51
|
Pythoud N, Bons J, Mijola G, Beck A, Cianférani S, Carapito C. Optimized Sample Preparation and Data Processing of Data-Independent Acquisition Methods for the Robust Quantification of Trace-Level Host Cell Protein Impurities in Antibody Drug Products. J Proteome Res 2020; 20:923-931. [PMID: 33016074 DOI: 10.1021/acs.jproteome.0c00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Host cell proteins (HCPs) are a major class of bioprocess-related impurities generated by the host organism and are generally present at low levels in purified biopharmaceutical products. The monitoring of these impurities is identified as an important critical quality attribute of monoclonal antibody (mAb) formulations not only due to the potential risk for the product stability and efficacy but also concerns linked to the immunogenicity of some of them. While overall HCP levels are usually monitored by enzyme-linked immunosorbent assay (ELISA), mass spectrometry (MS)-based approaches have been emerging as powerful and promising alternatives providing qualitative and quantitative information. However, a major challenge for liquid chromatography (LC)-MS-based methods is to deal with the wide dynamic range of drug products and the extreme sensitivity required to detect trace-level HCPs. In this study, we developed powerful and reproducible MS-based analytical workflows coupling optimized and efficient sample preparations, the library-free data-independent acquisition (DIA) method, and stringent validation criteria. The performances of several preparation protocols and DIA versus classical data-dependent acquisition (DDA) were evaluated using a series of four commercially available drug products. Depending on the selected protocols, the user has access to different information: on the one hand, a deep profiling of tens of identified HCPs and on the other hand, accurate and reproducible (coefficients of variation (CVs) < 12%) quantification of major HCPs. Overall, a final global HCP amount of a few tens of ng/mg mAb in these mAb samples was measured, while reaching a sensitivity down to the sub-ng/mg mAb level. Thus, this straightforward and robust approach can be intended as a routine quality control for any drug product analysis.
Collapse
Affiliation(s)
- Nicolas Pythoud
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Joanna Bons
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Geoffroy Mijola
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), F-74160 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, UMR7178, F-67087 Strasbourg, France
| |
Collapse
|
52
|
Song Y, Kim Y, Ha S, Sheller-Miller S, Yoo J, Choi C, Park CH. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2020; 85:e13329. [PMID: 32846024 PMCID: PMC7900947 DOI: 10.1111/aji.13329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The extracellular vesicles (EVs) research area has grown rapidly because of their pivotal roles in intercellular communications and maintaining homeostasis of individual organism. As a subtype of EVs, exosomes are made via unique biogenesis pathway and exhibit disparate functional and phenotypic characteristics. Functionally, exosomes transfer biological messages from donor cell to recipient cell, which makes exosomes as a novel therapeutic platform delivering therapeutic materials to the target tissue/cell. Currently, both academia and industry try to develop exosome platform‐based therapeutics for disease management, some of which are already in clinical trials. In this review, we will discuss focusing on therapeutic values of exosomes, recent advances in therapeutic exosome platform development, and late development of exosome therapeutics in diverse therapeutic areas.
Collapse
Affiliation(s)
| | | | - Sunhyung Ha
- ILIAS Biologics Inc, Daejeon, Republic of Korea
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Chulhee Choi
- ILIAS Biologics Inc, Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
53
|
Decker JS, Menacho-Melgar R, Lynch MD. Low-Cost, Large-Scale Production of the Anti-viral Lectin Griffithsin. Front Bioeng Biotechnol 2020; 8:1020. [PMID: 32974328 PMCID: PMC7471252 DOI: 10.3389/fbioe.2020.01020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Griffithsin, a broad-spectrum antiviral lectin, has potential to prevent and treat numerous viruses including HIV, HCV, HSV, SARS-CoV, and SARS-CoV-2. For these indications, the annual demand for Griffithsin could reach billions of doses and affordability is paramount. We report the lab-scale validation of a bioprocess that supports production volumes of >20 tons per year at a cost of goods sold below $3,500/kg. Recombinant expression in engineered E. coli enables Griffithsin titers ∼2.5 g/L. A single rapid precipitation step provides > 90% yield with 2-, 3-, and 4-log reductions in host cell proteins, endotoxin, and nucleic acids, respectively. Two polishing chromatography steps remove residual contaminants leading to pure, active Griffithsin. Compared to a conventional one this process shows lower costs and improved economies of scale. These results support the potential of biologics in very large-scale, cost-sensitive applications such as antivirals, and highlight the importance of bioprocess innovations in enabling these applications.
