51
|
Zhao Q, Kurata H. Use of maximum entropy principle with Lagrange multipliers extends the feasibility of elementary mode analysis. J Biosci Bioeng 2010; 110:254-61. [DOI: 10.1016/j.jbiosc.2010.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 12/27/2009] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
52
|
Link H, Anselment B, Weuster-Botz D. Rapid media transition: an experimental approach for steady state analysis of metabolic pathways. Biotechnol Prog 2010; 26:1-10. [PMID: 19785030 DOI: 10.1002/btpr.290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed-batch mode under non-stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup-rapid media transition-enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab-scale stirred-tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed-batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short-term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations.
Collapse
Affiliation(s)
- Hannes Link
- Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Garching 85748, Germany
| | | | | |
Collapse
|
53
|
Matsuoka Y, Shimizu K. The relationships between the metabolic fluxes and 13C-labeled isotopomer distribution for the flux analysis of the main metabolic pathways. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
54
|
Systematic screening of Escherichia coli single-gene knockout mutants for improving recombinant whole-cell biocatalysts. Appl Microbiol Biotechnol 2010; 87:647-55. [PMID: 20224941 DOI: 10.1007/s00253-010-2505-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 10/19/2022]
Abstract
Systematic screening of single-gene knockout collection of Escherichia coli BW25113 (the Keio collection) was performed to select mutants that could enhance the deethylation of 7-ethoxycoumarin catalyzed by CYP154A1. After 96-well plate high-throughput screening followed by test tube assays, four mutants (Delta cpxA, Delta gcvR, Delta glnL, and an unknown-gene-deleted one (Delta uk)) were able to increase the CYP154A1 activity by approximately 1.4-1.7 times compared with that of the control strain. When new mutants were constructed by disrupting individually the cpxA, gcvR, glnL, and uk genes in E. coli BW25113, three of them (Delta cpxA, Delta gcvR, and Delta glnL) showed high levels of CYP154A1 activity. However, the uk-disruptant failed to enhance the CYP154A1 activity, suggesting that the high CYP154A1 activity of the Delta uk mutant in the Keio collection was due to a spontaneous mutation in the chromosome. In-frame deletion mutants of Delta cpxA, Delta gcvR, and Delta glnL also exhibited high enzyme activity, and complementation of these mutations could decrease CYP154A1 activity. These results indicated that the enhancement of the enzyme activity was not caused by polar effects on their neighbor genes. To our knowledge, this is the first report on a genome-wide screening of the genes for deletion to improve the activity of a recombinant whole-cell biocatalyst.
Collapse
|
55
|
Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K, Adamberg K, Vilu R. Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 2010; 145:60-5. [PMID: 19861135 DOI: 10.1016/j.jbiotec.2009.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/02/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Specific growth rate dependent gene expression changes of Escherichia coli K12 MG1655 were studied by microarray and real-time PCR analyses. The bacteria were cultivated on glucose limited minimal medium using the accelerostat method (A-stat) where starting from steady state conditions (chemostat culture) dilution rate is constantly increased. At specific growth rate (mu) 0.47h(-1), E. coli had focused its metabolism to glucose utilization by down-regulation of alternative substrate transporters expression compared to mu=0.3h(-1). It was found that acetic acid accumulation began at mu=0.34+/-0.01h(-1) and two acetate synthesis pathways - phosphotransacetylase-acetate kinase (pta-ackA) and pyruvate oxidase (poxB) - contributed to the synthesis at the beginning of overflow metabolism, i.e. onset of acetate excretion. On the other hand, poxB, pta and ackA expression patterns suggest that pyruvate oxidase may be the only enzyme synthesizing acetate at mu=0.47h(-1). Loss of glucose and acetate co-utilization represented by down-regulation of acs-yjcH-actP operon between specific growth rates 0.3-0.42h(-1) and acetic acid accumulation from mu=0.34+/-0.01h(-1) allows one to surmise that the acetate utilization operon expression might play an important role in overflow metabolism.
Collapse
Affiliation(s)
- Ranno Nahku
- Tallinn University of Technology, Department of Chemistry, Estonia.
| | | | | | | | | | | | | |
Collapse
|
56
|
Orencio-Trejo M, Utrilla J, Fernández-Sandoval MT, Huerta-Beristain G, Gosset G, Martinez A. Engineering the Escherichia coli fermentative metabolism. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 121:71-107. [PMID: 20182928 DOI: 10.1007/10_2009_61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fermentative metabolism constitutes a fundamental cellular capacity for industrial biocatalysis. Escherichia coli is an important microorganism in the field of metabolic engineering for its well-known molecular characteristics and its rapid growth. It can adapt to different growth conditions and is able to grow in the presence or absence of oxygen. Through the use of metabolic pathway engineering and bioprocessing techniques, it is possible to explore the fundamental cellular properties and to exploit its capacity to be applied as industrial biocatalysts to produce a wide array of chemicals. The objective of this chapter is to review the metabolic engineering efforts carried out with E. coli by manipulating the central carbon metabolism and fermentative pathways to obtain strains that produce metabolites with high titers, such as ethanol, alanine, lactate and succinate.
