthritis pristane-induced arthritis (PIA) and collagen-induced arthritis (CIA) as well as the anti-collagen-II antibody-induced arthritis (CAIA) model. In the induced arthritis models PIA and CIA, the transgenic mice developed a more severe arthritis than the other arthritis-prone SJL or DBA1 mice. Interestingly, anti-collagen-II antibodies were elevated in PIA in the susceptible mice. In the CIA model, the highly susceptible transgenic mouse had IgG subclass levels equivalent to the unaffected and disease resistant C57BL/6 mouse strain implying that the FcgammaRIIa lowers the threshold of IgG dependent leukocyte activation. This is consistent with the greatly enhanced sensitivity of the FcgammaRIIa transgenic mice to CAIA which clearly indicates a role for the receptor at least at the inflammatory effector cell level. Other roles for huFcgammaRIIa or other gene products in the development of autoimmunity cannot be ruled out however, especially as the mice exhibited elevated Th1 or Th17 CD4 T cells in the draining lymph nodes.
Collapse
|
82
|
Uysal H, Nandakumar KS, Kessel C, Haag S, Carlsen S, Burkhardt H, Holmdahl R. Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol Rev 2010; 233:9-33. [DOI: 10.1111/j.0105-2896.2009.00853.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
83
|
Surmann-Schmitt C, Widmann N, Mallein-Gerin F, von der Mark K, Stock M. Stable subclones of the chondrogenic murine cell line MC615 mimic distinct stages of chondrocyte differentiation. J Cell Biochem 2009; 108:589-99. [PMID: 19670270 DOI: 10.1002/jcb.22290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fourteen stable subclones derived from the murine chondrogenic cell line MC615 were established and characterised regarding their differentiation stages and responsivity to BMP2. Based on their gene expression profiles which revealed remarkable variances in Col2a1 and Col10a1 expression, subclones could be grouped into at least three distinct categories. Three representative subclones (4C3, 4C6 and 4H4) were further characterised with respect to gene expression pattern and differentiation capacity. These subclones resembled (i) weakly differentiated chondrogenic precursors, strongly responding to BMP2 stimulation (4C3), (ii) collagen II expressing chondrocytes which could be induced to undergo maturation (4C6) and (iii) mature chondrocytes expressing Col10a1 and other markers of hypertrophy (4H4). Interestingly, BMP2 administration caused Smad protein phosphorylation and stimulated Col10a1 expression in all clones, but induced Col2a1 expression only in precursor-like cells. Most remarkably, these clones maintained a stable gene expression profile at least until the 30th passage of subconfluent culture, but revealed reproducible changes in gene expression and differentiation pattern in long term high density cultures. Thus, the newly established MC615 subclones may serve as a potent new tool for investigations on the regulation of chondrocyte differentiation and function.
Collapse
Affiliation(s)
- Cordula Surmann-Schmitt
- Department Experimental Medicine I, Nikolaus-Fiebiger Centre of Molecular Medicine, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
84
|
Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol 2009; 39:2040-4. [DOI: 10.1002/eji.200939578] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
85
|
von der Mark K, Frischholz S, Aigner T, Beier F, Belke J, Erdmann S, Burkhardt H. Upregulation of type X collagen expression in osteoarthritic cartilage. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/17453679509157667] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Klaus von der Mark
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Svenja Frischholz
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Thomas Aigner
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Frank Beier
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Jutta Belke
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Silke Erdmann
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| | - Harald Burkhardt
- Institute of Experimental Medicine, University of Erlangen-Nürnberg, Schwabachanlage 10, 91054, Eriangen, Germany
| |
Collapse
|
86
|
Xiao C, Zhou J, He Y, Jia H, Zhao L, Zhao N, Lu A. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-kappaB: a study on induced arthritis in rats. Chin Med 2009; 4:13. [PMID: 19570240 PMCID: PMC2709898 DOI: 10.1186/1749-8546-4-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022] Open
Abstract
Background Triptolide, an active compound of Radix Tripterygium wilfordii, is immunosuppressive, cartilage protective and anti-inflammatory both in human and animal studies of various inflammatory and autoimmune diseases, including rheumatoid arthritis, but its therapeutic mechanism remains unclear. The aim of this study is to investigate the effects of triptolide on cartilage cytokines in the CIA model. Methods Sprague Dawley rats were immunized with type II collagen and orally administered with triptolide. The arthritic scores and incidence changes of the rats were observed. The expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage was studied with immunohistochemical staining. Results Triptolide, at both high and low doses, significantly lowered the arthritic scores, delayed the onset of arthritis and lowered the arthritis incidence. Triptolide treatment at both high and low doses lowered the expression of TNF-α, IL-6, COX-2 and NF-κB in paw cartilage in arthritic rats. Conclusion Triptolide lowers the arthritic scores, delays the onset of collagen induced arthritis and reduces the expressions of TNF-α, IL-6, NF-κB and COX-2 in paw cartilage in arthritic rats.
