51
|
Podwysocka D, Kosson P, Lipkowski AW, Olma A. TAPP analogs containing β3-homo-amino acids: synthesis and receptor binding. J Pept Sci 2012; 18:556-9. [DOI: 10.1002/psc.2433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 01/15/2023]
Affiliation(s)
- D. Podwysocka
- Institute of Organic Chemistry; Lodz University of Technology; Lodz; Poland
| | - P. Kosson
- Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw; Poland
| | - A. W. Lipkowski
- Mossakowski Medical Research Centre; Polish Academy of Science; Warsaw; Poland
| | - A. Olma
- Institute of Organic Chemistry; Lodz University of Technology; Lodz; Poland
| |
Collapse
|
52
|
Mankus JV, McCurdy CR. Nonpeptide ligands of neuropeptide FF: current status and structural insights. Future Med Chem 2012; 4:1085-92. [PMID: 22709252 PMCID: PMC3606921 DOI: 10.4155/fmc.12.67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropeptide FF (NPFF) was first isolated from the bovine brain in 1985 and is linked with a variety of biological activities. NPFF, which belongs to the RF-amide family of peptides, interacts with two distinct G-protein-coupled receptors, NPFF(1) and NPFF(2). These receptors are distributed throughout the body. The NPFF system was initially described as an anti-opioid system and, while the NPFF system does affect the opioid system, it also has been implicated in pain modulation, changes in arterial blood pressure, feeding behavior and regulation of core body temperature and of monoamine systems. Most of this pharmacology has been realized from the peptide NPFF itself or through peptide analogs. The quest for nonpeptide tools for this receptor system has been limited by low selectivity and poor pharmacokinetic properties. Herein, we summarize the current knowledge from the scientific and patent literature that demonstrates a clear need for future medicinal chemistry efforts.
Collapse
Affiliation(s)
- Jessica V Mankus
- Department of Medicinal Chemistry, 419 Faser Hall, The University of Mississippi, MS 38677, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, 419 Faser Hall, The University of Mississippi, MS 38677, USA
| |
Collapse
|
53
|
Moulédous L, Froment C, Dauvillier S, Burlet-Schiltz O, Zajac JM, Mollereau C. GRK2 protein-mediated transphosphorylation contributes to loss of function of μ-opioid receptors induced by neuropeptide FF (NPFF2) receptors. J Biol Chem 2012; 287:12736-49. [PMID: 22375000 PMCID: PMC3339982 DOI: 10.1074/jbc.m111.314617] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/13/2012] [Indexed: 01/25/2023] Open
Abstract
Neuropeptide FF (NPFF) interacts with specific receptors to modulate opioid functions in the central nervous system. On dissociated neurons and neuroblastoma cells (SH-SY5Y) transfected with NPFF receptors, NPFF acts as a functional antagonist of μ-opioid (MOP) receptors by attenuating the opioid-induced inhibition of calcium conductance. In the SH-SY5Y model, MOP and NPFF(2) receptors have been shown to heteromerize. To understand the molecular mechanism involved in the anti-opioid activity of NPFF, we have investigated the phosphorylation status of the MOP receptor using phospho-specific antibody and mass spectrometry. Similarly to direct opioid receptor stimulation, activation of the NPFF(2) receptor by [D-Tyr-1-(NMe)Phe-3]NPFF (1DMe), an analog of NPFF, induced the phosphorylation of Ser-377 of the human MOP receptor. This heterologous phosphorylation was unaffected by inhibition of second messenger-dependent kinases and, contrarily to homologous phosphorylation, was prevented by inactivation of G(i/o) proteins by pertussis toxin. Using siRNA knockdown we could demonstrate that 1DMe-induced Ser-377 cross-phosphorylation and MOP receptor loss of function were mediated by the G protein receptor kinase GRK2. In addition, mass spectrometric analysis revealed that the phosphorylation pattern of MOP receptors was qualitatively similar after treatment with the MOP agonist Tyr-D-Ala-Gly (NMe)-Phe-Gly-ol (DAMGO) or after treatment with the NPFF agonist 1DMe, but the level of multiple phosphorylation was more intense after DAMGO. Finally, NPFF(2) receptor activation was sufficient to recruit β-arrestin2 to the MOP receptor but not to induce its internalization. These data show that NPFF-induced heterologous desensitization of MOP receptor signaling is mediated by GRK2 and could involve transphosphorylation within the heteromeric receptor complex.
Collapse
Affiliation(s)
- Lionel Moulédous
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Carine Froment
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Stéphanie Dauvillier
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Jean-Marie Zajac
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | - Catherine Mollereau
- From the Institut de Pharmacologie et de Biologie Structurale, CNRS/Université de Toulouse, UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
54
|
Elhabazi K, Trigo JM, Mollereau C, Moulédous L, Zajac JM, Bihel F, Schmitt M, Bourguignon JJ, Meziane H, Petit-demoulière B, Bockel F, Maldonado R, Simonin F. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br J Pharmacol 2012; 165:424-35. [PMID: 21718302 DOI: 10.1111/j.1476-5381.2011.01563.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence.