Collapse
Affiliation(s)
- M Orencio-Trejo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 510-3, Cuernavaca, Morelos, 62250, México
| | | | | | | | | | | |
Collapse
|
57
|
Matias Rodrigues JF, Wagner A. Evolutionary plasticity and innovations in complex metabolic reaction networks. PLoS Comput Biol 2009; 5:e1000613. [PMID: 20019795 PMCID: PMC2785887 DOI: 10.1371/journal.pcbi.1000613] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022] Open
Abstract
Genome-scale metabolic networks are highly robust to the elimination of enzyme-coding genes. Their structure can evolve rapidly through mutations that eliminate such genes and through horizontal gene transfer that adds new enzyme-coding genes. Using flux balance analysis we study a vast space of metabolic network genotypes and their relationship to metabolic phenotypes, the ability to sustain life in an environment defined by an available spectrum of carbon sources. Two such networks typically differ in most of their reactions and have few essential reactions in common. Our observations suggest that the robustness of the Escherichia coli metabolic network to mutations is typical of networks with the same phenotype. We also demonstrate that networks with the same phenotype form large sets that can be traversed through single mutations, and that single mutations of different genotypes with the same phenotype can yield very different novel phenotypes. This means that the evolutionary plasticity and robustness of metabolic networks facilitates the evolution of new metabolic abilities. Our approach has broad implications for the evolution of metabolic networks, for our understanding of mutational robustness, for the design of antimetabolic drugs, and for metabolic engineering. Understanding the fundamental processes that shape the evolution of bacterial organisms is of general interest to biology and may have important applications in medicine. We address the questions of how bacterial organisms acquire innovations, including drug resistance, allowing them to survive in new environments. We simulate the evolution of the metabolic network, the network of reactions that can occur inside a living organism. The metabolic network of an organism depends on the genes contained in its genome and can change by gaining genes from other organisms through horizontal gene transfer or loss of gene activity through mutations. Our observations suggest that the robustness to gene loss in Escherichia coli is typical of random viable metabolic networks of the same size. We also find that metabolic networks can change significantly without causing the loss of an organism's ability to survive in a given environment. This property allows organisms to explore a wide range of novel metabolic abilities and is the source of their ability to innovate. Finally we present a method to find reactions that are essential across all organisms. Drugs targeting such a reaction may avoid drug resistance mutations that bypass the reaction.
Collapse
|
58
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Nakahigashi K, Toya Y, Ishii N, Soga T, Hasegawa M, Watanabe H, Takai Y, Honma M, Mori H, Tomita M. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Mol Syst Biol 2009; 5:306. [PMID: 19756045 PMCID: PMC2758719 DOI: 10.1038/msb.2009.65] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 08/05/2009] [Indexed: 11/09/2022] Open
Abstract
Central carbon metabolism is a basic and exhaustively analyzed pathway. However, the intrinsic robustness of the pathway might still conceal uncharacterized reactions. To test this hypothesis, we constructed systematic multiple-knockout mutants involved in central carbon catabolism in Escherichia coli and tested their growth under 12 different nutrient conditions. Differences between in silico predictions and experimental growth indicated that unreported reactions existed within this extensively analyzed metabolic network. These putative reactions were then confirmed by metabolome analysis and in vitro enzymatic assays. Novel reactions regarding the breakdown of sedoheptulose-7-phosphate to erythrose-4-phosphate and dihydroxyacetone phosphate were observed in transaldolase-deficient mutants, without any noticeable changes in gene expression. These reactions, triggered by an accumulation of sedoheptulose-7-phosphate, were catalyzed by the universally conserved glycolytic enzymes ATP-dependent phosphofructokinase and aldolase. The emergence of an alternative pathway not requiring any changes in gene expression, but rather relying on the accumulation of an intermediate metabolite may be a novel mechanism mediating the robustness of these metabolic networks.
Collapse
Affiliation(s)
- Kenji Nakahigashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yoshihiro Toya
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Nobuyoshi Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | - Miki Hasegawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hisami Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Yuki Takai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Masayuki Honma
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Hirotada Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
60
|
Nizam SA, Zhu J, Ho PY, Shimizu K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2008.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
61
|
Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 2009; 191:2112-21. [PMID: 19181802 DOI: 10.1128/jb.01523-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To sustain growth, the catabolic formation of the redox equivalent NADPH must be balanced with the anabolic demand. The mechanisms that ensure such network-wide balancing, however, are presently not understood. Based on 13C-detected intracellular fluxes, metabolite concentrations, and cofactor specificities for all relevant central metabolic enzymes, we have quantified catabolic NADPH production in Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, Paracoccus versutus, Pseudomonas fluorescens, Rhodobacter sphaeroides, Sinorhizobium meliloti, and Zymomonas mobilis. For six species, the estimated NADPH production from glucose catabolism exceeded the requirements for biomass synthesis. Exceptions were P. fluorescens, with balanced rates, and E. coli, with insufficient catabolic production, in which about one-third of the NADPH is supplied via the membrane-bound transhydrogenase PntAB. P. versutus and B. subtilis were the only species that appear to rely on transhydrogenases for balancing NADPH overproduction during growth on glucose. In the other four species, the main but not exclusive redox-balancing mechanism appears to be the dual cofactor specificities of several catabolic enzymes and/or the existence of isoenzymes with distinct cofactor specificities, in particular glucose 6-phosphate dehydrogenase. An unexpected key finding for all species, except E. coli and B. subtilis, was the lack of cofactor specificity in the oxidative pentose phosphate pathway, which contrasts with the textbook view of the pentose phosphate pathway dehydrogenases as being NADP+ dependent.