Collapse
Affiliation(s)
| | | | - Michael D. Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
54
|
Clavier S, Fougeron D, Petrovic S, Elmaleh H, Fourneaux C, Bugnazet D, Duffieux F, Masiero A, Mitra-Kaushik S, Genet B, Fromentin Y, Kreiss P, Laborderie B, Brault D, Menet JM. Improving the analytical toolbox to investigate copurifying host cell proteins presence: N-(4)-(β-acetylglucosaminyl)- l-asparaginase case study. Biotechnol Bioeng 2020; 117:3368-3378. [PMID: 32706388 PMCID: PMC7689792 DOI: 10.1002/bit.27514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Levels of host cell proteins (HCPs) in purification intermediates and drug substances (DS) of monoclonal antibodies (mAbs) must be carefully monitored for the production of safe and efficacious biotherapeutics. During the development of mAb1, an immunoglobulin G1 product, unexpected results generated with HCP Enzyme‐Linked Immunosorbent Assay (ELISA) kit triggered an investigation which led to the identification of a copurifying HCP called N‐(4)‐(β‐acetylglucosaminyl)‐l‐asparaginase (AGA, EC3.5.1.26) by liquid chromatography–tandem mass spectrometry (LC‐MS/MS). The risk assessment performed indicated a low immunogenicity risk for the copurifying HCP and an ad hoc stability study demonstrated no mAb glycan cleavage and thus no impact on product quality. Fractionation studies performed on polishing steps revealed that AGA was coeluted with the mAb. Very interestingly, the native digestion protocol implemented to go deeper in the MS–HCP profiling was found to be incompatible with correct AGA detection in last purification intermediate and DS, further suggesting a hitchhiking behavior of AGA. In silico surface characterization of AGA also supports this hypothesis. Finally, the combined support of HCP ELISA results and MS allowed process optimization and removal of this copurifying HCP.
Collapse
Affiliation(s)
- Séverine Clavier
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Delphine Fougeron
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Suzana Petrovic
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Hagit Elmaleh
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Céline Fourneaux
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Dawid Bugnazet
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Francis Duffieux
- Protein Science and Technology, Biologics Research, Sanofi R&D, Vitry-Sur-Seine, France
| | | | | | - Bruno Genet
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Yann Fromentin
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Patrick Kreiss
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | | | - Dominique Brault
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| | - Jean-Michel Menet
- BioAnalytics, Biologics Development, Sanofi R&D, Vitry-Sur-Seine, France
| |
Collapse
|
55
|
Esser-Skala W, Segl M, Wohlschlager T, Reisinger V, Holzmann J, Huber CG. Exploring sample preparation and data evaluation strategies for enhanced identification of host cell proteins in drug products of therapeutic antibodies and Fc-fusion proteins. Anal Bioanal Chem 2020; 412:6583-6593. [PMID: 32691086 PMCID: PMC7442769 DOI: 10.1007/s00216-020-02796-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/17/2023]
Abstract
Manufacturing of biopharmaceuticals involves recombinant protein expression in host cells followed by extensive purification of the target protein. Yet, host cell proteins (HCPs) may persist in the final drug product, potentially reducing its quality with respect to safety and efficacy. Consequently, residual HCPs are closely monitored during downstream processing by techniques such as enzyme-linked immunosorbent assay (ELISA) or high-performance liquid chromatography combined with tandem mass spectrometry (HPLC-MS/MS). The latter is especially attractive as it provides information with respect to protein identities. Although the applied HPLC-MS/MS methodologies are frequently optimized with respect to HCP identification, acquired data is typically analyzed using standard settings. Here, we describe an improved strategy for evaluating HPLC-MS/MS data of HCP-derived peptides, involving probabilistic protein inference and peptide detection in the absence of fragment ion spectra. This data analysis workflow was applied to data obtained for drug products of various biotherapeutics upon protein A affinity depletion. The presented data evaluation strategy enabled in-depth comparative analysis of the HCP repertoires identified in drug products of the monoclonal antibodies rituximab and bevacizumab, as well as the fusion protein etanercept. In contrast to commonly applied ELISA strategies, the here presented workflow is process-independent and may be implemented into existing HPLC-MS/MS setups for drug product characterization and process development. Graphical abstract ![]()