Collapse
Affiliation(s)
- Cheng Xiao
- Institute of Clinical Medicine Research, China-Japan Friendship Hospital, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
87
|
Nandakumar KS. Pathogenic antibody recognition of cartilage. Cell Tissue Res 2009; 339:213-20. [DOI: 10.1007/s00441-009-0816-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/05/2009] [Indexed: 12/16/2022]
|
88
|
Ahlqvist E, Hultqvist M, Holmdahl R. The value of animal models in predicting genetic susceptibility to complex diseases such as rheumatoid arthritis. Arthritis Res Ther 2009; 11:226. [PMID: 19490601 PMCID: PMC2714094 DOI: 10.1186/ar2600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For a long time, genetic studies of complex diseases were most successfully conducted in animal models. However, the field of genetics is now rapidly evolving, and human genetics has also started to produce strong candidate genes for complex diseases. This raises the question of how to continue gene-finding attempts in animals and how to use animal models to enhance our understanding of gene function. In this review we summarize the uses and advantages of animal studies in identification of disease susceptibility genes, focusing on rheumatoid arthritis. We are convinced that animal genetics will remain a valuable tool for the identification and investigation of pathways that lead to disease, well into the future.
Collapse
Affiliation(s)
- Emma Ahlqvist
- Medical Inflammation Research, Lund University, C12 BMC, 221 84 Lund, Sweden.
| | | | | |
Collapse
|
89
|
Klareskog L, Holmdahl R, Nordling C, Tarkowski A, Rubin K. Synovial class II antigen expression and immune complex formation in rheumatoid arthritis. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 715:85-91. [PMID: 3296677 DOI: 10.1111/j.0954-6820.1987.tb09907.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
90
|
Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM. Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 2009; 37:713-24. [PMID: 19121166 DOI: 10.1111/j.1532-950x.2008.00462.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To compare the chondrogenic potential of adult equine mesenchymal stem cells derived from bone marrow (MSCs) or adipose tissue (ASCs). STUDY DESIGN In vitro experimental study. ANIMALS Adult Thoroughbred horses (n=11). METHODS BM (5 horses; mean [+/-SD] age, 4+/-1.4 years) or adipose tissue (6 horses; mean age, 3.5+/-1.1 years) samples were obtained. Cryopreserved MSCs and ASCs were used for pellet cultures in stromal medium (C) or induced into chondrogenesis+/-transforming growth factor-3 (TGFbeta(3)) and bone morphogenic factor-6 (BMP-6). Pellets harvested after 3, 7, 14, and 21 days were examined for cross-sectional size and tissue composition (hematoxylin and eosin), glycosaminoglycan (GAG) staining (Alcian blue), collagen type II immunohistochemistry, and by transmission electron microscopy. Pellet GAG and total DNA content were measured using dimethylmethylene blue and Hoechst DNA assays. RESULTS Collagen type II synthesis was predominantly observed in MSC pellets from Day 7 onward. Unlike ASC cultures, MSC pellets had hyaline-like matrix by Day 14. GAG deposition occurred earlier in MSC cultures compared with ASC cultures and growth factors enhanced both MSC GAG concentrations (P<.0001) and MSC pellet size (P<.004) after 2 weeks in culture. CONCLUSION Equine MSCs have superior chondrogenic potential compared with ASCs and the equine ASC growth factor response suggests possible differences compared with other species. CLINICAL RELEVANCE Elucidation of equine ASC and MSC receptor profiles will enhance the use of these cells in regenerative cartilage repair.