Collapse
|
62
|
Schaub J, Reuss M. In vivodynamics of glycolysis inEscherichia colishows need for growth-rate dependent metabolome analysis. Biotechnol Prog 2008; 24:1402-7. [DOI: 10.1002/btpr.59] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
63
|
Mapelli V, Olsson L, Nielsen J. Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol 2008; 26:490-7. [DOI: 10.1016/j.tibtech.2008.05.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 05/26/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
|
64
|
Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
65
|
Baba T, Huan HC, Datsenko K, Wanner BL, Mori H. The applications of systematic in-frame, single-gene knockout mutant collection of Escherichia coli K-12. Methods Mol Biol 2008; 416:183-94. [PMID: 18392968 DOI: 10.1007/978-1-59745-321-9_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The increasing genome sequence data of microorganisms has provided the basis for comprehensive understanding of organisms at the molecular level. Besides sequence data, a large number of experimental and computational resources are required for genome-scale analyses. Escherichia coli K-12 has been one of the best characterized organisms in molecular biology. Recently, the whole-genome sequences of two closely related E. coli K-12 strains, MG1655 (1) and W3110 (2), were compared and confirmed by resequencing selected regions from both strains (2). The availability of highly accurate E. coli K-12 genomes provided an impetus for the cooperative reannotation of both MG1655 and W3110 (3). A set of precisely defined, single-gene knockout mutants of all nonessential genes in E. coli K-12 was constructed based on the recent accurate genome sequence data ([4] and Chapter 11). These mutants were designed to create in-frame (nonpolar) deletions upon elimination of the resistance cassette. These mutants have provided new key information on E. coli biology. First, the vast majority of the 3985 genes that were independently disrupted at least twice are probably nonessential, at least under the conditions of selection. Second, the 303 genes that we repeatedly failed to disrupt are candidates for E. coli essential genes. Lastly, phenotypic effects of all these mutations in the uniform genetic background of E. coli BW25113 were assessed by profiling mutants' growth yields on rich and minimal media (4). These mutants should provide not only a basic resource for systematic functional genomics but also an experimental data source for systems biology applications. The mutants can serve as fundamental tools for a number of reverse genetics approaches, permitting analysis of the consequences of the complete loss of gene function, in contrast with forward genetics approaches in which mutant phenotypes are associated with a corresponding gene or genes.
Collapse
Affiliation(s)
- Tomoya Baba
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | |
Collapse
|
66
|
Schaub J, Mauch K, Reuss M. Metabolic flux analysis inEscherichia coli by integrating isotopic dynamic and isotopic stationary13C labeling data. Biotechnol Bioeng 2008; 99:1170-85. [DOI: 10.1002/bit.21675] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
67
|
De Mey M, De Maeseneire S, Soetaert W, Vandamme E. Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 2007; 34:689-700. [PMID: 17668256 DOI: 10.1007/s10295-007-0244-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 07/08/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli remains the best-established production organism in industrial biotechnology. However, when aerobic fermentation runs at high growth rates, considerable amounts of acetate are accumulated as by-product. This by-product has negative effects on growth and protein production. Over the last 20 years, substantial research efforts have been expended on reducing acetate accumulation during aerobic growth of E. coli on glucose. From the onset it was clear that this quest would not be a simple or uncomplicated one. Simple deletion of the acetate pathway reduced the acetate accumulation, but other by-products were formed. This mini review gives a clear outline of these research efforts and their outcome, including bioprocess level approaches and genetic approaches. Recently, the latter seems to have some promising results.
Collapse
Affiliation(s)
- Marjan De Mey
- Laboratory of Industrial Microbiology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
68
|
Abstract
Escherichia coli is among the simplest and best-understood free-living organisms. It has served as a valuable model for numerous biological processes, including cellular metabolism. Just as E. coli stood at the front of the genomic revolution, it is playing a leading role in the development of cellular metabolomics: the study of the complete metabolic contents of cells, including their dynamic concentration changes and fluxes. This review briefly describes the essentials of cellular metabolomics and its fundamental differentiation from biomarker metabolomics and lipidomics. Key technologies for metabolite quantitation from E. coli are described, with a focus on those involving mass spectrometry. In particular emphasis is given to the cell handling and sample preparation steps required for collecting data of high biological reliability, such as fast metabolome quenching. Future challenges, both in terms of data collection and application of the data to obtain a comprehensive understanding of metabolic dynamics, are discussed.
Collapse
Affiliation(s)
- Joshua D Rabinowitz
- Princeton University, Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA.
| |
Collapse
|
69
|
Eydallin G, Viale AM, Morán-Zorzano MT, Muñoz FJ, Montero M, Baroja-Fernández E, Pozueta-Romero J. Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett 2007; 581:2947-53. [PMID: 17543954 DOI: 10.1016/j.febslet.2007.05.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/11/2007] [Accepted: 05/15/2007] [Indexed: 11/19/2022]
Abstract
A systematic and comprehensive gene-disrupted mutant collection of E. coli K-12 was used to identify genes whose deletions affect glycogen accumulation. Of the 3985 non-essential gene mutants of the collection, 35 displayed a glycogen-excess phenotype, whereas 30 displayed either glycogen-less or glycogen-deficient phenotypes. The genes whose deletions affect glycogen accumulation were classified into various functional categories, including energy production, envelope composition and integrity, protein translation and stability, transport of inorganic ions and nucleotides, and metabolism of carbohydrates and amino acids. The overall data indicate that glycogen metabolism is highly interconnected with a wide variety of cellular processes in E. coli.
Collapse
Affiliation(s)
- Gustavo Eydallin
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, Gobierno de Navarra, Consejo Superior de Investigaciones Científicas, Mutiloako etorbidea zenbaki gabe, Mutiloabeiti, Nafarroa, Spain
| | | | | | | | | | | | | |
Collapse
|
70
|
Hua Q, Joyce AR, Palsson BØ, Fong SS. Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl Environ Microbiol 2007; 73:4639-47. [PMID: 17513588 PMCID: PMC1932837 DOI: 10.1128/aem.00527-07] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In comparison with intensive studies of genetic mechanisms related to biological evolutionary systems, much less analysis has been conducted on metabolic network responses to adaptive evolution that are directly associated with evolved metabolic phenotypes. Metabolic mechanisms involved in laboratory evolution of Escherichia coli on gluconeogenic carbon sources, such as lactate, were studied based on intracellular flux states determined from 13C tracer experiments and 13C-constrained flux analysis. At the end point of laboratory evolution, strains exhibited a more than doubling of the average growth rate and a 50% increase in the average biomass yield. Despite different evolutionary trajectories among parallel evolved populations, most improvements were obtained within the first 250 generations of evolution and were generally characterized by a significant increase in pathway capacity. Partitioning between gluconeogenic and pyruvate catabolic flux at the pyruvate node remained almost unchanged, while flux distributions around the key metabolites phosphoenolpyruvate, oxaloacetate, and acetyl-coenzyme A were relatively flexible over the course of evolution on lactate to meet energetic and anabolic demands during rapid growth on this gluconeogenic carbon substrate. There were no clear qualitative correlations between most transcriptional expression and metabolic flux changes, suggesting complex regulatory mechanisms at multiple levels of genetics and molecular biology. Moreover, higher fitness gains for cell growth on both evolutionary and alternative carbon sources were found for strains that adaptively evolved on gluconeogenic carbon sources compared to those that evolved on glucose. These results provide a novel systematic view of the mechanisms underlying microbial adaptation to growth on a gluconeogenic substrate.
