51
|
Dauda SE, Collins JA, Byl JAW, Lu Y, Yalowich JC, Mitton-Fry MJ, Osheroff N. Actions of a Novel Bacterial Topoisomerase Inhibitor against Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enhancement of Double-Stranded DNA Breaks. Int J Mol Sci 2023; 24:12107. [PMID: 37569485 PMCID: PMC10419083 DOI: 10.3390/ijms241512107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an emerging class of antibacterials that target gyrase and topoisomerase IV. A hallmark of NBTIs is their ability to induce gyrase/topoisomerase IV-mediated single-stranded DNA breaks and suppress the generation of double-stranded breaks. However, a previous study reported that some dioxane-linked amide NBTIs induced double-stranded DNA breaks mediated by Staphylococcus aureus gyrase. To further explore the ability of this NBTI subclass to increase double-stranded DNA breaks, we examined the effects of OSUAB-185 on DNA cleavage mediated by Neisseria gonorrhoeae gyrase and topoisomerase IV. OSUAB-185 induced single-stranded and suppressed double-stranded DNA breaks mediated by N. gonorrhoeae gyrase. However, the compound stabilized both single- and double-stranded DNA breaks mediated by topoisomerase IV. The induction of double-stranded breaks does not appear to correlate with the binding of a second OSUAB-185 molecule and extends to fluoroquinolone-resistant N. gonorrhoeae topoisomerase IV, as well as type II enzymes from other bacteria and humans. The double-stranded DNA cleavage activity of OSUAB-185 and other dioxane-linked NBTIs represents a paradigm shift in a hallmark characteristic of NBTIs and suggests that some members of this subclass may have alternative binding motifs in the cleavage complex.
Collapse
Affiliation(s)
- Soziema E. Dauda
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W. Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C. Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 42310, USA
| | - Mark J. Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
52
|
Pavlin M, Herlah B, Valjavec K, Perdih A. Unveiling the interdomain dynamics of type II DNA topoisomerase through all-atom simulations: Implications for understanding its catalytic cycle. Comput Struct Biotechnol J 2023; 21:3746-3759. [PMID: 37602233 PMCID: PMC10436251 DOI: 10.1016/j.csbj.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Type IIA DNA topoisomerases are complex molecular nanomachines that manage topological states of the DNA molecule in the cell and play a crucial role in cellular processes such as cell division and transcription. They are also established targets of cancer chemotherapy. Starting from the available crystal structure of a fully catalytic topoisomerase IIA homodimer from Saccharomyces cerevisiae, we constructed three states of this molecular motor primarily changing the configurations of the DNA segment bound in the DNA gate and performed μs-long all-atom molecular simulations. A comprehensive analysis revealed a sliding motion within the DNA gate and a teamwork between the N-gate and DNA gate that may be associated with the necessary molecular events that allow passage of the T-segment of DNA. The observed movement of the ATPase dimer relative to the DNA domain was reflected in different interaction patterns between the K-loops of the transducer domain and the B-A-B form of the bound DNA. Based on the obtained results, we mapped simulated configurations to the structures in the proposed catalytic cycle through which type IIA topoisomerases exert their function and discussed the possible transition events. The results extend our understanding of the mechanism of action of type IIA topoisomerases and provide an atomistic interpretation of some of the observed features of these molecular motors.
Collapse
Affiliation(s)
- Matic Pavlin
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Barbara Herlah
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Katja Valjavec
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
53
|
Jian JY, Osheroff N. Telling Your Right Hand from Your Left: The Effects of DNA Supercoil Handedness on the Actions of Type II Topoisomerases. Int J Mol Sci 2023; 24:11199. [PMID: 37446377 PMCID: PMC10342825 DOI: 10.3390/ijms241311199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Type II topoisomerases are essential enzymes that modulate the topological state of DNA supercoiling in all living organisms. These enzymes alter DNA topology by performing double-stranded passage reactions on over- or underwound DNA substrates. This strand passage reaction generates a transient covalent enzyme-cleaved DNA structure known as the cleavage complex. Al-though the cleavage complex is a requisite catalytic intermediate, it is also intrinsically dangerous to genomic stability in biological systems. The potential threat of type II topoisomerase function can also vary based on the nature of the supercoiled DNA substrate. During essential processes such as DNA replication and transcription, cleavage complex formation can be inherently more dangerous on overwound versus underwound DNA substrates. As such, it is important to understand the profound effects that DNA topology can have on the cellular functions of type II topoisomerases. This review will provide a broad assessment of how human and bacterial type II topoisomerases recognize and act on their substrates of various topological states.
Collapse
Affiliation(s)
- Jeffrey Y. Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
54
|
Lomov NA, Viushkov VS, Rubtsov MA. Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:892-911. [PMID: 37751862 DOI: 10.1134/s0006297923070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/28/2023]
Abstract
Leukemia is a blood cancer originating in the blood and bone marrow. Therapy-related leukemia is associated with prior chemotherapy. Although cancer therapy with DNA topoisomerase II inhibitors is one of the most effective cancer treatments, its side effects include development of secondary leukemia characterized by the chromosomal rearrangements affecting AML1 or MLL genes. Recurrent chromosomal translocations in the therapy-related leukemia differ from chromosomal rearrangements associated with other neoplasias. Here, we reviewed the factors that drive chromosomal translocations induced by cancer treatment with DNA topoisomerase II inhibitors, such as mobility of ends of double-strand DNA breaks formed before the translocation and gain of function of fusion proteins generated as a result of translocation.
Collapse
Affiliation(s)
- Nikolai A Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Vladimir S Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| |
Collapse
|
55
|
Bartas M, Slychko K, Červeň J, Pečinka P, Arndt-Jovin DJ, Jovin TM. Extensive Bioinformatics Analyses Reveal a Phylogenetically Conserved Winged Helix (WH) Domain (Zτ) of Topoisomerase IIα, Elucidating Its Very High Affinity for Left-Handed Z-DNA and Suggesting Novel Putative Functions. Int J Mol Sci 2023; 24:10740. [PMID: 37445918 DOI: 10.3390/ijms241310740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The dynamic processes operating on genomic DNA, such as gene expression and cellular division, lead inexorably to topological challenges in the form of entanglements, catenanes, knots, "bubbles", R-loops, and other outcomes of supercoiling and helical disruption. The resolution of toxic topological stress is the function attributed to DNA topoisomerases. A prominent example is the negative supercoiling (nsc) trailing processive enzymes such as DNA and RNA polymerases. The multiple equilibrium states that nscDNA can adopt by redistribution of helical twist and writhe include the left-handed double-helical conformation known as Z-DNA. Thirty years ago, one of our labs isolated a protein from Drosophila cells and embryos with a 100-fold greater affinity for Z-DNA than for B-DNA, and identified it as topoisomerase II (gene Top2, orthologous to the human UniProt proteins TOP2A and TOP2B). GTP increased the affinity and selectivity for Z-DNA even further and also led to inhibition of the isomerase enzymatic activity. An allosteric mechanism was proposed, in which topoII acts as a Z-DNA-binding protein (ZBP) to stabilize given states of topological (sub)domains and associated multiprotein complexes. We have now explored this possibility by comprehensive bioinformatic analyses of the available protein sequences of topoII representing organisms covering the whole tree of life. Multiple alignment of these sequences revealed an extremely high level of evolutionary conservation, including a winged-helix protein segment, here denoted as Zτ, constituting the putative structural homolog of Zα, the canonical Z-DNA/Z-RNA binding domain previously identified in the interferon-inducible RNA Adenosine-to-Inosine-editing deaminase, ADAR1p150. In contrast to Zα, which is separate from the protein segment responsible for catalysis, Zτ encompasses the active site tyrosine of topoII; a GTP-binding site and a GxxG sequence motif are in close proximity. Quantitative Zτ-Zα similarity comparisons and molecular docking with interaction scoring further supported the "B-Z-topoII hypothesis" and has led to an expanded mechanism for topoII function incorporating the recognition of Z-DNA segments ("Z-flipons") as an inherent and essential element. We further propose that the two Zτ domains of the topoII homodimer exhibit a single-turnover "conformase" activity on given G(ate) B-DNA segments ("Z-flipins"), inducing their transition to the left-handed Z-conformation. Inasmuch as the topoII-Z-DNA complexes are isomerase inactive, we infer that they fulfill important structural roles in key processes such as mitosis. Topoisomerases are preeminent targets of anti-cancer drug discovery, and we anticipate that detailed elucidation of their structural-functional interactions with Z-DNA and GTP will facilitate the design of novel, more potent and selective anti-cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Kristyna Slychko
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Petr Pečinka
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Donna J Arndt-Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Thomas M Jovin
- Emeritus Laboratory of Cellular Dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
56
|
Mhaindarkar VP, Rasche R, Kümmel D, Rudolph MG, Klostermeier D. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain. Acta Crystallogr D Struct Biol 2023; 79:498-507. [PMID: 37204816 PMCID: PMC10233626 DOI: 10.1107/s2059798323002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 05/20/2023] Open
Abstract
Reverse gyrase is the only topoisomerase that introduces positive supercoils into DNA in an ATP-dependent reaction. Positive DNA supercoiling becomes possible through the functional cooperation of the N-terminal helicase domain of reverse gyrase with its C-terminal type IA topoisomerase domain. This cooperation is mediated by a reverse-gyrase-specific insertion into the helicase domain termed the `latch'. The latch consists of a globular domain inserted at the top of a β-bulge loop that connects this globular part to the helicase domain. While the globular domain shows little conservation in sequence and length and is dispensable for DNA supercoiling, the β-bulge loop is required for supercoiling activity. It has previously been shown that the β-bulge loop constitutes a minimal latch that couples ATP-dependent processes in the helicase domain to DNA processing by the topoisomerase domain. Here, the crystal structure of Thermotoga maritima reverse gyrase with such a β-bulge loop as a minimal latch is reported. It is shown that the β-bulge loop supports ATP-dependent DNA supercoiling of reverse gyrase without engaging in specific interactions with the topoisomerase domain. When only a small latch or no latch is present, a helix in the nearby helicase domain of T. maritima reverse gyrase partially unfolds. Comparison of the sequences and predicted structures of latch regions in other reverse gyrases shows that neither sequence nor structure are decisive factors for latch functionality; instead, the decisive factors are likely to be electrostatics and plain steric bulk.