Collapse
Affiliation(s)
- Martin A Vidal
- Equine Health Studies Program, Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Böiers U, Lanig H, Sehnert B, Holmdahl R, Burkhardt H. Collagen type II is recognized by a pathogenic antibody through germline encoded structures. Eur J Immunol 2008; 38:2784-95. [PMID: 18825755 DOI: 10.1002/eji.200838238] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Collagen type II (CII) is a cartilage-specific target of pathologic humoral autoimmune responses in rheumatoid arthritis as well as in the collagen-induced arthritis model. The aim of the present study is to investigate the critical amino acid residues conferring CII epitope specificity of the prototypic arthritogenic murine mAb CIIC1. A homology model of the CIIC1 single-chain antibody fragment (CIIC1scFv) in complex with its triple helical epitope was established. In silico predictions based on extensive molecular dynamics simulations were experimentally tested by the recombinant expression and functional analysis of CIIC1scFv containing alanine replacements allowing the identification of crucial CII-binding sites in the CDR2 and CDR3 regions of both heavy and light chains. Since the conversion of the CIIC1scFv sequence into the respective germline at all 13 somatically mutated positions did not affect its CII binding, our data indicate that potentially harmful cartilage-specific humoral autoimmunity could be germline encoded. The molecular modeling further demonstrates that the rigid collagen triple helix restricts the likelihood of molecular interactions with the CDR regions of the antibody considerably compared with globular antigens. These sterical constraints provide an explanation as to why somatic mutations in the arthritogenic autoantibody have no obvious impact on CII recognition.
Collapse
Affiliation(s)
- Ulrika Böiers
- Division of Rheumatology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
92
|
Hayes AJ, Hughes CE, Caterson B. Antibodies and immunohistochemistry in extracellular matrix research. Methods 2008; 45:10-21. [PMID: 18442701 DOI: 10.1016/j.ymeth.2008.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022] Open
Abstract
Immunohistochemistry is a powerful investigative tool that can provide researchers with important supplemental information to the routine morphological assessment of musculo-skeletal connective tissues in health and disease and also during tissue repair and regeneration. A wide variety of antibodies (both monoclonal and polyclonal) are now available from commercial and non-commercial sources that recognise the major structural and soluble components of cellular and extracellular matrix compartments. These include antibodies towards the major collagen and proteoglycan species and their metabolites, glycosaminoglycans, glycoproteins, enzymes, enzyme generated neo-epitopes, growth factors, cytokines and related signalling molecules. In addition, cell surface markers, cytoskeletal components and many other cytoplasmic and nuclear proteins, too numerous to mention, can also be detected. When allied with high resolution imaging modalities (e.g. confocal laser scanning microscopy) immunohistochemistry thus has the potential to reveal a wealth of macromolecular information about the complex three-dimensional composition and organisation of cellular and extracellular matrix compartments in many different connective tissue types. These technologies can also be used to quantify signal intensities and thereby facilitate numerical computation of image data.
Collapse
Affiliation(s)
- Anthony J Hayes
- Connective Tissue Biology Laboratory and Cardiff Institute of Tissue Engineering and Repair, Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
93
|
van Mierlo GJD, Scherer HU, Hameetman M, Morgan ME, Flierman R, Huizinga TWJ, Toes REM. Cutting edge: TNFR-shedding by CD4+CD25+ regulatory T cells inhibits the induction of inflammatory mediators. THE JOURNAL OF IMMUNOLOGY 2008; 180:2747-51. [PMID: 18292492 DOI: 10.4049/jimmunol.180.5.2747] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4+CD25+ regulatory T (Treg) cells play an essential role in maintaining tolerance to self and nonself. In several models of T cell-mediated (auto) immunity, Treg cells exert protective effects by the inhibition of pathogenic T cell responses. In addition, Treg cells can modulate T cell-independent inflammation. We now show that CD4+CD25+ Treg cells are able to shed large amounts of TNFRII. This is paralleled by their ability to inhibit the action of TNF-alpha both in vitro and in vivo. In vivo, Treg cells suppressed IL-6 production in response to LPS injection in mice. In contrast, Treg cells from TNFRII-deficient mice were unable to do so despite their unhampered capacity to suppress T cell proliferation in a conventional in vitro suppression assay. Thus, shedding of TNFRII represents a novel mechanism by which Treg cells can inhibit the action of TNF, a pivotal cytokine driving inflammation.