Collapse
Affiliation(s)
- Wolfgang Esser-Skala
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Marius Segl
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Therese Wohlschlager
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Veronika Reisinger
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Technical Development Biosimilars, Global Drug Development, Novartis, Sandoz GmbH, Biochemiestraße 10, 6250, Kundl, Austria
| | - Johann Holzmann
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.,Technical Development Biosimilars, Global Drug Development, Novartis, Sandoz GmbH, Biochemiestraße 10, 6250, Kundl, Austria
| | - Christian G Huber
- Bioanalytical Research Labs, Department of Biosciences, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria. .,Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| |
Collapse
|
56
|
Johnson RO, Greer T, Cejkov M, Zheng X, Li N. Combination of FAIMS, Protein A Depletion, and Native Digest Conditions Enables Deep Proteomic Profiling of Host Cell Proteins in Monoclonal Antibodies. Anal Chem 2020; 92:10478-10484. [DOI: 10.1021/acs.analchem.0c01175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Reid O’Brien Johnson
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Tyler Greer
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Milos Cejkov
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Xiaojing Zheng
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
57
|
Improving Chinese hamster ovary host cell protein ELISA using Ella ®: an automated microfluidic platform. Biotechniques 2020; 69:186-192. [PMID: 32615786 DOI: 10.2144/btn-2020-0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are a mammalian cell line used in the production of therapeutic proteins. Host cell proteins (HCPs) are process-related impurities that are derived from the host cell expression system. During biopharmaceutical drug development, removal of HCPs is required. Enzyme-linked immunosorbent assay (ELISA) is a common technique to quantitate HCPs, but is a labor-intensive process that takes up to 7 h. Ella® is an automated instrument that utilizes microfluidics and glass nanoreactors to quantitate HCPs in 75 min using similar ELISA reagents. The antibodies and antigens are captured on three distinct glass nanoreactors, resulting in sensitive reproducible data. Our results indicate that Ella quantitates CHO HCPs with precision, accuracy, sensitivity and trends comparable with our traditional CHO HCP ELISA.
Collapse
|
58
|
Multiplex secretome engineering enhances recombinant protein production and purity. Nat Commun 2020; 11:1908. [PMID: 32313013 PMCID: PMC7170862 DOI: 10.1038/s41467-020-15866-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/31/2020] [Indexed: 01/20/2023] Open
Abstract
Host cell proteins (HCPs) are process-related impurities generated during biotherapeutic protein production. HCPs can be problematic if they pose a significant metabolic demand, degrade product quality, or contaminate the final product. Here, we present an effort to create a "clean" Chinese hamster ovary (CHO) cell by disrupting multiple genes to eliminate HCPs. Using a model of CHO cell protein secretion, we predict that the elimination of unnecessary HCPs could have a non-negligible impact on protein production. We analyze the HCP content of 6-protein, 11-protein, and 14-protein knockout clones. These cell lines exhibit a substantial reduction in total HCP content (40%-70%). We also observe higher productivity and improved growth characteristics in specific clones. The reduced HCP content facilitates purification of a monoclonal antibody. Thus, substantial improvements can be made in protein titer and purity through large-scale HCP deletion, providing an avenue to increased quality and affordability of high-value biopharmaceuticals.