Collapse
Affiliation(s)
- Qiang Hua
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | | | | | |
Collapse
|
71
|
Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W. Metabolic flux analysis at ultra short time scale: Isotopically non-stationary 13C labeling experiments. J Biotechnol 2007; 129:249-67. [PMID: 17207877 DOI: 10.1016/j.jbiotec.2006.11.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/12/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
A novel approach to (13)C metabolic flux analysis (MFA) is presented using cytosolic metabolite pool sizes and their (13)C labeling data from an isotopically non-stationary (13)C labeling experiment (INST-CLE). The procedure is demonstrated with an E. coli wild type strain grown at fed batch conditions. The intra cellular labeling dynamics are excited by a sudden step increase of the (13)C portion in the substrate feed. Due to unchanged saturation of the substrate uptake system, the metabolic fluxes remain constant during the following sampling time period of only 16s, in which 20 samples are taken by an automated rapid sampling device immediately stopping metabolism by methanol quenching. Subsequent cell disruptive sample preparation and LC-MS/MS enabled simultaneous determination of pool sizes and mass isotopomers of intra cellular metabolites requiring detection limits in the nM range. Based on this data the new computational flux analysis tool 13CFLUX/INST is used to determine the intra cellular fluxes based on a complex carbon labeling network model. The measured data is in good agreement with the model predictions, thus proving the applicability of the new isotopically non-stationary (13)C metabolic flux analysis (INST-(13)C-MFA) concept. Moreover, it is shown that significant new information with respect to flux identifiability, non-measurable pool sizes, data consistency, or large storage pools can be taken from the novel kind of experimental data. This offers new insight into the biological operation of the metabolic network in vivo.
Collapse
Affiliation(s)
- Katharina Nöh
- Institute of Biotechnology, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
72
|
Ogawa T, Mori H, Tomita M, Yoshino M. Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol 2006; 158:159-63. [PMID: 17307338 DOI: 10.1016/j.resmic.2006.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/08/2006] [Accepted: 11/15/2006] [Indexed: 11/28/2022]
Abstract
For analyzing the control of energy metabolism in Escherichia coli, we carried out kinetic analyses of glycolytic enzymes purified from the overexpressing clones of E. coli K12 W3110 that were constructed with the vector pCA24N. Phosphoenolpyruvate (PEP) acted as an effective inhibitor of enzymes of the preparatory phase in glycolysis. Glucokinase was potently inhibited by PEP in a competitive manner with respect to ATP: the K(i) value for PEP was 0.1mM. PEP further inhibited phosphoglucoisomerase to a lesser extent, and phosphofructokinase A and aldolase A with 10-fold the K(i) values of glucokinase and phosphoglucoisomerase. Glucose is incorporated into E. coli through two pathways: the PTS (PEP-dependent phosphotransferase system) and the glucokinase reaction. PEP, a potent inhibitor of E. coli glucokinase, unlike most eukaryotic hexokinases, can act as a signal molecule controlling glucose uptake and glycolytic flux in cells.
Collapse
Affiliation(s)
- Tadashi Ogawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | |
Collapse
|
73
|
Hua Q, Joyce AR, Fong SS, Palsson BØ. Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains. Biotechnol Bioeng 2006; 95:992-1002. [PMID: 16807925 DOI: 10.1002/bit.21073] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental evolution is now frequently applied to many biological systems to achieve desired objectives. To obtain optimized performance for metabolite production, a successful strategy has been recently developed that couples metabolic engineering techniques with laboratory evolution of microorganisms. Previously, we reported the growth characteristics of three lactate-producing, adaptively evolved Escherichia coli mutant strains designed by the OptKnock computational algorithm. Here, we describe the use of (13)C-labeled experiments and mass distribution measurements to study the evolutionary effects on the fluxome of these differently designed strains. Metabolic flux ratios and intracellular flux distributions as well as physiological data were used to elucidate metabolic responses over the course of adaptive evolution and metabolic differences among strains. The study of 3 unevolved and 12 evolved engineered strains as well as a wild-type strain suggests that evolution resulted in remarkable improvements in both substrate utilization rate and the proportion of glycolytic flux to total glucose utilization flux. Among three strain designs, the most significant increases in the fraction of glucose catabolized through glycolysis (>50%) and the glycolytic fluxes (>twofold) were observed in phosphotransacetylase and phosphofructokinase 1 (PFK1) double deletion (pta- pfkA) strains, which were likely attributed to the dramatic evolutionary increase in gene expression and catalytic activity of the minor PFK encoded by pfkB. These fluxomic studies also revealed the important role of acetate synthetic pathway in anaerobic lactate production. Moreover, flux analysis suggested that independent of genetic background, optimal relative flux distributions in cells could be achieved faster than physiological parameters such as nutrient utilization rate.