Collapse
|
94
|
Zheng B, Switzer K, Marinova E, Zhang J, Han S. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008; 41:363-71. [PMID: 18568641 DOI: 10.1080/08916930801931001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Copolymer-I (COP-I) is an unique immune regulatory polymer that has been shown to suppress experimental autoimmune encephalomyelitis (EAE) and is a treatment option for multiple sclerosis (MS). To investigate whether its immune suppressive effects can be extended to other autoimmune diseases, we treated mice with COP-I during the induction of collagen-induced arthritis (CIA). Our results show that COP-I treatment exacerbated CIA, leading to faster onset, more severe and longer-lasting disease. The mechanisms underlying the exacerbation of CIA by COP-I treatment include enhanced activation and inflammatory cytokine production by autoreactive T cells and elevated production of autoreactive antibodies. In addition, germinal center response was significantly enhanced by COP-I treatment. Thus, great caution should be taken when COP-I is to be used in MS patients with other autoimmune complications or its potential therapeutic effects are to be extended beyond autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Biao Zheng
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
95
|
Rowley MJ, Nandakumar KS, Holmdahl R. The role of collagen antibodies in mediating arthritis. Mod Rheumatol 2008; 18:429-41. [PMID: 18521704 DOI: 10.1007/s10165-008-0080-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/07/2008] [Indexed: 11/24/2022]
Abstract
This review examines evidence that rheumatoid arthritis (RA) depends on autoimmunity to articular collagen, and mechanisms whereby autoantibodies to type II collagen contribute to disease development. Three major autoantigenic reactants have been identified in RA; the corresponding autoantibodies are rheumatoid factor (RF), antibodies to citrullinated peptide antigens (ACPA), citrullinated peptides (anti-CCP), and anti-type II collagen (anti-CII). Both RF and ACPA are well-validated and predictive markers of severe erosive RA, but cannot be linked to pathogenesis. By contrast, in various animal species immunized with CII there occurs an erosive inflammatory arthritis resembling that seen in human RA, together with antibodies to CII with an epitope specificity similar to that in RA. We discuss the well-known role of immune complexes in the induction of inflammation within the joint, and present recent data showing, additionally, that antibodies to CII cause direct damage to cartilage in vitro. The close resemblances between human RA and collagen-induced arthritis in animals suggest that autoimmunity, and particularly autoantibodies to CII, are important for both the initiation and perpetuation of RA in a dual manner: as contributors to the inflammation associated with immune complex deposition, and as agents with direct degradative effects on cartilage integrity and its repair.
Collapse
Affiliation(s)
- Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.
| | | | | |
Collapse
|
96
|
Stoop R, Albrecht D, Gaissmaier C, Fritz J, Felka T, Rudert M, Aicher WK. Comparison of marker gene expression in chondrocytes from patients receiving autologous chondrocyte transplantation versus osteoarthritis patients. Arthritis Res Ther 2008; 9:R60. [PMID: 17596264 PMCID: PMC2206334 DOI: 10.1186/ar2218] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 04/23/2007] [Accepted: 06/27/2007] [Indexed: 11/30/2022] Open
Abstract
Currently, autologous chondrocyte transplantation (ACT) is used to treat traumatic cartilage damage or osteochondrosis dissecans, but not degenerative arthritis. Since substantial refinements in the isolation, expansion and transplantation of chondrocytes have been made in recent years, the treatment of early stage osteoarthritic lesions using ACT might now be feasible. In this study, we determined the gene expression patterns of osteoarthritic (OA) chondrocytes ex vivo after primary culture and subculture and compared these with healthy chondrocytes ex vivo and with articular chondrocytes expanded for treatment of patients by ACT. Gene expression profiles were determined using quantitative RT-PCR for type I, II and X collagen, aggrecan, IL-1β and activin-like kinase-1. Furthermore, we tested the capability of osteoarthritic chondrocytes to generate hyaline-like cartilage by implanting chondrocyte-seeded collagen scaffolds into immunodeficient (SCID) mice. OA chondrocytes ex vivo showed highly elevated levels of IL-1β mRNA, but type I and II collagen levels were comparable to those of healthy chondrocytes. After primary culture, IL-1β levels decreased to baseline levels, while the type II and type I collagen mRNA levels matched those found in chondrocytes used for ACT. OA chondrocytes generated type II collagen and proteoglycan-rich cartilage transplants in SCID mice. We conclude that after expansion under suitable conditions, the cartilage of OA patients contains cells that are not significantly different from those from healthy donors prepared for ACT. OA chondrocytes are also capable of producing a cartilage-like tissue in the in vivo SCID mouse model. Thus, such chondrocytes seem to fulfil the prerequisites for use in ACT treatment.