Collapse
|
59
|
Pilely K, Nielsen SB, Draborg A, Henriksen ML, Hansen SWK, Skriver L, Mørtz E, Lund RR. A novel approach to evaluate ELISA antibody coverage of host cell proteins-combining ELISA-based immunocapture and mass spectrometry. Biotechnol Prog 2020; 36:e2983. [PMID: 32087048 PMCID: PMC7507178 DOI: 10.1002/btpr.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 02/17/2020] [Indexed: 11/18/2022]
Abstract
Monitoring host cell proteins (HCPs) is one of the most important analytical requirements in production of recombinant biopharmaceuticals to ensure product purity and patient safety. Enzyme‐linked immunosorbent assay (ELISA) is the standard method for monitoring HCP clearance. It is important to validate that the critical reagent of an ELISA, the HCP antibody, covers a broad spectrum of the HCPs potentially present in the purified drug substance. Current coverage methods for assessing HCP antibody coverage are based on 2D‐Western blot or immunoaffinity‐purification combined with 2D gel electrophoresis and have several limitations. In the present study, we present a novel coverage method combining ELISA‐based immunocapture with protein identification by liquid chromatography–tandem mass spectrometry (LC–MS/MS): ELISA‐MS. ELISA‐MS is used to accurately determine HCP coverage of an early process sample by three commercially available anti‐Escherichia coli HCP antibodies, evading the limitations of current methods for coverage analysis, and taking advantage of the benefits of MS analysis. The results obtained comprise a list of individual HCPs covered by each HCP antibody. The novel method shows high sensitivity, high reproducibility, and enables tight control of nonspecific binding through inclusion of a species‐specific isotype control antibody. We propose that ELISA‐MS will be a valuable supplement to existing coverage methods or even a replacement. ELISA‐MS will increase the possibility of selecting the best HCP ELISA, thus improving HCP surveillance and resulting in a final HCP profile with the lowest achievable risk. Overall, this will be beneficial to both the pharmaceutical industry and patient safety.
Collapse
Affiliation(s)
| | | | - Anette Draborg
- Alphalyse A/S, Odense, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maiken L Henriksen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Søren W K Hansen
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | |
Collapse
|
60
|
Steff AM, Cadieux-Dion C, de Lannoy G, Prato MK, Czeszak X, André B, Ingels DC, Louckx M, Dewé W, Picciolato M, Maleux K, Fissette L, Dieussaert I. Hamster neogenin, a host-cell protein contained in a respiratory syncytial virus candidate vaccine, induces antibody responses in rabbits but not in clinical trial participants. Hum Vaccin Immunother 2020; 16:1327-1337. [PMID: 31951765 PMCID: PMC7482880 DOI: 10.1080/21645515.2019.1693749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A recombinant respiratory syncytial virus (RSV) fusion glycoprotein candidate vaccine (RSV-PreF) manufactured in Chinese hamster ovary cells was developed for immunization of pregnant women, to protect newborns against RSV disease through trans-placental antibody transfer. Traces of a host-cell protein, hamster neogenin (haNEO1), were identified in purified RSV-PreF antigen material. Given the high amino-acid sequence homology between haNEO1 and human neogenin (huNEO1), there was a risk that potential vaccine-induced anti-neogenin immunity could affect huNEO1 function in mother or fetus. Anti-huNEO1 IgGs were measured by enzyme-linked immunosorbent assay in sera from rabbits and trial participants (Phase 1 and 2 trials enrolling 128 men and 500 non-pregnant women, respectively; NCT01905215/NCT02360475) collected after immunization with RSV-PreF formulations containing different antigen doses with/without aluminum-hydroxide adjuvant. In rabbits, four injections administered at 14-day intervals induced huNEO1-specific IgG responses in an antigen-dose- and adjuvant-dependent manner, which plateaued in the highest-dose groups after three injections. In humans, no vaccination-induced anti-huNEO1 IgG responses were detected upon a single immunization, as the values in vaccine and control groups fluctuated around pre-vaccination levels up to 90/360 days post-vaccination. A minority of participants had anti-huNEO1 levels ≥ assay cutoff before vaccination, which did not increase post-vaccination. Thus, despite detecting vaccine-induced huNEO1-specific responses in rabbits, we found no evidence that the candidate vaccine had induced anti-huNEO1 immunity in human adults. The antigen purification process was nevertheless optimized, and haNEO1-reduced vaccines were used in a subsequent Phase 2 trial enrolling 400 non-pregnant women (NCT02956837), in which again no vaccine-induced anti-huNEO1 responses were detected.