Collapse
Affiliation(s)
- Qiang Hua
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA
| | | | | | | |
Collapse
|
74
|
Abstract
A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, Delta(r)G', of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction Delta(r)G' are able to achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic bottleneck in E. coli metabolism with a Delta(r)G' constrained close to zero while numerous reactions are identified throughout metabolism for which Delta(r)G' is always highly negative regardless of metabolite concentrations. As it has been proposed previously, these reactions with exclusively negative Delta(r)G' might be candidates for cell regulation, and we find that a significant number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermodynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and H(extracellular)(+)/H(intracellular)(+) are also determined and found to encompass the values observed experimentally in every case. Further, we find that the NAD/NADH and NADP/NADPH ratios maintained in the cell are close to the minimum feasible ratio and maximum feasible ratio, respectively.
Collapse
Affiliation(s)
- Christopher S Henry
- Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, Illinois, USA
| | | | | |
Collapse
|
75
|
Ogawa T, Murakami K, Mori H, Ishii N, Tomita M, Yoshin M. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli. J Bacteriol 2006; 189:1176-8. [PMID: 17142397 PMCID: PMC1797289 DOI: 10.1128/jb.01628-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.
Collapse
Affiliation(s)
- Tadashi Ogawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Aichi 489-1195, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Sauer U. Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2006; 2:62. [PMID: 17102807 PMCID: PMC1682028 DOI: 10.1038/msb4100109] [Citation(s) in RCA: 482] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/06/2006] [Indexed: 01/08/2023] Open
Abstract
Many properties of complex networks cannot be understood from monitoring the components—not even when comprehensively monitoring all protein or metabolite concentrations—unless such information is connected and integrated through mathematical models. The reason is that static component concentrations, albeit extremely informative, do not contain functional information per se. The functional behavior of a network emerges only through the nonlinear gene, protein, and metabolite interactions across multiple metabolic and regulatory layers. I argue here that intracellular reaction rates are the functional end points of these interactions in metabolic networks, hence are highly relevant for systems biology. Methods for experimental determination of metabolic fluxes differ fundamentally from component concentration measurements; that is, intracellular reaction rates cannot be detected directly, but must be estimated through computer model-based interpretation of stable isotope patterns in products of metabolism.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Switzerland.
| |
Collapse
|
77
|
Iwatani S, Van Dien S, Shimbo K, Kubota K, Kageyama N, Iwahata D, Miyano H, Hirayama K, Usuda Y, Shimizu K, Matsui K. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol 2006; 128:93-111. [PMID: 17055605 DOI: 10.1016/j.jbiotec.2006.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 08/16/2006] [Accepted: 09/08/2006] [Indexed: 12/01/2022]
Abstract
Metabolic flux analysis using (13)C-labeled substrates is a well-developed method for investigating cellular behavior in steady-state culture condition. To extend its application, in particular to typical industrial conditions, such as batch and fed-batch cultivations, a novel method of (13)C metabolic flux analysis is proposed. An isotopomer balancing model was developed to elucidate flux distributions in the central metabolism and all amino acids synthetic pathways. A lysine-producing strain of Escherichia coli was cultivated by fed-batch mode in a growth medium containing yeast extract. Mass distribution data was derived from both intracellular free amino acids and proteinogenic amino acids measured by LC-MS/MS, and a correction parameter for the protein turnover effect on the mass distributions of intracellular amino acids was introduced. Metabolic flux distributions were determined in both exponential and stationary phases. Using this new approach, a culture phase-dependent metabolic shift was detected in the fed-batch culture. The approach presented here has great potential for investigating cellular behavior in industrial processes, independent of cultivation modes, metabolic phase and growth medium.
Collapse
Affiliation(s)
- Shintaro Iwatani
- Systems Biology Group, Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki 210-8681, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Nöh K, Wahl A, Wiechert W. Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 2006; 8:554-77. [PMID: 16890470 DOI: 10.1016/j.ymben.2006.05.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/24/2006] [Accepted: 05/31/2006] [Indexed: 11/30/2022]
Abstract
(13)C metabolic flux analysis (MFA) has become an important and powerful tool for the quantitative analysis of metabolic networks in the framework of metabolic engineering. Isotopically instationary (13)C MFA under metabolic stationary conditions is a promising refinement of classical stationary MFA. It accounts for the experimental requirements of non-steady-state cultures as well as for the shortening of the experimental duration. This contribution extends all computational methods developed for classical stationary (13)C MFA to the instationary situation by using high-performance computing methods. The developed tools allow for the simulation of instationary carbon labeling experiments (CLEs), sensitivity calculation with respect to unknown parameters, fitting of the model to the measured data, statistical identifiability analysis and an optimal experimental design facility. To explore the potential of the new approach all these tools are applied to the central metabolism of Escherichia coli. The achieved results are compared to the outcome of the stationary counterpart, especially focusing on statistical properties. This demonstrates the specific strengths of the instationary method. A new ranking method is proposed making both an a priori and an a posteriori design of the sampling times available. It will be shown that although still not all fluxes are identifiable, the quality of flux estimates can be strongly improved in the instationary case. Moreover, statements about the size of some immeasurable pool sizes can be made.
Collapse
Affiliation(s)
- Katharina Nöh
- Department of Simulation, Faculty 11/12, University of Siegen, D-57068 Siegen, Germany.
| | | | | |
Collapse
|
79
|
Li M, Ho PY, Yao S, Shimizu K. Effect of sucA or sucC gene knockout on the metabolism in Escherichia coli based on gene expressions, enzyme activities, intracellular metabolite concentrations and metabolic fluxes by 13C-labeling experiments. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
Çalik P, Yilgör P, Demir AS. Influence of controlled-pH and uncontrolled-pH operations on recombinant benzaldehyde lyase production by Escherichia coli. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008. [PMID: 16738554 PMCID: PMC1681482 DOI: 10.1038/msb4100050] [Citation(s) in RCA: 5666] [Impact Index Per Article: 314.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/07/2005] [Indexed: 11/17/2022] Open
Abstract
We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants—the ‘Keio collection'—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).