Collapse
Affiliation(s)
- Vaibhav P. Mhaindarkar
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| | - René Rasche
- Institute for Biochemistry, University of Muenster, Corrensstrasse 36, 48149 Muenster, Germany
| | - Daniel Kümmel
- Institute for Biochemistry, University of Muenster, Corrensstrasse 36, 48149 Muenster, Germany
| | - Markus G. Rudolph
- Pharma Research and Early Development, Molecular Design and Chemical Biology, Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dagmar Klostermeier
- Institute for Physical Chemistry, University of Muenster, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
57
|
Jian JY, McCarty KD, Byl J, Guengerich FP, Neuman K, Osheroff N. Basis for the discrimination of supercoil handedness during DNA cleavage by human and bacterial type II topoisomerases. Nucleic Acids Res 2023; 51:3888-3902. [PMID: 36999602 PMCID: PMC10164583 DOI: 10.1093/nar/gkad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
To perform double-stranded DNA passage, type II topoisomerases generate a covalent enzyme-cleaved DNA complex (i.e. cleavage complex). Although this complex is a requisite enzyme intermediate, it is also intrinsically dangerous to genomic stability. Consequently, cleavage complexes are the targets for several clinically relevant anticancer and antibacterial drugs. Human topoisomerase IIα and IIβ and bacterial gyrase maintain higher levels of cleavage complexes with negatively supercoiled over positively supercoiled DNA substrates. Conversely, bacterial topoisomerase IV is less able to distinguish DNA supercoil handedness. Despite the importance of supercoil geometry to the activities of type II topoisomerases, the basis for supercoil handedness recognition during DNA cleavage has not been characterized. Based on the results of benchtop and rapid-quench flow kinetics experiments, the forward rate of cleavage is the determining factor of how topoisomerase IIα/IIβ, gyrase and topoisomerase IV distinguish supercoil handedness in the absence or presence of anticancer/antibacterial drugs. In the presence of drugs, this ability can be enhanced by the formation of more stable cleavage complexes with negatively supercoiled DNA. Finally, rates of enzyme-mediated DNA ligation do not contribute to the recognition of DNA supercoil geometry during cleavage. Our results provide greater insight into how type II topoisomerases recognize their DNA substrates.
Collapse
Affiliation(s)
- Jeffrey Y Jian
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
58
|
Brochu J, Vlachos-Breton É, Irsenco D, Drolet M. Characterization of a pathway of genomic instability induced by R-loops and its regulation by topoisomerases in E. coli. PLoS Genet 2023; 19:e1010754. [PMID: 37141391 DOI: 10.1371/journal.pgen.1010754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The prototype enzymes of the ubiquitous type IA topoisomerases (topos) family are Escherichia coli topo I (topA) and topo III (topB). Topo I shows preference for relaxation of negative supercoiling and topo III for decatenation. However, as they could act as backups for each other or even share functions, strains lacking both enzymes must be used to reveal the roles of type IA enzymes in genome maintenance. Recently, marker frequency analysis (MFA) of genomic DNA from topA topB null mutants revealed a major RNase HI-sensitive DNA peak bordered by Ter/Tus barriers, sites of replication fork fusion and termination in the chromosome terminus region (Ter). Here, flow cytometry for R-loop-dependent replication (RLDR), MFA, R-loop detection with S9.6 antibodies, and microscopy were used to further characterize the mechanism and consequences of over-replication in Ter. It is shown that the Ter peak is not due to the presence of a strong origin for RLDR in Ter region; instead RLDR, which is partly inhibited by the backtracking-resistant rpoB*35 mutation, appears to contribute indirectly to Ter over-replication. The data suggest that RLDR from multiple sites on the chromosome increases the number of replication forks trapped at Ter/Tus barriers which leads to RecA-dependent DNA amplification in Ter and to a chromosome segregation defect. Overproducing topo IV, the main cellular decatenase, does not inhibit RLDR or Ter over-replication but corrects the chromosome segregation defect. Furthermore, our data suggest that the inhibition of RLDR by topo I does not require its C-terminal-mediated interaction with RNA polymerase. Overall, our data reveal a pathway of genomic instability triggered by R-loops and its regulation by various topos activities at different steps.
Collapse
Affiliation(s)
- Julien Brochu
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Émilie Vlachos-Breton
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Dina Irsenco
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| | - Marc Drolet
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
59
|
Le TT, Wu M, Lee JH, Bhatt N, Inman JT, Berger JM, Wang MD. Etoposide promotes DNA loop trapping and barrier formation by topoisomerase II. Nat Chem Biol 2023; 19:641-650. [PMID: 36717711 PMCID: PMC10154222 DOI: 10.1038/s41589-022-01235-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023]
Abstract
Etoposide is a broadly employed chemotherapeutic and eukaryotic topoisomerase II poison that stabilizes cleaved DNA intermediates to promote DNA breakage and cytotoxicity. How etoposide perturbs topoisomerase dynamics is not known. Here we investigated the action of etoposide on yeast topoisomerase II, human topoisomerase IIα and human topoisomerase IIβ using several sensitive single-molecule detection methods. Unexpectedly, we found that etoposide induces topoisomerase to trap DNA loops, compacting DNA and restructuring DNA topology. Loop trapping occurs after ATP hydrolysis but before strand ejection from the enzyme. Although etoposide decreases the innate stability of topoisomerase dimers, it increases the ability of the enzyme to act as a stable roadblock. Interestingly, the three topoisomerases show similar etoposide-mediated resistance to dimer separation and sliding along DNA but different abilities to compact DNA and chirally relax DNA supercoils. These data provide unique mechanistic insights into the functional consequences of etoposide on topoisomerase II dynamics.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Meiling Wu
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neti Bhatt
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Department of Physics and LASSP, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
60
|
Durcik M, Cotman AE, Toplak Ž, Možina Š, Skok Ž, Szili PE, Czikkely M, Maharramov E, Vu TH, Piras MV, Zidar N, Ilaš J, Zega A, Trontelj J, Pardo LA, Hughes D, Huseby D, Berruga-Fernández T, Cao S, Simoff I, Svensson R, Korol SV, Jin Z, Vicente F, Ramos MC, Mundy JEA, Maxwell A, Stevenson CEM, Lawson DM, Glinghammar B, Sjöström E, Bohlin M, Oreskär J, Alvér S, Janssen GV, Sterk GJ, Kikelj D, Pal C, Tomašič T, Peterlin Mašič L. New Dual Inhibitors of Bacterial Topoisomerases with Broad-Spectrum Antibacterial Activity and In Vivo Efficacy against Vancomycin-Intermediate Staphylococcus aureus. J Med Chem 2023; 66:3968-3994. [PMID: 36877255 PMCID: PMC10041525 DOI: 10.1021/acs.jmedchem.2c01905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/07/2023]
Abstract
A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 μg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 μg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.