Collapse
Affiliation(s)
- K Elhabazi
- Institut de Recherche de l'ESBS, Université de Strasbourg-CNRS, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Poling MC, Kim J, Dhamija S, Kauffman AS. Development, sex steroid regulation, and phenotypic characterization of RFamide-related peptide (Rfrp) gene expression and RFamide receptors in the mouse hypothalamus. Endocrinology 2012; 153:1827-40. [PMID: 22355072 PMCID: PMC3320244 DOI: 10.1210/en.2011-2049] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Arginine-phenylalanine-amide (RFamide)-related peptide 3 (RFRP-3, encoded by the Rfrp gene) is the mammalian ortholog of gonadotropin-inhibiting hormone and can inhibit GnRH neuronal activity and LH release. However, the development and regulation of the RFRP-3 system in both sexes is poorly understood. Using in situ hybridization, we examined changes in Rfrp-expressing neurons in mice of both sexes during development and under different adulthood hormonal milieus. We found no sex differences in Rfrp expression or cell number in adult mice. Interestingly, we identified two interspersed subpopulations of Rfrp cells (high Rfrp-expressing, HE; low Rfrp-expressing, LE), which have unique developmental and steroidal regulation characteristics. The number of LE cells robustly decreases during postnatal development, whereas HE cell number increases significantly before puberty. Using Bax knockout mice, we determined that the dramatic developmental decrease in LE Rfrp cells is not due primarily to BAX-dependent apoptosis. In adults, we found that estradiol and testosterone moderately repress Rfrp expression in both HE and LE cells, whereas the nonaromatizable androgen dihydrotestosterone has no effect. Using double-label in situ hybridization, we determined that approximately 25% of Rfrp neurons coexpress estrogen receptor-α in each sex, whereas Rfrp cells do not readily express androgen receptor in either sex, regardless of hormonal milieu. Lastly, when we looked at RFRP-3 receptors, we detected some coexpression of Gpr147 but no coexpression of Gpr74 in GnRH neurons of both intact and gonadectomized males and females. Thus, RFRP-3 may exert its effects on reproduction either directly, via Gpr147 in a subset of GnRH neurons, and/or indirectly, via upstream regulators of GnRH.
Collapse
Affiliation(s)
- Matthew C Poling
- Biomedical Sciences Graduate Program, Department of Reproductive Medicine, University of California San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
56
|
Rőszer T, Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides 2012; 34:177-85. [PMID: 21524675 DOI: 10.1016/j.peptides.2011.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/04/2011] [Accepted: 04/07/2011] [Indexed: 01/10/2023]
Abstract
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.
Collapse
Affiliation(s)
- Tamás Rőszer
- Department of Microbial Biotechnology & Cell Biology, University of Debrecen, Debrecen, Hungary.
| | | |
Collapse
|
57
|
Miller LK, Hou X, Rodriguiz RM, Gagnidze K, Sweedler JV, Wetsel WC, Devi LA. Mice deficient in endothelin-converting enzyme-2 exhibit abnormal responses to morphine and altered peptide levels in the spinal cord. J Neurochem 2011; 119:1074-85. [PMID: 21972895 DOI: 10.1111/j.1471-4159.2011.07513.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An increasing body of evidence suggests that endothelin-converting enzyme-2 (ECE-2) is a non-classical neuropeptide processing enzyme. Similar to other neuropeptide processing enzymes, ECE-2 exhibits restricted neuroendocrine distribution, intracellular localization, and an acidic pH optimum. However, unlike classical neuropeptide processing enzymes, ECE-2 exhibits a non-classical cleavage site preference for aliphatic and aromatic residues. We previously reported that ECE-2 cleaves a number of neuropeptides at non-classical sites in vitro; however its role in peptide processing in vivo is poorly understood. Given the recognized roles of neuropeptides in pain and opiate responses, we hypothesized that ECE-2 knockout (KO) mice might show altered pain and morphine responses compared with wild-type mice. We find that ECE-2 KO mice show decreased response to a single injection of morphine in hot-plate and tail-flick tests. ECE-2 KO mice also show more rapid development of tolerance with prolonged morphine treatment and fewer signs of naloxone-precipitated withdrawal. Peptidomic analyses revealed changes in the levels of a number of spinal cord peptides in ECE-2 KO as compared to wild-type mice. Taken together, our findings suggest a role for ECE-2 in the non-classical processing of spinal cord peptides and morphine responses; however, the precise mechanisms through which ECE-2 influences morphine tolerance and withdrawal remain unclear.
Collapse
Affiliation(s)
- Lydia K Miller
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Effects of neuropeptide FF system on CB₁ and CB₂ receptors mediated antinociception in mice. Neuropharmacology 2011; 62:855-64. [PMID: 21945715 DOI: 10.1016/j.neuropharm.2011.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/04/2011] [Accepted: 09/13/2011] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that opioid and cannabinoid receptor systems can produce similar signal transduction and behavioural effects. Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in control of pain and analgesia through interactions with the opioid system. We were interested in whether the central and peripheral antinociception of cannabinoids could be influenced by supraspinal NPFF system. The present study examined the effects of NPFF and related peptides on the antinociceptive activities induced by the non-selective cannabinoid receptors agonist WIN55,212-2, given by supraspinal and intraplantar routes. In mice, the central and peripheral antinociception of WIN55,212-2 are mediated by cannabinoid CB(1) and CB(2) receptors, respectively. Interestingly, central administration of NPFF significantly reduced central and peripheral analgesia of cannabinoids in dose-dependent manners. In contrast, dNPA and NPVF (i.c.v.), two highly selective agonists for NPFF(2) and NPFF(1) receptors, dose-dependently augmented the antinociception caused by intracerebroventricular and intraplantar injection of WIN55,212-2. Additionally, pretreatment with the NPFF receptors selective antagonist RF9 (i.c.v.) markedly reduced the cannabinoid-modulating activities of NPFF and related peptides in nociceptive assays. These data provide the first evidence for a functional interaction between NPFF and cannabinoid systems, indicating that activation of central NPFF receptors interferes with cannabinoid-mediated central and peripheral antinociception. Intriguingly, the present work may pave the way for a new strategy of using combination treatment of cannabinoid and NPFF agonists for pain management. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|