Collapse
Affiliation(s)
- Tomoya Baba
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Ara
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Miki Hasegawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, Japan
| | - Yuki Takai
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, Japan
| | - Yoshiko Okumura
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Miki Baba
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Barry L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA. Tel.: +1 765 494 8034; Fax: +1 765 494 0876; E-mail:
| | - Hirotada Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan. Tel.: +81 743 72 5660; Fax: +81 743 72 5669; E-mail:
| |
Collapse
|
82
|
Wang QZ, Wu CY, Chen T, Chen X, Zhao XM. Integrating metabolomics into a systems biology framework to exploit metabolic complexity: strategies and applications in microorganisms. Appl Microbiol Biotechnol 2006; 70:151-61. [PMID: 16395543 DOI: 10.1007/s00253-005-0277-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/20/2005] [Accepted: 11/27/2005] [Indexed: 12/14/2022]
Abstract
As an important functional genomic tool, metabolomics has been illustrated in detail in recent years, especially in plant science. However, the microbial category also has the potential to benefit from integration of metabolomics into system frameworks. In this article, we first examine the concepts and brief history of metabolomics. Next, we summarize metabolomic research processes and analytical platforms in strain improvements. The application cases of metabolomics in microorganisms answer what the metabolomics can do in strain improvements. The position of metabolomics in this systems biology framework and the real cases of integrating metabolomics into a system framework to explore the microbial metabolic complexity are also illustrated in this paper.
Collapse
Affiliation(s)
- Qing-Zhao Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, People's Republic of China
| | | | | | | | | |
Collapse
|
83
|
Raman B, Nandakumar MP, Muthuvijayan V, Marten MR. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol Bioeng 2005; 92:384-92. [PMID: 16180237 DOI: 10.1002/bit.20570] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteome analysis was used to compare global protein expression changes in Escherichia coli fermentation between exponential and glucose-limited fed-batch phase. Two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry were used to separate and identify 49 proteins showing >2-fold difference in expression. Proteins upregulated during exponential phase include ribonucleotide biosynthesis enzymes and ribosomal recycling factor. Proteins upregulated during fed-batch phase include those involved in high-affinity glucose uptake, transport and degradation of alternate carbon sources and TCA cycle, suggesting an enhanced role of the cycle under glucose- and energy-limited conditions. We report the upregulation of several putative proteins (ytfQ, ygiS, ynaF, yggX, yfeX), not identified in any previous study under carbon-limited conditions.
Collapse
Affiliation(s)
- Babu Raman
- Department of Chemical and Biochemical Engineering, University of Maryland, Baltimore County (UMBC), ECS 314, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|
84
|
Hoque MA, Ushiyama H, Tomita M, Shimizu K. Dynamic responses of the intracellular metabolite concentrations of the wild type and pykA mutant Escherichia coli against pulse addition of glucose or NH3 under those limiting continuous cultures. Biochem Eng J 2005. [DOI: 10.1016/j.bej.2005.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Abstract
Central metabolism of carbohydrates uses the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways. This review reviews the biological roles of the enzymes and genes of these three pathways of E. coli. Glucose, pentoses, and gluconate are primarily discussed as the initial substrates of the three pathways, respectively. The genetic and allosteric regulatory mechanisms of glycolysis and the factors that affect metabolic flux through the pathways are considered here. Despite the fact that a lot of information on each of the reaction steps has been accumulated over the years for E. coli, surprisingly little quantitative information has been integrated to analyze glycolysis as a system. Therefore, the review presents a detailed description of each of the catalytic steps by a systemic approach. It considers both structural and kinetic aspects. Models that include kinetic information of the reaction steps will always contain the reaction stoichiometry and therefore follow the structural constraints, but in addition to these also kinetic rate laws must be fulfilled. The kinetic information obtained on isolated enzymes can be integrated using computer models to simulate behavior of the reaction network formed by these enzymes. Successful examples of such approaches are the modeling of glycolysis in S. cerevisiae, the parasite Trypanosoma brucei, and the red blood cell. With the rapid developments in the field of Systems Biology many new methods have been and will be developed, for experimental and theoretical approaches, and the authors expect that these will be applied to E. coli glycolysis in the near future.
Collapse
Affiliation(s)
- Tony Romeo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacky L Snoep
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
86
|
Zamboni N, Fischer E, Muffler A, Wyss M, Hohmann HP, Sauer U. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol Bioeng 2005; 89:219-32. [PMID: 15584023 DOI: 10.1002/bit.20338] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At the onset of glucose-limited continuous cultures, riboflavin production in recombinant Bacillus subtilis declines significantly within 3 generations. This phenomenon was specific to riboflavin production and was not correlated with any other physiological parameter. Physiological analyses excluded genetic degeneration or co-metabolism of previously generated overflow metabolites as possible causes for the riboflavin transients. By developing a novel method for (13)C-based metabolic flux analysis under non-steady-state conditions, we showed that the pentose precursors of riboflavin were exclusively synthesized via the non-oxidative pentose-phosphate (PP) pathway as long as riboflavin production was high. The complete redirection of carbon flux to the oxidative branch of the PP pathway was achieved at unaltered PP pathway gene expression and correlated with the declining riboflavin production. With the possible exception of a slight down-regulation of the purine biosynthesis pathway, genome-wide expression analysis indicated that transcriptional regulation was not responsible for the production decline.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
87
|
Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J. Glucose metabolism at high density growth ofE. coli B andE. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization inE. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng 2005; 90:805-20. [PMID: 15806547 DOI: 10.1002/bit.20478] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In a series of previous reports it was established by implementing metabolic flux, NMR/MS, and Northern blot analysis that the glyoxylate shunt, the TCA cycle, and acetate uptake by acetyl-CoA synthetase are more active in Escherichia coli BL21 than in Escherichia coli JM109. These differences were accepted as the reason for the differences in the glucose metabolism and acetate excretion of these two strains. Examination of the bacterial metabolism by microarrays and time course Northern blot showed that in addition to the glyoxylate shunt, the TCA cycle and the acetate uptake, other metabolic pathways are active differently in the two strains. These are gluconeogenesis, sfcA shunt, ppc shunt, glycogen biosynthesis, and fatty acid degradation. It was found that in E. coli JM109, acetate is produced by pyruvate oxidase (poxB) using pyruvate as a substrate rather than by phosphotransacetylase-acetate kinase (Pta-AckA) system which uses acetyl-CoA. The inactivation of the gluconeogenesis enzyme phosphoenolpyruvate synthetase (ppsA), the activation of the anaplerotic sfcA shunt, and low and stable pyruvate dehydrogenase (aceE, aceF) cause pyruvate accumulation which is converted to acetate by pyruvate oxidase B. The behavior of the ppsA, acs, and aceBAK in JM109 was dependent on the glucose supply strategy. When the glucose concentration was high, no transcription of these genes was observed and acetate concentration increased, but at low glucose concentrations these genes were expressed and the acetate concentration decreased. It is possible that there is a major regulatory molecule that controls not only ppsA and aceBAK but also acs. The gluconeogenesis pathway (fbp, pckA, and ppsA) which leads to glycogen accumulation is constitutively active in E. coli BL21 regardless of glucose feeding strategy.