Collapse
Affiliation(s)
- Martina Durcik
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Andrej Emanuel Cotman
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žan Toplak
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Štefan Možina
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Žiga Skok
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Petra Eva Szili
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Márton Czikkely
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Elvin Maharramov
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Thu Hien Vu
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Maria Vittoria Piras
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Janez Ilaš
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Anamarija Zega
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Jurij Trontelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Luis A. Pardo
- Max
Planck Institute for Multidisciplinary Sciences, Oncophysiology, Hermann-Rein-Str. 3, Göttingen 37075, Germany
| | - Diarmaid Hughes
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Douglas Huseby
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Tália Berruga-Fernández
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sha Cao
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Ivailo Simoff
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Richard Svensson
- Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP) Department
of Pharmacy, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Sergiy V. Korol
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Zhe Jin
- Department
of Medical Cell Biology, Uppsala University, Husargatan 3, Uppsala 75123, Sweden
| | - Francisca Vicente
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Maria C. Ramos
- Fundación
Medina, Avenida del Conocimiento
34, Parque Tecnológico Ciencias de la Salud, Granada 18016, Spain
| | - Julia E. A. Mundy
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Anthony Maxwell
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Clare E. M. Stevenson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - David M. Lawson
- Department
of Biochemistry and Metabolism, John Innes
Centre, Norwich Research Park, Norwich NR4 7UH, U.K.
| | - Björn Glinghammar
- Department
of Chemical and Pharmaceutical Toxicology, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Eva Sjöström
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Martin Bohlin
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Joanna Oreskär
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Sofie Alvér
- Department
of Chemical Processes and Pharmaceutical Development, RISE Research Institutes of Sweden, Södertälje 15136, Sweden
| | - Guido V. Janssen
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Geert Jan Sterk
- Medicinal Chemistry Division, Vrije Universiteit
Amsterdam, De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Danijel Kikelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Csaba Pal
- Synthetic
and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged H-6726, Hungary
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Lucija Peterlin Mašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| |
Collapse
|
61
|
Gielecińska A, Kciuk M, Mujwar S, Celik I, Kołat D, Kałuzińska-Kołat Ż, Kontek R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023; 12:986. [PMID: 37048059 PMCID: PMC10092955 DOI: 10.3390/cells12070986] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Continuous monitoring of the population's health is the main method of learning about disease prevalence. National and international data draw attention to the persistently high rates of cancer incidence. This necessitates the intensification of efforts aimed at developing new, more effective chemotherapeutic and chemopreventive drugs. Plants represent an invaluable source of natural substances with versatile medicinal properties. Multidirectional activities exhibited by natural substances and their ability to modulate key signaling pathways, mainly related to cancer cell death, make these substances an important research direction. This review summarizes the information regarding plant-derived chemotherapeutic drugs, including their mechanisms of action, with a special focus on selected anti-cancer drugs (paclitaxel, irinotecan) approved in clinical practice. It also presents promising plant-based drug candidates currently being tested in clinical and preclinical trials (betulinic acid, resveratrol, and roburic acid).
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
62
|
Vidmar V, Vayssières M, Lamour V. What's on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases. Int J Mol Sci 2023; 24:ijms24043986. [PMID: 36835394 PMCID: PMC9960139 DOI: 10.3390/ijms24043986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.
Collapse
Affiliation(s)
- Vita Vidmar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Marlène Vayssières
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
| | - Valérie Lamour
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR 7104, Inserm U 1258, 67400 Illkirch, France
- Hôpitaux Universitaires de Strasbourg, 67098 Strasbourg, France
- Correspondence:
| |
Collapse
|
63
|
Matias-Barrios VM, Dong X. The Implication of Topoisomerase II Inhibitors in Synthetic Lethality for Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:94. [PMID: 36678591 PMCID: PMC9866718 DOI: 10.3390/ph16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
DNA topoisomerase II (Top2) is essential for all eukaryotic cells in the regulation of DNA topology through the generation of temporary double-strand breaks. Cancer cells acquire enhanced Top2 functions to cope with the stress generated by transcription and DNA replication during rapid cell division since cancer driver genes such as Myc and EZH2 hijack Top2 in order to realize their oncogenic transcriptomes for cell growth and tumor progression. Inhibitors of Top2 are therefore designed to target Top2 to trap it on DNA, subsequently causing protein-linked DNA breaks, a halt to the cell cycle, and ultimately cell death. Despite the effectiveness of these inhibitors, cancer cells can develop resistance to them, thereby limiting their therapeutic utility. To maximize the therapeutic potential of Top2 inhibitors, combination therapies to co-target Top2 with DNA damage repair (DDR) machinery and oncogenic pathways have been proposed to induce synthetic lethality for more thorough tumor suppression. In this review, we will discuss the mode of action of Top2 inhibitors and their potential applications in cancer treatments.
Collapse
Affiliation(s)
- Victor M. Matias-Barrios
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
64
|
Singh BN, Achary VMM, Venkatapuram AK, Parmar H, Karippadakam S, Sopory SK, Reddy MK. Expression and functional analysis of various structural domains of tobacco topoisomerase II: To understand the mechanistic insights of plant type II topoisomerases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:302-314. [PMID: 36442361 DOI: 10.1016/j.plaphy.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In contrast to bacterial, yeast and animal systems, topoisomerases (topo) from plants have not been well studied. In this report, we generated four truncated topoisomerase II (Topo II) cDNA fragments encoding different functional domains of Nicotiana tabacum topo II (NtTopoII). Each of these recombinant polypeptides was expressed alone or in combination in temperature-sensitive topoisomerase II yeast mutants. Recombinant NtTopoII with truncated polypeptides fails to target the yeast nuclei and does not rescue the temperature-sensitive phenotype. In contrast complementation was achieved with the full-length NtTopoII, which localized to the yeast nucleus. These observations suggested the presence of a potent nuclear localization signal (NLS) in the extreme C-terminal 314 amino acid residues of NtTopoII that functioned effectively in the heterologous yeast system. Biochemical characterization of purified recombinant full-length and the partial NtTopoII polypeptides revealed that the ATP-binding and hydrolysis region of NtTopoIIwas located at 413 amino acid N-terminal region and this ATPase domain is functional both when it is expressed as a separate polypeptide or as part of the holoenzyme. The present findings also revealed that all NtTopoII truncated polypeptides were detrimental for in vitro supercoiled DNA relaxation and/or DNA nicking and ligation activity. Further, we discuss the possible disruption of coordinated macromolecular interface movements and the dimer interactions in truncated NtTopoII that are required for functional topoisomerase activity.