Collapse
|
61
|
Das TK, Narhi LO, Sreedhara A, Menzen T, Grapentin C, Chou DK, Antochshuk V, Filipe V. Stress Factors in mAb Drug Substance Production Processes: Critical Assessment of Impact on Product Quality and Control Strategy. J Pharm Sci 2020; 109:116-133. [DOI: 10.1016/j.xphs.2019.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
|
62
|
Gao X, Rawal B, Wang Y, Li X, Wylie D, Liu YH, Breunig L, Driscoll D, Wang F, Richardson DD. Targeted Host Cell Protein Quantification by LC-MRM Enables Biologics Processing and Product Characterization. Anal Chem 2019; 92:1007-1015. [PMID: 31860266 DOI: 10.1021/acs.analchem.9b03952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple reaction monitoring (MRM) is a liquid chromatography-mass spectrometry (LC-MS) based quantification platform with high sensitivity, specificity, and throughput. It is extensively used across the pharmaceutical industry for the quantitative analysis of therapeutic molecules. The potential of MRM analysis for the quantification of specific host cell proteins (HCPs) in bioprocess, however, has yet to be well established. In this work, we introduce a multiplex LC-MRM assay that simultaneously monitors two high risk lipases known to impact biologics product quality, Phospholipase B-like 2 protein (PLBL2) and Group XV lysosomal phospholipase A2 (LPLA2). Quantitative data generated from the LC-MRM assay were used to monitor the clearance of these lipases during biologics process development. The method is linear over a dynamic range of 1 to 500 ng/mg. To demonstrate the fitness for use and robustness of this assay, we evaluate a comprehensive method qualification package that includes intra- and inter-run precision and accuracy across all evaluated concentrations, selectivity, recovery and matrix effect, dilution linearity, and carryover. Additionally, we illustrate that this assay provides a rapid and accurate means of monitoring high risk HCP clearance for in-process support and can actively guide process improvement and optimization. Lastly, we compare direct digestion platforms and affinity depletion platforms to demonstrate the impact of HCP-mAb interaction on lipase quantification.
Collapse
Affiliation(s)
- Xinliu Gao
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Baibhav Rawal
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Yi Wang
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Xuanwen Li
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - David Wylie
- Biologics Analytical Research & Development , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Yan-Hui Liu
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Lloyd Breunig
- Biologics Analytical Research & Development , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Dennis Driscoll
- Biologics Analytical Research & Development , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Fengqiang Wang
- Biologics Analytical Research & Development , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| | - Douglas D Richardson
- Analytical Research & Development Mass Spectrometry , Merck & Company Incorporated , 2000 Galloping Hill Road , Kenilworth , New Jersey 07033 , United States
| |
Collapse
|
63
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
64
|
Salt-enhanced permeabilization for monoclonal antibody precipitation and purification in a tubular reactor with a depth filtration membrane with advanced chromatin extraction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
65
|
Reiter K, Suzuki M, Olano LR, Narum DL. Host cell protein quantification of an optimized purification method by mass spectrometry. J Pharm Biomed Anal 2019; 174:650-654. [PMID: 31279895 PMCID: PMC11127253 DOI: 10.1016/j.jpba.2019.06.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022]
Abstract
Recombinant ExoProtein A (EPA), a detoxified form of Pseudomonas aeruginosa Exotoxin A, is used as a protein carrier in the vaccine field. A scaled manufacturing process, in which EPA was expressed in Escherichia coli, yielded a product that approached or exceeded our upper limit of E. coli host cell protein (HCP) content per human dose. The purification process was redeveloped to reduce HCP levels in the bulk product and HCP content was evaluated by orthogonal methods. Using a platform specific immunoassay, the HCP level from the original purification method was 1,830 ppm (0.18% w/w) while the revised purification process yielded the HCP below the detection limits of the assay. With a 2D/LC-MSE methodology the reference sample from the original process was found to contain 57 unique HCPs at a total level of 37,811 ppm (3.78% w/w). Two lots were tested after purification with the revised process and contained 730 and 598 ppm (0.07% and 0.06% w/w), respectively. To develop a high-throughput MS method, the samples were tested on a 1D/LC-MS/MS. The data sets from the two mass spectrometers correlated well. These improved HCP profiles support implementing the revised purification process for manufacturing the EPA protein carrier and 1D/LC-MS/MS for HCP analysis.