Collapse
Affiliation(s)
- Je-Nie Phue
- Biotechnology Unit, NIH NIDDK, Bethesda, Maryland 20892-2715, USA
| | | | | | | | | |
Collapse
|
88
|
Sauer U, Eikmanns BJ. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 2004; 29:765-94. [PMID: 16102602 DOI: 10.1016/j.femsre.2004.11.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/27/2004] [Accepted: 11/01/2004] [Indexed: 11/16/2022] Open
Abstract
In many organisms, metabolite interconversion at the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node involves a structurally entangled set of reactions that interconnects the major pathways of carbon metabolism and thus, is responsible for the distribution of the carbon flux among catabolism, anabolism and energy supply of the cell. While sugar catabolism proceeds mainly via oxidative or non-oxidative decarboxylation of pyruvate to acetyl-CoA, anaplerosis and the initial steps of gluconeogenesis are accomplished by C3- (PEP- and/or pyruvate-) carboxylation and C4- (oxaloacetate- and/or malate-) decarboxylation, respectively. In contrast to the relatively uniform central metabolic pathways in bacteria, the set of enzymes at the PEP-pyruvate-oxaloacetate node represents a surprising diversity of reactions. Variable combinations are used in different bacteria and the question of the significance of all these reactions for growth and for biotechnological fermentation processes arises. This review summarizes what is known about the enzymes and the metabolic fluxes at the PEP-pyruvate-oxaloacetate node in bacteria, with a particular focus on the C3-carboxylation and C4-decarboxylation reactions in Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. We discuss the activities of the enzymes, their regulation and their specific contribution to growth under a given condition or to biotechnological metabolite production. The present knowledge unequivocally reveals the PEP-pyruvate-oxaloacetate nodes of bacteria to be a fascinating target of metabolic engineering in order to achieve optimized metabolite production.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, Switzerland
| | | |
Collapse
|
89
|
Hermann T. Using functional genomics to improve productivity in the manufacture of industrial biochemicals. Curr Opin Biotechnol 2004; 15:444-8. [PMID: 15464376 DOI: 10.1016/j.copbio.2004.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent developments in the field of functional genomics have been used to increase productivity in the manufacture of industrial biochemicals. Technologies like transcriptomics and proteomics have profited from the increasing number of genome sequencing projects. Meanwhile functional genomics has evolved from several isolated technologies, such as DNA chip technology and proteomics, to combined approaches that can help us to understand why organisms produce a certain product. The combination of expression studies and kinetic studies, such as carbon flux determination or metabolite measurements, has significantly improved productivity in production processes.
Collapse
Affiliation(s)
- Thomas Hermann
- Degussa AG, Feed Additives, Research and Development, Kantstrasse 2, 33790 Halle/Westfalen, Germany.
| |
Collapse
|
90
|
Abstract
Many technologies have been developed to help explain the phenotypic consequences of genetic and/or environmental modifications in areas like functional genomics, pharmaceutical research and metabolic engineering. The missing link in contemporary functional analyses that focus on the analysis of cellular components is the capacity to directly observe functional units. By linking genes and proteins to higher level biological functions, the molecular fluxes through metabolic networks (the fluxome) determine the cellular phenotype. Quantitative monitoring of such whole network operations by methods of metabolic flux analysis, thus bridges the gap by providing a global perspective of the integrated regulation at the transcriptional, translational and metabolic level. This review highlights recent developments towards high-throughput flux analysis.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.
| |
Collapse
|
91
|
Hua Q, Yang C, Oshima T, Mori H, Shimizu K. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol 2004; 70:2354-66. [PMID: 15066832 PMCID: PMC383082 DOI: 10.1128/aem.70.4.2354-2366.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms underlying the change in the flux, information on gene expression is of great importance. DNA microarray analysis was performed to investigate the global transcriptional responses of steady-state cells grown in chemostat cultures with limited glucose or ammonia while other environmental conditions and the growth rate were kept constant. In slow-growing cells (specific growth rate of 0.10 h(-1)), 9.8% of a total of 4,071 genes investigated, especially those involved in amino acid metabolism, central carbon and energy metabolism, transport system and cell envelope, were observed to be differentially expressed between the two nutrient-limited cultures. One important characteristic of E. coli grown under nutrient limitation was its capacity to scavenge carbon or nitrogen from the medium through elevating the expression of the corresponding transport and assimilation genes. The number of differentially expressed genes in faster-growing cells (specific growth rate of 0.55 h(-1)), however, decreased to below half of that in slow-growing cells, which could be explained by diverse transcriptional responses to the growth rate under different nutrient limitations. Independent of the growth rate, 92 genes were identified as being differentially expressed. Genes tightly related to the culture conditions were highlighted, some of which may be used to characterize nutrient-limited growth.