Collapse
Affiliation(s)
- Badri Nath Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Ajay Kumar Venkatapuram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Hemangini Parmar
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sangeetha Karippadakam
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sudhir Kumar Sopory
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| |
Collapse
|
65
|
Dorman CJ. Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Mol Microbiol 2023; 119:19-28. [PMID: 36565252 PMCID: PMC10108321 DOI: 10.1111/mmi.15014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
66
|
An In-Silico Evaluation of Anthraquinones as Potential Inhibitors of DNA Gyrase B of Mycobacterium tuberculosis. Microorganisms 2022; 10:microorganisms10122434. [PMID: 36557686 PMCID: PMC9783175 DOI: 10.3390/microorganisms10122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization reported that tuberculosis remains on the list of the top ten threats to public health worldwide. Among the main causes is the limited effectiveness of treatments due to the emergence of resistant strains of Mycobacterium tuberculosis. One of the main drug targets studied to combat M. tuberculosis is DNA gyrase, the only enzyme responsible for regulating DNA topology in this specie and considered essential in all bacteria. In this context, the present work tested the ability of 2824 anthraquinones retrieved from the PubChem database to act as competitive inhibitors through interaction with the ATP-binding pocket of DNA gyrase B of M. tuberculosis. Virtual screening results based on molecular docking identified 7122772 (N-(2-hydroxyethyl)-9,10-dioxoanthracene-2-sulfonamide) as the best-scored ligand. From this anthraquinone, a new derivative was designed harbouring an aminotriazole moiety, which exhibited higher binding energy calculated by molecular docking scoring and free energy calculation from molecular dynamics simulations. In addition, in these last analyses, this ligand showed to be stable in complex with the enzyme and further predictions indicated a low probability of cytotoxic and off-target effects, as well as an acceptable pharmacokinetic profile. Taken together, the presented results show a new synthetically accessible anthraquinone with promising potential to inhibit the GyrB of M. tuberculosis.
Collapse
|
67
|
Garcia PK, Martinez Borrero R, Annamalai T, Diaz E, Balarezo S, Tiwari PB, Tse-Dinh YC. Localization of Mycobacterium tuberculosis topoisomerase I C-terminal sequence motif required for inhibition by endogenous toxin MazF4. Front Microbiol 2022; 13:1032320. [PMID: 36545199 PMCID: PMC9760754 DOI: 10.3389/fmicb.2022.1032320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/08/2022] Open
Abstract
Only about half the multi-drug resistant tuberculosis (MDR-TB) cases are successfully cured. Thus, there is an urgent need of new TB treatment against a novel target. Mycobacterium tuberculosis (Mtb) topoisomerase I (TopA) is the only type IA topoisomerase in this organism and has been validated as an essential target for TB drug discovery. Toxin-antitoxin (TA) systems participate as gene regulators within bacteria. The TA systems contribute to the long-term dormancy of Mtb within the host-cell environment. Mtb's toxin MazF4 (Rv1495) that is part of the MazEF4 TA system has been shown to have dual activities as endoribonuclease and topoisomerase I inhibitor. We have developed a complementary assay using an Escherichia coli strain with temperature-sensitive topA mutation to provide new insights into the MazF4 action. The assay showed that E. coli is not sensitive to the endoribonuclease activity of Mtb MazF4 but became vulnerable to MazF4 growth inhibition when recombinant Mtb TopA relaxation activity is required for growth. Results from the complementation by Mtb TopA mutants with C-terminal deletions showed that the lysine-rich C-terminal tail is required for interaction with MazF4. Site-directed mutagenesis is utilized to identify two lysine residues within a conserved motif in this C-terminal tail that are critical for MazF4 inhibition. We performed molecular dynamics simulations to predict the Mtb TopA-MazF4 complex. Our simulation results show that the complex is stabilized by hydrogen bonds and electrostatic interactions established by residues in the TopA C-terminal tail including the two conserved lysines. The mechanism of Mtb TopA inhibition by MazF4 could be useful for the discovery of novel inhibitors against a new antibacterial target in pathogenic mycobacteria for treatment of both TB and diseases caused by the non-tuberculosis mycobacteria (NTM).
Collapse
Affiliation(s)
- Pamela K. Garcia
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States
| | - Esnel Diaz
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Steve Balarezo
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States,Biomolecular Sciences Institute, Florida International University, Miami, FL, United States,*Correspondence: Yuk-Ching Tse-Dinh,
| |
Collapse
|
68
|
Kondaka K, Gabriel I. Targeting DNA Topoisomerase II in Antifungal Chemotherapy. Molecules 2022; 27:molecules27227768. [PMID: 36431868 PMCID: PMC9698242 DOI: 10.3390/molecules27227768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Topoisomerase inhibitors have been in use clinically for the treatment of several diseases for decades. Although those enzymes are significant molecular targets in antibacterial and anticancer chemotherapy very little is known about the possibilities to target fungal topoisomerase II (topo II). Raising concern for the fungal infections, lack of effective drugs and a phenomenon of multidrug resistance underlie a strong need to expand the range of therapeutic options. In this review paper, we discussed the usefulness of fungal topo II as a molecular target for new drug discovery. On the basis of previously published data, we described structural and biochemical differences between fungal and human enzymes as well as a molecular basis of differential sensitivity to known anticancer drugs targeting the latter. This review focuses especially on highlighting the differences that may underlie the selectivity of action of new inhibitors. Distinct sites within fungal topo II in comparison with human counterparts are observed and should be further studied to understand the significance of those sites and their possible usage in design of new drugs.
Collapse
Affiliation(s)
| | - Iwona Gabriel
- Correspondence: ; Tel.: +48-58-348-6078; Fax: +48-58-347-1144
| |
Collapse
|
69
|
Arjes HA, Gui H, Porter R, Atolia E, Peters JM, Gross C, Kearns DB, Huang KC. Fatty Acid Synthesis Knockdown Promotes Biofilm Wrinkling and Inhibits Sporulation in Bacillus subtilis. mBio 2022; 13:e0138822. [PMID: 36069446 PMCID: PMC9600695 DOI: 10.1128/mbio.01388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development.
Collapse
Affiliation(s)
- Heidi A. Arjes
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Haiwen Gui
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Rachel Porter
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| | - Esha Atolia
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Carol Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, USA
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
70
|
Sun Y, Soans E, Mishina M, Petricci E, Pommier Y, Nitiss KC, Nitiss JL. Requirements for MRN endonuclease processing of topoisomerase II-mediated DNA damage in mammalian cells. Front Mol Biosci 2022; 9:1007064. [PMID: 36213114 PMCID: PMC9537633 DOI: 10.3389/fmolb.2022.1007064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
During a normal topoisomerase II (TOP2) reaction, the enzyme forms a covalent enzyme DNA intermediate consisting of a 5′ phosphotyrosyl linkage between the enzyme and DNA. While the enzyme typically rejoins the transient breakage after strand passage, a variety of conditions including drugs targeting TOP2 can inhibit DNA resealing, leading to enzyme-mediated DNA damage. A critical aspect of the repair of TOP2-mediated damage is the removal of the TOP2 protein covalently bound to DNA. While proteolysis plays a role in repairing this damage, nucleolytic enzymes must remove the phosphotyrosyl-linked peptide bound to DNA. The MRN complex has been shown to participate in the removal of TOP2 protein from DNA following cellular treatment with TOP2 poisons. In this report we used an optimized ICE (In vivo Complex of Enzyme) assay to measure covalent TOP2/DNA complexes. In agreement with previous independent reports, we find that the absence or inhibition of the MRE11 endonuclease results in elevated levels of both TOP2α and TOP2β covalent complexes. We also examined levels of TOP2 covalent complexes in cells treated with the proteasome inhibitor MG132. Although MRE11 inhibition plus MG132 was not synergistic in etoposide-treated cells, ectopic overexpression of MRE11 resulted in removal of TOP2 even in the presence of MG132. We also found that VCP/p97 inhibition led to elevated TOP2 covalent complexes and prevented the removal of TOP2 covalent complexes by MRE11 overexpression. Our results demonstrate the existence of multiple pathways for proteolytic processing of TOP2 prior to nucleolytic processing, and that MRE11 can process TOP2 covalent complexes even when the proteasome is inhibited. The interactions between VCP/p97 and proteolytic processing of TOP2 covalent complexes merit additional investigation.