Collapse
Affiliation(s)
- Karine Reiter
- Laboratory of Malaria Immunology and Vaccinology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lisa Renee Olano
- Research Technologies Branch, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
66
|
Quality Control and Downstream Processing of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:55-80. [PMID: 31482494 DOI: 10.1007/978-981-13-7709-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Therapeutic enzymes are a commercially minor but clinically important area of biopharmaceuticals. An array of therapeutic enzymes has been developed for a variety of human diseases, including leukaemia and enzyme-deficiency diseases such as Gaucher's disease. Production and testing of therapeutic enzymes is strictly governed by regulatory bodies in each country around the world, and batch-to-batch consistency is crucially important. Manufacture of a batch starts with the fermentation or cell culture stage. After expression of the therapeutic enzyme in a cell culture bioreactor, robust and reproducible protein purification, or downstream processing (DSP) of the target product, is critical to ensuring safe delivery of these medicines. Modern processing technology, including the use of disposable processing equipment, has greatly improved the DSP development pathway in terms of robustness and speed to clinic. Once purified, the drug substance undergoes rigorous quality control (QC) testing according to current regulatory guidance, to enable release to the clinic and patient. QC testing is conducted to ensure the safety, purity, identity, potency and strength of the medicinal product, requiring multiple analytical methods that are rigorously validated and monitored for robust performance. Several case studies, including L-asparaginase and asfotase alfa, are discussed to illustrate the methods described herein.
Collapse
|
67
|
Reijers JAA, Malone KE, Bajramovic JJ, Verbeek R, Burggraaf J, Moerland M. Adverse immunostimulation caused by impurities: The dark side of biopharmaceuticals. Br J Clin Pharmacol 2019; 85:1418-1426. [PMID: 30920013 PMCID: PMC6595286 DOI: 10.1111/bcp.13938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Drug safety is an important issue, especially in the experimental phases of development. Adverse immunostimulation (AI) is sometimes encountered following treatment with biopharmaceuticals, which can be life-threatening if it results in a severe systemic inflammatory reaction. Biopharmaceuticals that unexpectedly induce an inflammatory response still enter the clinic, even while meeting all regulatory requirements. Impurities (of microbial origin) in biopharmaceuticals are an often-overlooked cause of AI. This demonstrates that the current guidelines for quality control and safety pharmacology testing are not flawless. Here, based on two case examples, several shortcomings of the guidelines are discussed. The most important of these are the lack of sensitivity for impurities, lack of testing for pyrogens other than endotoxin, and the use of insensitive animal species and biomarkers in preclinical investigations. Moreover, testing for the immunotoxicity of biopharmaceuticals is explicitly not recommended by the international guidelines. Publication of cases of AI is pivotal, both to increase awareness and to facilitate scientific discussions on how to prevent AI in the future.