Collapse
Affiliation(s)
- Qiang Hua
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
| | | | | | | | | |
Collapse
|
92
|
Kim P, Laivenieks M, Vieille C, Zeikus JG. Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. Appl Environ Microbiol 2004; 70:1238-41. [PMID: 14766613 PMCID: PMC348918 DOI: 10.1128/aem.70.2.1238-1241.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Succinate fermentation was investigated in Escherichia coli strains overexpressing Actinobacillus succinogenes phosphoenolpyruvate carboxykinase (PEPCK). In E. coli K-12, PEPCK overexpression had no effect on succinate fermentation. In contrast, in the phosphoenolpyruvate carboxylase mutant E. coli strain K-12 ppc::kan, PEPCK overexpression increased succinate production 6.5-fold.
Collapse
Affiliation(s)
- Pil Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
93
|
Peng L, Arauzo-Bravo MJ, Shimizu K. Metabolic flux analysis for appcmutantEscherichia colibased on13C-labelling experiments together with enzyme activity assays and intracellular metabolite measurements. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09562.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
94
|
Hua Q, Yang C, Baba T, Mori H, Shimizu K. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 2004; 185:7053-67. [PMID: 14645264 PMCID: PMC296241 DOI: 10.1128/jb.185.24.7053-7067.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The responses of Escherichia coli central carbon metabolism to knockout mutations in phosphoglucose isomerase and glucose-6-phosphate (G6P) dehydrogenase genes were investigated by using glucose- and ammonia-limited chemostats. The metabolic network structures and intracellular carbon fluxes in the wild type and in the knockout mutants were characterized by using the complementary methods of flux ratio analysis and metabolic flux analysis based on [U-(13)C]glucose labeling and two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, glycerol, and glucose. Disruption of phosphoglucose isomerase resulted in use of the pentose phosphate pathway as the primary route of glucose catabolism, while flux rerouting via the Embden-Meyerhof-Parnas pathway and the nonoxidative branch of the pentose phosphate pathway compensated for the G6P dehydrogenase deficiency. Furthermore, additional, unexpected flux responses to the knockout mutations were observed. Most prominently, the glyoxylate shunt was found to be active in phosphoglucose isomerase-deficient E. coli. The Entner-Doudoroff pathway also contributed to a minor fraction of the glucose catabolism in this mutant strain. Moreover, although knockout of G6P dehydrogenase had no significant influence on the central metabolism under glucose-limited conditions, this mutation resulted in extensive overflow metabolism and extremely low tricarboxylic acid cycle fluxes under ammonia limitation conditions.
Collapse
Affiliation(s)
- Qiang Hua
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.
| | | | | | | | | |
Collapse
|
95
|
Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 2003; 279:6613-9. [PMID: 14660605 DOI: 10.1074/jbc.m311657200] [Citation(s) in RCA: 410] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pentose phosphate pathway and isocitrate dehydrogenase are generally considered to be the major sources of the anabolic reductant NADPH. As one of very few microbes, Escherichia coli contains two transhydrogenase isoforms with unknown physiological function that could potentially transfer electrons directly from NADH to NADP+ and vice versa. Using defined mutants and metabolic flux analysis, we identified the proton-translocating transhydrogenase PntAB as a major source of NADPH in E. coli. During standard aerobic batch growth on glucose, 35-45% of the NADPH that is required for biosynthesis was produced via PntAB, whereas pentose phosphate pathway and isocitrate dehydrogenase contributed 35-45% and 20-25%, respectively. The energy-independent transhydrogenase UdhA, in contrast, was essential for growth under metabolic conditions with excess NADPH formation, i.e. growth on acetate or in a phosphoglucose isomerase mutant that catabolized glucose through the pentose phosphate pathway. Thus, both isoforms have divergent physiological functions: energy-dependent reduction of NADP+ with NADH by PntAB and reoxidation of NADPH by UdhA. Expression appeared to be modulated by the redox state of cellular metabolism, because genetic and environmental manipulations that increased or decreased NADPH formation down-regulated pntA or udhA transcription, respectively. The two transhydrogenase isoforms provide E. coli primary metabolism with an extraordinary flexibility to cope with varying catabolic and anabolic demands, which raises two general questions: why do only a few bacteria contain both isoforms, and how do other organisms manage NADPH metabolism?
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
96
|
Fischer E, Sauer U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J Biol Chem 2003; 278:46446-51. [PMID: 12963713 DOI: 10.1074/jbc.m307968200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Complete oxidation of carbohydrates to CO2 is considered to be the exclusive property of the ubiquitous tricarboxylic acid cycle, the central process in cellular energy metabolism of aerobic organisms. Based on metabolism-wide in vivo quantification of intracellular carbon fluxes, we describe here complete oxidation of carbohydrates via the novel P-enolpyruvate (PEP)-glyoxylate cycle, in which two PEP molecules are oxidized by means of acetyl coenzyme A, citrate, glyoxylate, and oxaloacetate to CO2, and one PEP is regenerated. Key reactions are the constituents of the glyoxylate shunt and PEP carboxykinase, whose conjoint operation in this bi-functional catabolic and anabolic cycle is in sharp contrast to their generally recognized functions in anaplerosis and gluconeogenesis, respectively. Parallel operation of the PEP-glyoxylate cycle and the tricarboxylic acid cycle was identified in the bacterium Escherichia coli under conditions of glucose hunger in a slow-growing continuous culture. Because the PEP-glyoxylate cycle was also active in glucose excess batch cultures of an NADPH-overproducing phosphoglucose isomerase mutant, one function of this new central pathway may be the decoupling of catabolism from NADPH formation that would otherwise occur in the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Eliane Fischer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | |
Collapse
|