Collapse
Affiliation(s)
- Yilun Sun
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| | - Eroica Soans
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | - Margarita Mishina
- St. Jude Children’s Research Hospital Memphis, Memphis, TN, United States
| | | | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, IL, United States
- *Correspondence: Yilun Sun, ; John L. Nitiss,
| |
Collapse
|
71
|
Synthesis and Evaluation of Antiproliferative Activity, Topoisomerase IIα Inhibition, DNA Binding and Non-Clinical Toxicity of New Acridine-Thiosemicarbazone Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15091098. [PMID: 36145320 PMCID: PMC9506480 DOI: 10.3390/ph15091098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we report the synthesis of twenty new acridine–thiosemicarbazone derivatives and their antiproliferative activities. Mechanisms of action such as the inhibition of topoisomerase IIα and the interaction with DNA have been studied for some of the most active derivatives by means of both in silico and in vitro methods, and evaluations of the non-clinical toxicities (in vivo) in mice. In general, the compounds showed greater cytotoxicity against B16-F10 cells, with the highest potency for DL-08 (IC50 = 14.79 µM). Derivatives DL-01 (77%), DL-07 (74%) and DL-08 (79%) showed interesting inhibition of topoisomerase IIα when compared to amsacrine, at 100 µM. In silico studies proposed the way of bonding of these compounds and a possible stereoelectronic reason for the absence of enzymatic activity for CL-07 and DL-06. Interactions with DNA presented different spectroscopic effects and indicate that the compound CL-07 has higher affinity for DNA (Kb = 4.75 × 104 M−1; Ksv = 2.6 × 103 M−1). In addition, compounds selected for non-clinical toxicity testing did not show serious signs of toxicity at the dose of 2000 mg/kg in mice; cytotoxic tests performed on leukemic cells (K-562) and its resistant form (K-562 Lucena 1) identified moderate potency for DL-01 and DL-08, with IC50 between 11.45 and 17.32 µM.
Collapse
|
72
|
Kadri S, Direm A, Athmani H, El Bali B, Parlak C, Hebbachi R. Dual inhibition of S. aureus TyrRS and S. aureus gyrase by two 4-amino-4′-acetyldiphenyl sulfide-based Schiff bases: Structural features, DFT study, Hirshfeld surface analysis and molecular docking. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
73
|
Tsivileva OM, Koftin OV, Evseeva NV. Coumarins as Fungal Metabolites with Potential Medicinal Properties. Antibiotics (Basel) 2022; 11:1156. [PMID: 36139936 PMCID: PMC9495007 DOI: 10.3390/antibiotics11091156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.
Collapse
Affiliation(s)
- Olga M. Tsivileva
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Oleg V. Koftin
- Department of Biochemistry, V.I. Razumovsky Saratov State Medical University, 112 ul. Bol’shaya Kazach’ya, Saratov 410012, Russia
| | - Nina V. Evseeva
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
74
|
Activity of Tricyclic Pyrrolopyrimidine Gyrase B Inhibitor against Mycobacterium abscessus. Antimicrob Agents Chemother 2022; 66:e0066922. [PMID: 36005813 PMCID: PMC9487482 DOI: 10.1128/aac.00669-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tricyclic pyrrolopyrimidines (TPPs) are a new class of antibacterials inhibiting the ATPase of DNA gyrase. TPP8, a representative of this class, is active against Mycobacterium abscessus in vitro. Spontaneous TPP8 resistance mutations mapped to the ATPase domain of M. abscessus DNA gyrase, and the compound inhibited DNA supercoiling activity of recombinant M. abscessus enzyme. Further profiling of TPP8 in macrophage and mouse infection studies demonstrated proof-of-concept activity against M. abscessus ex vivo and in vivo.
Collapse
|
75
|
Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in E. coli. Nat Commun 2022; 13:4524. [PMID: 35927234 PMCID: PMC9352719 DOI: 10.1038/s41467-022-32106-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
Bacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, colocalization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched upstream (within up to 12-15 kb) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP:EcTopoI interaction by either overexpression of EcTopoI competitor (CTD or inactive EcTopoI Y319F mutant) or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, uncoupling of the RNAP:EcTopoI interaction leads to R-loops accumulation genome-wide, indicating that this interaction is required for prevention of R-loops formation. In E. coli, disruption of TopoI and RNAP interaction decreases cells viability and leads to hypernegative DNA supercoiling and R loops accumulation. TopoI and DNA gyrase bind around transcription units and TopoI recognizes cleavage sites by a specific motif and negative supercoiling.
Collapse
|
76
|
Chowdhury SR, Bhoumik A, Gupta VK, Majumder HK. Type II DNA Topoisomerases in trypanosomatid and apicomplexan parasites. Acta Trop 2022; 234:106613. [PMID: 35905776 DOI: 10.1016/j.actatropica.2022.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
Diseases caused by trypanosomatid parasites have no commercially available vaccines for human application. Treatment modalities completely rely on chemotherapeutics strategies that often exhibit clinical drawbacks, like host toxicity, side effects and treatment failure for drug resistance. These, in many instances, are costly, making them unaffordable for certain groups of beneficiaries. To find reasonable solutions, researchers are attempting to identify and validate new drug targets that would offer parasite specificity. DNA topoisomerases in parasites present a consolidated class of drug targets due to their multiple structural and functional differences with host homologs. Type II DNA topoisomerases in these parasites, in particular, have been attracting interest of scientific community attributable to their pivotal role in the replication of the atypical DNA. In this article, we present a detailed review of structural and functional features of type II DNA topoisomerases of clinically-relevant trypanosomatid and apicomplexan parasites. Also, we provide up-to-date information on different molecules that target these enzymes. Altogether, the review will largely help in understanding the rationale for exploiting type II DNA topoisomerases in these groups of parasites as drug targets.
Collapse
Affiliation(s)
- Somenath Roy Chowdhury
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Correnstrasse 28, 48149, Münster.
| | - Arpita Bhoumik
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700 032
| | - Vivek Kumar Gupta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032
| | - Hemanta K Majumder
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700 032
| |
Collapse
|
77
|
Villain P, Catchpole R, Forterre P, Oberto J, da Cunha V, Basta T. Expanded dataset reveals the emergence and evolution of DNA gyrase in Archaea. Mol Biol Evol 2022; 39:6639447. [PMID: 35811376 PMCID: PMC9348778 DOI: 10.1093/molbev/msac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA gyrase is a type II topoisomerase with the unique capacity to introduce negative supercoiling in DNA. In bacteria, DNA gyrase has an essential role in the homeostatic regulation of supercoiling. While ubiquitous in bacteria, DNA gyrase was previously reported to have a patchy distribution in Archaea but its emergent function and evolutionary history in this domain of life remains elusive. In this study, we used phylogenomic approaches and an up-to date sequence dataset to establish global and archaea-specific phylogenies of DNA gyrases. The most parsimonious evolutionary scenario infers that DNA gyrase was introduced into the lineage leading to Euryarchaeal group II via a single horizontal gene transfer from a bacterial donor which we identified as an ancestor of Gracilicutes and/or Terrabacteria. The archaea-focused trees indicate that DNA gyrase spread from Euryarchaeal group II to some DPANN and Asgard lineages via rare horizontal gene transfers. The analysis of successful recent transfers suggests a requirement for syntropic or symbiotic/parasitic relationship between donor and recipient organisms. We further show that the ubiquitous archaeal Topoisomerase VI may have co-evolved with DNA gyrase to allow the division of labor in the management of topological constraints. Collectively, our study reveals the evolutionary history of DNA gyrase in Archaea and provides testable hypotheses to understand the prerequisites for successful establishment of DNA gyrase in a naive archaeon and the associated adaptations in the management of topological constraints.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
78
|
A tale of topoisomerases and the knotty genetic material in the backdrop of Plasmodium biology. Biosci Rep 2022; 42:231351. [PMID: 35699968 PMCID: PMC9261774 DOI: 10.1042/bsr20212847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The untangling or overwinding of genetic material is an inevitable part of DNA
replication, repair, recombination, and transcription. Topoisomerases belong to
a conserved enzyme family that amends DNA topology during various processes of
DNA metabolism. To relax the genetic material, topoisomerases transiently break
the phosphodiester bond on one or both DNA strands and remain associated with
the cleavage site by forming a covalent enzyme–DNA intermediate. This
releases torsional stress and allows the broken DNA to be re-ligated by the
enzyme. The biological function of topoisomerases ranges from the separation of
sister chromatids following DNA replication to the aiding of chromosome
condensation and segregation during mitosis. Topoisomerases are also actively
involved in meiotic recombination. The unicellular apicomplexan parasite,
Plasmodium falciparum, harbors different topoisomerase
subtypes, some of which have substantially different sequences and functions
from their human counterparts. This review highlights the biological function of
each identified Plasmodium topoisomerase along with a
comparative analysis of their orthologs in human or other model organisms. There
is also a focus on recent advancements towards the development of topoisomerase
chemical inhibitors, underscoring the druggability of unique topoisomerase
subunits that are absent in humans. Plasmodium harbors three
distinct genomes in the nucleus, apicoplast, and mitochondria, respectively, and
undergoes non-canonical cell division during the schizont stage of development.