Collapse
Affiliation(s)
- Reinout Stoop
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße, 72770 Reutlingen, Germany
| | - Dirk Albrecht
- BG Center for Traumatology, Schnarrenbergstraße, 72076 Tübingen, Germany
| | | | - Jürgen Fritz
- BG Center for Traumatology, Schnarrenbergstraße, 72076 Tübingen, Germany
| | - Tino Felka
- Center for Medical Research, Department of Orthopaedic Surgery, University of Tübingen, Waldhörnlestraße, 72072 Tübingen, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, Technische Universität München, Ismaninger Str., 81675 Munich, Germany
| | - Wilhelm K Aicher
- Center for Medical Research, Department of Orthopaedic Surgery, University of Tübingen, Waldhörnlestraße, 72072 Tübingen, Germany
| |
Collapse
|
97
|
Nandakumar KS, Johansson BP, Björck L, Holmdahl R. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. ACTA ACUST UNITED AC 2007; 56:3253-60. [PMID: 17907170 DOI: 10.1002/art.22930] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate whether IgG-degrading enzyme of Streptococcus pyogenes (IdeS), a bacterial cysteine endopeptidase that cleaves human IgG in the hinge region, can be used for blocking the development of arthritis. METHODS Recombinant IdeS was purified and tested for specificity against mouse IgG. IdeS was injected intravenously into mice with collagen antibody-induced arthritis (CAIA), collagen-induced arthritis (CIA), or relapsing CIA, and its effects on arthritis development and severity were assessed. RESULTS IdeS efficiently cleaved mouse IgG2a/c and IgG3 in vitro. Even at low dosage (10 microg), IdeS specifically cleaved IgG2a in vivo without any apparent side effects. IdeS treatment efficiently blocked CAIA induced by IgG2a antibodies. No effect was observed when arthritis was induced with IgG2b anti-type II collagen antibodies; since IdeS does not cleave IgG2b, this indicated that IgG cleavage was the mechanism of action. IdeS treatment reduced the severity of arthritis if administered within 24 hours after the onset of clinical arthritis, but did not block ongoing severe arthritis. IdeS treatment also significantly prevented an antibody-induced relapse in mice that had chronic arthritis, and delayed the onset and reduced the severity of arthritis in classic CIA. CONCLUSION IdeS has therapeutic potential in IgG antibody-mediated autoimmune arthritis, representing a new and unique means of blocking pathogenic antibodies.
Collapse
|
98
|
Ishizuka Y, Moriwaki S, Kawahara-Hanaoka M, Uemura Y, Serizawa I, Miyauchi M, Shibata S, Kanaya T, Takata T, Taniguchi N, Niida S. Treatment with anti-gamma-glutamyl transpeptidase antibody attenuates osteolysis in collagen-induced arthritis mice. J Bone Miner Res 2007; 22:1933-42. [PMID: 17680722 DOI: 10.1359/jbmr.070726] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The effectiveness of a new antibody treatment on arthritis-associated osteolysis was studied by using CIA mice. GGT, a newly identified bone-resorbing factor, was upregulated in arthritic joints. We generated monoclonal antibodies against GGT and injected them into CIA mice. Mice treated with antibodies showed a reduction in osteoclast number and bone erosion. INTRODUCTION Gamma-glutamyl transpeptidase (GGT) acts as a bone-resorbing factor that stimulates osteoclast formation. GGT expression has been detected in active lymphocytes that accumulate at inflammation sites, such as rheumatoid arthritis (RA). We hypothesize that GGT is an effective target for suppression of arthritis-related osteoclastogenesis and joint destruction. Here, we describe the therapeutic effect of neutralizing antibodies against GGT on joint destruction using a collagen-induced arthritis (CIA) mouse model. MATERIALS AND METHODS GGT expression in the synovium of RA patients and CIA mice was determined by immunohistochemistry and RT-PCR. Monoclonal antibodies were generated against recombinant human GGT (GGT-mAbs) using BALB/c mice. Antibody treatment was performed by intraperitoneal injections of GGT-mAbs into CIA mice. Effects of antibody treatment on arthritis and bone erosion were evaluated by incidence score, arthritis score, and histopathological observations. The role of GGT in osteoclast development was examined by using the established osteoclastogenic culture system. RESULTS GGT expression was significantly upregulated in inflamed synovium. Immunohistochemistry revealed that GGT was present in lymphocytes, plasma cells, and macrophages, as well as capillaries. Injection of GGT-mAbs significantly decreased the number of osteoclasts and attenuated the severity of joint destruction in CIA mice. In vitro examination showed that GGT enhanced RANKL-dependent osteoclast formation. GGT stimulated the expression of RANKL in osteoblasts and its receptor RANK in osteoclast precursors, respectively. CONCLUSIONS This study indicates that inflamed synovial tissue-derived GGT acts as a risk factor for joint destruction and that the antibody-mediated inhibition of GGT significantly decreases osteoclast number and bone erosion in CIA mice. GGT antagonists might be novel therapeutic agents for attenuating joint destruction in RA patients.