This review emphasizes the specific developmental stages of
Plasmodium on which future topoisomerase research should
focus.
Collapse
|
79
|
Bera P, Wasim A, Mondal J. Hi-C embedded polymer model of Escherichia coli reveals the origin of heterogeneous subdiffusion in chromosomal loci. Phys Rev E 2022; 105:064402. [PMID: 35854496 DOI: 10.1103/physreve.105.064402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Underneath its apparently simple architecture, the circular chromosome of Escherichia coli is known for displaying complex dynamics in its cytoplasm, with past investigations hinting at inherently diverse mobilities of chromosomal loci across the genome. To decipher its origin, we simulate the dynamics of genome-wide spectrum of E. coli chromosomal loci, via integrating its experimentally derived Hi-C interaction matrix within a polymer-based model. Our analysis demonstrates that, while the dynamics of the chromosome is subdiffusive in a viscoelastic media, the diffusion constants are strongly dependent of chromosomal loci coordinates and diffusive exponents (α) are widely heterogenous with α ≈ 0.36-0.60. The loci-dependent heterogeneous dynamics and mean first-passage times of interloci encounter were found to be modulated via genetically distant interloci communications and is robust even in the presence of active, ATP-dependent noises. Control investigations reveal that the absence of Hi-C-derived interactions in the model would have abolished the traits of heterogeneous loci diffusion, underscoring the key role of loci-specific genetically distant interaction in modulating the underlying heterogeneity of the loci diffusion.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | | |
Collapse
|
80
|
Alov P, Al Sharif M, Najdenski H, Pencheva T, Tsakovska I, Zaharieva MM, Pajeva I. New Potential Pharmacological Targets of Plant-Derived Hydroxyanthraquinones from Rubia spp. Molecules 2022; 27:molecules27103274. [PMID: 35630751 PMCID: PMC9145346 DOI: 10.3390/molecules27103274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
The increased use of polyphenols nowadays poses the need for identification of their new pharmacological targets. Recently, structure similarity-based virtual screening of DrugBank outlined pseudopurpurin, a hydroxyanthraquinone from Rubia cordifolia spp., as similar to gatifloxacin, a synthetic antibacterial agent. This suggested the bacterial DNA gyrase and DNA topoisomerase IV as potential pharmacological targets of pseudopurpurin. In this study, estimation of structural similarity to referent antibacterial agents and molecular docking in the DNA gyrase and DNA topoisomerase IV complexes were performed for a homologous series of four hydroxyanthraquinones. Estimation of shape- and chemical feature-based similarity with (S)-gatifloxacin, a DNA gyrase inhibitor, and (S)-levofloxacin, a DNA topoisomerase IV inhibitor, outlined pseudopurpurin and munjistin as the most similar structures. The docking simulations supported the hypothesis for a plausible antibacterial activity of hydroxyanthraquinones. The predicted docking poses were grouped into 13 binding modes based on spatial similarities in the active site. The simultaneous presence of 1-OH and 3-COOH substituents in the anthraquinone scaffold were emphasized as relevant features for the binding modes’ variability and ability of the compounds to strongly bind in the DNA-enzyme complexes. The results reveal new potential pharmacological targets of the studied polyphenols and help in their prioritization as drug candidates and dietary supplements.
Collapse
Affiliation(s)
- Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.A.); (M.A.S.); (T.P.); (I.T.)
| | - Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.A.); (M.A.S.); (T.P.); (I.T.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (H.N.); (M.M.Z.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.A.); (M.A.S.); (T.P.); (I.T.)
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.A.); (M.A.S.); (T.P.); (I.T.)
| | - Maya Margaritova Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (H.N.); (M.M.Z.)
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.A.); (M.A.S.); (T.P.); (I.T.)
- Correspondence:
| |
Collapse
|
81
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
82
|
Virtual screening, optimization and molecular dynamics analyses highlighting a pyrrolo[1,2-a]quinazoline derivative as a potential inhibitor of DNA gyrase B of Mycobacterium tuberculosis. Sci Rep 2022; 12:4742. [PMID: 35304513 PMCID: PMC8933452 DOI: 10.1038/s41598-022-08359-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis is a disease that remains a significant threat to public health worldwide, and this is mainly due to the selection of strains increasingly resistant to Mycobacterium tuberculosis, its causative agent. One of the validated targets for the development of new antibiotics is DNA gyrase. This enzyme is a type II topoisomerase responsible for regulating DNA topology and, as it is essential in bacteria. Thus, to contribute to the search for new molecules with potential to act as competitive inhibitors at the active site of M. tuberculosis DNA gyrase B, the present work explored a dataset of 20,098 natural products that were filtered using the FAF-Drugs4 server to obtain a total of 5462 structures that were subsequently used in virtual screenings. The consensus score analysis between LeDock and Auto-Dock Vina software showed that ZINC000040309506 (pyrrolo[1,2-a]quinazoline derivative) exhibit the best binding energy with the enzyme. In addition, its subsequent optimization generated the derivative described as PQPNN, which show better binding energy in docking analysis, more stability in molecular dynamics simulations and improved pharmacokinetic and toxicological profiles, compared to the parent compound. Taken together, the pyrrolo[1,2-a]quinazoline derivative described for the first time in the present work shows promising potential to inhibit DNA gyrase B of M. tuberculosis.
Collapse
|
83
|
McKie SJ, Desai P, Seol Y, Allen AM, Maxwell A, Neuman KC. Topoisomerase VI is a chirally-selective, preferential DNA decatenase. eLife 2022; 11:67021. [PMID: 35076393 PMCID: PMC8837201 DOI: 10.7554/elife.67021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.
Collapse
Affiliation(s)
- Shannon J McKie
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Parth Desai
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Adam Mb Allen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anthony Maxwell
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
84
|
Hafez N, Modather El-Awadly Z, Arafa RK. UCH-L3 structure and function: Insights about a promising drug target. Eur J Med Chem 2022; 227:113970. [PMID: 34752952 DOI: 10.1016/j.ejmech.2021.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/04/2022]
Abstract
In the past few years, researchers have shed light on the immense importance of ubiquitin in numerous regulatory pathways. The post-translational addition of mono or poly-ubiquitin molecules namely "ubiquitinoylation" is therefore pivotal to maintain the cell's vitality, maturation, differentiation, and division. Part of conserving homeostasis stems from maintaining the ubiquitin pool in the vicinity of the cell's intracellular environment; this crucial role is played by deubiquitylating enzymes (DUBs) that cleave ubiquitin molecules from target molecules. To date, they are categorized into 7 families with ubiquitin carboxyl c-terminal de-hydrolase family (UCH) as the most common and well-studied. Ubiquitin C-terminal hydrolase L (UCH-L3) is a significant protein in this family as it has been implicated in many molecular and cellular processes with its mRNA identified in a range of body tissues including the brain. It goes without saying that it manifests in maintaining health and when abnormally regulated in disease. As it is an attractive small molecule drug target, scientists have used high throughput screening (HTS) and other drug discovery methods to discover inhibitors for this enzyme for the treatment of cancer and neurodegenerative diseases. In this review we present an overview of UCH-L3 catalytic mechanism, structure, its role in DNA repair and cancer along with the inhibitors discovered so far to halt its activity.
Collapse
Affiliation(s)
- Noha Hafez
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Zahraa Modather El-Awadly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Cairo, 12578, Egypt; Drug Design and Discovery Laboratory, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Cairo, 12578, Egypt.
| |
Collapse
|
85
|
Orritt KM, Feng L, Newell JF, Sutton JN, Grossman S, Germe T, Abbott LR, Jackson HL, Bury BKL, Maxwell A, McPhillie MJ, Fishwick CWG. De novo design of type II topoisomerase inhibitors as potential antimicrobial agents targeting a novel binding region. RSC Med Chem 2022; 13:831-839. [PMID: 35919336 PMCID: PMC9298182 DOI: 10.1039/d2md00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
By 2050, it is predicted that antimicrobial resistance will be responsible for 10 million global deaths annually, more deaths than cancer, costing the world economy $100 trillion. Clearly, strategies to address this problem are essential as bacterial evolution is rendering our current antibiotics ineffective. The discovery of an allosteric binding site on the established antibacterial target DNA gyrase offers a new medicinal chemistry strategy. As this site is distinct from the fluoroquinolone binding site, resistance is not yet documented. Using in silico molecular design methods, we have designed and synthesised a novel series of biphenyl-based inhibitors inspired by a published thiophene-based allosteric inhibitor. This series was evaluated in vitro against Escherichia coli DNA gyrase and E. coli topoisomerase IV with the most potent compounds exhibiting IC50 values towards the low micromolar range for DNA gyrase and only ∼2-fold less active against topoisomerase IV. The structure–activity relationships reported herein suggest insights to further exploit this allosteric site, offering a pathway to overcome developing fluoroquinolone resistance. A computational design, make and test strategy was used to identify antibacterial inhibitors of bacterial DNA gyrase and topoisomerase IV, proposed to bind at a novel allosteric site.![]()
Collapse
Affiliation(s)
- Kyle M. Orritt
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Lipeng Feng
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Jack N. Sutton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Scott Grossman
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Thomas Germe
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lauren R. Abbott
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | - Anthony Maxwell
- Dept. Biochemistry & Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | |
Collapse
|
86
|
Ganapathy US, del Río RG, Cacho-Izquierdo M, Ortega F, Lelièvre J, Barros-Aguirre D, Aragaw WW, Zimmerman MD, Lindman M, Dartois V, Gengenbacher M, Dick T. A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus. Antimicrob Agents Chemother 2021; 65:e0151421. [PMID: 34606340 PMCID: PMC8597734 DOI: 10.1128/aac.01514-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Fluoroquinolones-the only clinically used DNA gyrase inhibitors-are effective against tuberculosis (TB) but are in limited clinical use for nontuberculous mycobacteria (NTM) lung infections due to intrinsic drug resistance. We sought to test alternative DNA gyrase inhibitors for anti-NTM activity. Mycobacterium tuberculosis gyrase inhibitors (MGIs), a subclass of novel bacterial topoisomerase inhibitors (NBTIs), were recently shown to be active against the tubercle bacillus. Here, we show that the MGI EC/11716 not only has potent anti-tubercular activity but is active against M. abscessus and M. avium in vitro. Focusing on M. abscessus, which causes the most difficult to cure NTM disease, we show that EC/11716 is bactericidal, active against drug-tolerant biofilms, and efficacious in a murine model of M. abscessus lung infection. Based on resistant mutant selection experiments, we report a low frequency of resistance to EC/11716 and confirm DNA gyrase as its target. Our findings demonstrate the potential of NBTIs as anti-M. abscessus and possibly broad-spectrum anti-mycobacterial agents.
Collapse
Affiliation(s)
- Uday S. Ganapathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | | | - Fátima Ortega
- Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Joël Lelièvre
- Global Health Pharma Unit, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Marissa Lindman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
87
|
Roca J, Dyson S, Segura J, Valdés A, Martínez-García B. Keeping intracellular DNA untangled: A new role for condensin? Bioessays 2021; 44:e2100187. [PMID: 34761394 DOI: 10.1002/bies.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
The DNA-passage activity of topoisomerase II accidentally produces DNA knots and interlinks within and between chromatin fibers. Fortunately, these unwanted DNA entanglements are actively removed by some mechanism. Here we present an outline on DNA knot formation and discuss recent studies that have investigated how intracellular DNA knots are removed. First, although topoisomerase II is able to minimize DNA entanglements in vitro to below equilibrium values, it is unclear whether such capacity performs equally in vivo in chromatinized DNA. Second, DNA supercoiling could bias topoisomerase II to untangle the DNA. However, experimental evidence indicates that transcriptional supercoiling of intracellular DNA boosts knot formation. Last, cohesin and condensin could tighten DNA entanglements via DNA loop extrusion (LE) and force their dissolution by topoisomerase II. Recent observations indicate that condensin activity promotes the removal of DNA knots during interphase and mitosis. This activity might facilitate the spatial organization and dynamics of chromatin.
Collapse
Affiliation(s)
- Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Silvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Antonio Valdés
- Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
88
|
Villain P, da Cunha V, Villain E, Forterre P, Oberto J, Catchpole R, Basta T. The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase. Nucleic Acids Res 2021; 49:12332-12347. [PMID: 34755863 PMCID: PMC8643681 DOI: 10.1093/nar/gkab869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
In all cells, DNA topoisomerases dynamically regulate DNA supercoiling allowing essential DNA processes such as transcription and replication to occur. How this complex system emerged in the course of evolution is poorly understood. Intriguingly, a single horizontal gene transfer event led to the successful establishment of bacterial gyrase in Archaea, but its emergent function remains a mystery. To better understand the challenges associated with the establishment of pervasive negative supercoiling activity, we expressed the gyrase of the bacterium Thermotoga maritima in a naïve archaeon Thermococcus kodakarensis which naturally has positively supercoiled DNA. We found that the gyrase was catalytically active in T. kodakarensis leading to strong negative supercoiling of plasmid DNA which was stably maintained over at least eighty generations. An increased sensitivity of gyrase-expressing T. kodakarensis to ciprofloxacin suggested that gyrase also modulated chromosomal topology. Accordingly, global transcriptome analyses revealed large scale gene expression deregulation and identified a subset of genes responding to the negative supercoiling activity of gyrase. Surprisingly, the artificially introduced dominant negative supercoiling activity did not have a measurable effect on T. kodakarensis growth rate. Our data suggest that gyrase can become established in Thermococcales archaea without critically interfering with DNA transaction processes.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
89
|
TOP2B's contributions to transcription. Biochem Soc Trans 2021; 49:2483-2493. [PMID: 34747992 DOI: 10.1042/bst20200454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022]
Abstract
Transcription is regulated and mediated by multiprotein complexes in a chromatin context. Transcription causes changes in DNA topology which is modulated by DNA topoisomerases, enzymes that catalyse changes in DNA topology via transient breaking and re-joining of one or both strands of the phosphodiester backbone. Mammals have six DNA topoisomerases, this review focuses on one, DNA topoisomerase II beta (TOP2B). In the absence of TOP2B transcription of many developmentally regulated genes is altered. Long genes seem particularly susceptible to the lack of TOP2B. Biochemical studies of the role of TOP2B in transcription regulated by ligands such as nuclear hormones, growth factors and insulin has revealed PARP1 associated with TOP2B and also PRKDC, XRCC5 and XRCC6. Analysis of publicly available databases of protein interactions confirms these interactions and illustrates interactions with other key transcriptional regulators including TRIM28. TOP2B has been shown to interact with proteins involved in chromosome organisation including CTCF and RAD21. Comparison of publicly available Chip-seq datasets reveals the location at which these proteins interact with genes. The availability of resources such as large datasets of protein-protein interactions, e.g. BioGrid and IntAct and protein-DNA interactions such as Chip-seq in GEO enables scientists to extend models and propose new hypotheses.
Collapse
|
90
|
Dougherty A, Hawaz MG, Hoang KG, Trac J, Keck JM, Ayes C, Deweese JE. Exploration of the Role of the C-Terminal Domain of Human DNA Topoisomerase IIα in Catalytic Activity. ACS OMEGA 2021; 6:25892-25903. [PMID: 34660952 PMCID: PMC8515377 DOI: 10.1021/acsomega.1c02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Human topoisomerase IIα (TOP2A) is a vital nuclear enzyme involved in resolving knots and tangles in DNA during replication and cell division. TOP2A is a homodimer with a symmetrical, multidomain structure. While the N-terminal and core regions of the protein are well-studied, the C-terminal domain is poorly understood but is involved in enzyme regulation and is predicted to be intrinsically disordered. In addition, it appears to be a major region of post-translational modification and includes several Ser and Thr residues, many of which have not been studied for biochemical effects. Therefore, we generated a series of human TOP2A mutants where we changed specific Ser and Thr residues in the C-terminal domain to Ala, Gly, or Ile residues. We designed, purified, and examined 11 mutant TOP2A enzymes. The amino acid changes were made between positions 1272 and 1525 with 1-7 residues changed per mutant. Several mutants displayed increased levels of DNA cleavage without displaying any change in plasmid DNA relaxation or DNA binding. For example, mutations in the regions 1272-1279, 1324-1343, 1351-1365, and 1374-1377 produced 2-3 times more DNA cleavage in the presence of etoposide than wild-type TOP2A. Further, several mutants displayed changes in relaxation and/or decatenation activity. Together, these results support previous findings that the C-terminal domain of TOP2A influences catalytic activity and interacts with the substrate DNA. Furthermore, we hypothesize that it may be possible to regulate the enzyme by targeting positions in the C-terminal domain. Because the C-terminal domain differs between the two human TOP2 isoforms, this strategy may provide a means for selectively targeting TOP2A for therapeutic inhibition. Additional studies are warranted to explore these results in more detail.