Collapse
|
99
|
Nandakumar KS, Collin M, Olsén A, Nimmerjahn F, Blom AM, Ravetch JV, Holmdahl R. Endoglycosidase treatment abrogates IgG arthritogenicity: Importance of IgG glycosylation in arthritis. Eur J Immunol 2007; 37:2973-82. [PMID: 17899548 DOI: 10.1002/eji.200737581] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glycosylation status of IgG has been implicated in the pathology of rheumatoid arthritis. Earlier, we reported the identification of a novel secreted endo-beta-N-acetylglucosaminidase (EndoS), secreted by Streptococcus pyogenes that specifically hydrolyzes the beta-1,4-di-N-acetylchitobiose core of the asparagine-linked glycan of human IgG. Here, we analyzed the arthritogenicity of EndoS-treated collagen type II (CII)-specific mouse mAb in vivo. Endoglycosidase treatment of the antibodies inhibited the induction of arthritis in (BALB/c x B10.Q) F1 mice and induced a milder arthritis in B10.RIII mice as compared with the severe arthritis induced by non-treated antibodies. Furthermore, EndoS treatment did not affect the binding of IgG to CII and their ability to activate complement, but it resulted in reduced IgG binding to FcgammaR and disturbed the formation of stable immune complexes. Hence, the asparagine-linked glycan on IgG plays a crucial role in the development of arthritis.
Collapse
|
100
|
Hultqvist M, Bäcklund J, Bauer K, Gelderman KA, Holmdahl R. Lack of Reactive Oxygen Species Breaks T Cell Tolerance to Collagen Type II and Allows Development of Arthritis in Mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:1431-7. [PMID: 17641008 DOI: 10.4049/jimmunol.179.3.1431] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The view on reactive oxygen species (ROS) in inflammation is currently shifting from being considered damaging toward having a more complex role in regulating inflammatory reactions. We recently demonstrated a role of ROS in regulation of animal models for the autoimmune disease rheumatoid arthritis. Low levels of ROS production, due to a mutation in the Ncf1 gene coding for the Ncf1 (alias p47(phox)) subunit of the NADPH oxidase complex, was shown to be associated with increased autoimmunity and arthritis severity in both rats and mice. To further investigate the role of ROS in autoimmunity, we studied transgenic mice expressing collagen type II (CII) with a mutation (D266E) in the immunodominant epitope that mimics the rat and human CII (i.e., mutated mouse collagen or MMC). This mutation results in a stronger binding of the epitope to the MHC class II molecule and leads to more pronounced tolerance and resistance to arthritis induced with rat CII. When the Ncf1 mutation was bred into these mice, tolerance was broken, resulting in enhanced T cell autoreactivity, high titers of anti-CII Abs, and development of severe arthritis. These findings highlight the importance of a sufficient ROS production in maintenance of tolerance to self-Ags, a central mechanism in autoimmune diseases such as rheumatoid arthritis. This is important as we, for the first time, can follow the effect of ROS on molecular mechanisms where T cells are responsible for either protection or promotion of arthritis depending on the level of oxygen species produced.
Collapse
Affiliation(s)
- Malin Hultqvist
- Section for Medical Inflammation Research, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|