Collapse
Affiliation(s)
- Ashley
C. Dougherty
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Mariam G. Hawaz
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Kristine G. Hoang
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Judy Trac
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Jacob M. Keck
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Carmen Ayes
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
| | - Joseph E. Deweese
- Department
of Pharmaceutical Sciences, Lipscomb University
College of Pharmacy and Health Sciences, One University Park Drive, Nashville, Tennessee 37204-3951, United States
- Department
of Biochemistry, Vanderbilt University School
of Medicine, 2215 Garland
Avenue, Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
91
|
Exploitation of a novel allosteric binding region in DNA gyrase and its implications for antibacterial drug discovery. Future Med Chem 2021; 13:2125-2127. [PMID: 34605249 DOI: 10.4155/fmc-2021-0266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
92
|
Abstract
Topoisomerases are enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of DNA topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and decatenate double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. Provided in this article are protocols to assess activities of topoisomerases and their inhibitors. Included are an assay for topoisomerase I activity based on relaxation of supercoiled DNA; an assay for topoisomerase II based on the decatenation of double-stranded DNA; and approaches for enriching and quantifying DNA-protein covalent complexes formed as obligatory intermediates in the reactions of type I and II topoisomerases with DNA; and assays for measuring DNA cleavage in vitro. Topoisomerases are not the only proteins that form covalent adducts with DNA in living cells, and the approaches described here are likely to find use in characterizing other protein-DNA adducts and exploring their utility as targets for therapy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Assay of topoisomerase I activity Basic Protocol 2: Assay of topoisomerase II activity Basic Protocol 3: In vivo determination of topoisomerase covalent complexes using the in vivo complex of enzyme (ICE) assay Support Protocol 1: Preparation of mouse tissue for determination of topoisomerase covalent complexes using the ICE assay Support Protocol 2: Using recombinant topoisomerase standard for absolute quantification of cellular TOP2CC Basic Protocol 4: Quantification of topoisomerase-DNA covalent complexes by RADAR/ELISA: The rapid approach to DNA adduct recovery (RADAR) combined with the enzyme-linked immunosorbent assay (ELISA) Basic Protocol 5: Analysis of protein-DNA covalent complexes by RADAR/Western Support Protocol 3: Adduct-Seq to characterize adducted DNA Support Protocol 4: Nuclear fractionation and RNase treatment to reduce sample complexity Basic Protocol 6: Determination of DNA cleavage by purified topoisomerase I Basic Protocol 7: Determination of inhibitor effects on DNA cleavage by topoisomerase II using a plasmid linearization assay Alternate Protocol: Gel electrophoresis determination of topoisomerase II cleavage.
Collapse
Affiliation(s)
- John L Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois
| | - Kostantin Kiianitsa
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Karin C Nitiss
- Pharmaceutical Sciences Department, University of Illinois College of Pharmacy, Rockford, Illinois.,Biomedical Sciences Department, University of Illinois College of Medicine, Rockford, Illinois
| | - Nancy Maizels
- Departments of Immunology and Biochemistry, University of Washington, Seattle, Washington
| |
Collapse
|
93
|
Kever L, Hünnefeld M, Brehm J, Heermann R, Frunzke J. Identification of Gip as a novel phage-encoded gyrase inhibitor protein of Corynebacterium glutamicum. Mol Microbiol 2021; 116:1268-1280. [PMID: 34536319 DOI: 10.1111/mmi.14813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
By targeting key regulatory hubs of their host, bacteriophages represent a powerful source for the identification of novel antimicrobial proteins. Here, a screening of small cytoplasmic proteins encoded by the CGP3 prophage of Corynebacterium glutamicum resulted in the identification of the gyrase-inhibiting protein Cg1978, termed Gip. Pull-down assays and surface plasmon resonance revealed a direct interaction of Gip with the gyrase subunit A (GyrA). The inhibitory activity of Gip was shown to be specific to the DNA gyrase of its bacterial host C. glutamicum. Overproduction of Gip in C. glutamicum resulted in a severe growth defect as well as an induction of the SOS response. Furthermore, reporter assays revealed an RecA-independent induction of the cryptic CGP3 prophage, most likely caused by topological alterations. Overexpression of gip was counteracted by an increased expression of gyrAB and a reduction of topA expression at the same time, reflecting the homeostatic control of DNA topology. We postulate that the prophage-encoded Gip protein plays a role in modulating gyrase activity to enable efficient phage DNA replication. A detailed elucidation of the mechanism of action will provide novel directions for the design of drugs targeting DNA gyrase.
Collapse
Affiliation(s)
- Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jannis Brehm
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Mainz, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
94
|
Kozurkova M. Acridine derivatives as inhibitors/poisons of topoisomerase II. J Appl Toxicol 2021; 42:544-552. [PMID: 34514603 DOI: 10.1002/jat.4238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
The potential of acridines (amsacrine) as a topoisomerase II inhibitor or poison was first discovered in 1984, and since then, a considerable number of acridine derivatives have been tested as topoisomerase inhibitors/poisons, containing different substituents on the acridine chromophore. This review will discuss a series of studies published over the course of the last decade, which have investigated various novel acridine derivatives against topoisomerase II activity.
Collapse
Affiliation(s)
- Maria Kozurkova
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Šafárik University, Kosice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
95
|
Abstract
New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10−8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.
Collapse
|
96
|
Hirsch J, Klostermeier D. What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Res 2021; 49:6027-6042. [PMID: 33905522 PMCID: PMC8216471 DOI: 10.1093/nar/gkab270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.
Collapse
Affiliation(s)
- Jana Hirsch
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Corrensstrasse 30, 48149 Muenster, Germany
| |
Collapse
|
97
|
Spakman D, Bakx JAM, Biebricher AS, Peterman EJG, Wuite GJL, King GA. Unravelling the mechanisms of Type 1A topoisomerases using single-molecule approaches. Nucleic Acids Res 2021; 49:5470-5492. [PMID: 33963870 PMCID: PMC8191776 DOI: 10.1093/nar/gkab239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Topoisomerases are essential enzymes that regulate DNA topology. Type 1A family topoisomerases are found in nearly all living organisms and are unique in that they require single-stranded (ss)DNA for activity. These enzymes are vital for maintaining supercoiling homeostasis and resolving DNA entanglements generated during DNA replication and repair. While the catalytic cycle of Type 1A topoisomerases has been long-known to involve an enzyme-bridged ssDNA gate that allows strand passage, a deeper mechanistic understanding of these enzymes has only recently begun to emerge. This knowledge has been greatly enhanced through the combination of biochemical studies and increasingly sophisticated single-molecule assays based on magnetic tweezers, optical tweezers, atomic force microscopy and Förster resonance energy transfer. In this review, we discuss how single-molecule assays have advanced our understanding of the gate opening dynamics and strand-passage mechanisms of Type 1A topoisomerases, as well as the interplay of Type 1A topoisomerases with partner proteins, such as RecQ-family helicases. We also highlight how these assays have shed new light on the likely functional roles of Type 1A topoisomerases in vivo and discuss recent developments in single-molecule technologies that could be applied to further enhance our understanding of these essential enzymes.
Collapse
Affiliation(s)
- Dian Spakman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Julia A M Bakx
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Andreas S Biebricher
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Graeme A King
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|