Collapse
Affiliation(s)
| | | | | | - Richard Verbeek
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | | | | |
Collapse
|
68
|
Pato TP, Souza MC, Mattos DA, Caride E, Ferreira DF, Gaspar LP, Freire MS, Castilho LR. Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine 2019; 37:3214-3220. [DOI: 10.1016/j.vaccine.2019.04.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
|
69
|
Lavoie RA, di Fazio A, Blackburn RK, Goshe MB, Carbonell RG, Menegatti S. Targeted Capture of Chinese Hamster Ovary Host Cell Proteins: Peptide Ligand Discovery. Int J Mol Sci 2019; 20:ijms20071729. [PMID: 30965558 PMCID: PMC6479451 DOI: 10.3390/ijms20071729] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
The growing integration of quality-by-design (QbD) concepts in biomanufacturing calls for a detailed and quantitative knowledge of the profile of impurities and their impact on the product safety and efficacy. Particularly valuable is the determination of the residual level of host cell proteins (HCPs) secreted, together with the product of interest, by the recombinant cells utilized for production. Though often referred to as a single impurity, HCPs comprise a variety of species with diverse abundance, size, function, and composition. The clearance of these impurities is a complex issue due to their cell line to cell line, product-to-product, and batch-to-batch variations. Improvements in HCP monitoring through proteomic-based methods have led to identification of a subset of “problematic” HCPs that are particularly challenging to remove, both at the product capture and product polishing steps, and compromise product stability and safety even at trace concentrations. This paper describes the development of synthetic peptide ligands capable of capturing a broad spectrum of Chinese hamster ovary (CHO) HCPs with a combination of peptide species that allow for advanced mixed-mode binding. Solid phase peptide libraries were screened for identification and characterization of peptides that capture CHO HCPs while showing minimal binding of human IgG, utilized here as a model product. Tetrameric and hexameric ligands featuring either multipolar or hydrophobic/positive amino acid compositions were found to be the most effective. Tetrameric multipolar ligands exhibited the highest targeted binding ratio (ratio of HCP clearance over IgG loss), more than double that of commercial mixed-mode and anion exchange resins utilized by industry for IgG polishing. All peptide resins tested showed preferential binding to HCPs compared to IgG, indicating potential uses in flow-through mode or weak-partitioning-mode chromatography.
Collapse
Affiliation(s)
- R Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - Alice di Fazio
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
| | - R Kevin Blackburn
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Michael B Goshe
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, DE 19711, USA.
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7905, USA.
| |
Collapse
|
70
|
Investigation of cathepsin D–mAb interactions using a combined experimental and computational tool set. Biotechnol Bioeng 2019; 116:1684-1697. [DOI: 10.1002/bit.26968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
|
71
|
Yang P, Guo Y, Sun Y, Yu B, Zhang H, Wu J, Yu X, Wu H, Kong W. Active immunization with norovirus P particle-based amyloid-β chimeric protein vaccine induces high titers of anti-Aβ antibodies in mice. BMC Immunol 2019; 20:9. [PMID: 30755174 PMCID: PMC6373079 DOI: 10.1186/s12865-019-0289-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Active immunotherapy targeting amyloid-β (Aβ) is a promising treatment for Alzheimer's disease (AD). Numerous preclinical studies and clinical trials demonstrated that a safe and effective AD vaccine should induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. RESULTS An untagged Aβ1-6 chimeric protein vaccine against AD based on norovirus (NoV) P particle was expressed in Escherichia coli and obtained by sequential chromatography. Analysis of protein characteristics showed that the untagged Aβ1-6 chimeric protein expressed in soluble form exhibited the highest particle homogeneity, with highest purity and minimal host cell protein (HCP) and residual DNA content. Importantly, the untagged Aβ1-6 chimeric soluble protein could induce the strongest Aβ-specific humoral immune responses without activation of harmful Aβ-specific T cells in mice. CONCLUSIONS The untagged Aβ1-6 chimeric protein vaccine is safe and highly immunogenic. Further research will determine the efficacy in cognitive improvement and disease progression delay.
Collapse
Affiliation(s)
- Ping Yang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yongqing Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yao Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
72
|
Williams KL. The Biologics Revolution and Endotoxin Test Concerns. ENDOTOXIN DETECTION AND CONTROL IN PHARMA, LIMULUS, AND MAMMALIAN SYSTEMS 2019. [PMCID: PMC7123716 DOI: 10.1007/978-3-030-17148-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The advent of “at will” production of biologics in lieu of harvesting animal proteins (i.e. insulin) or human cadaver proteins (i.e. growth hormone) has revolutionized the treatment of disease. While the fruits of the biotechnology revolution are widely acknowledged, the realization of the differences in the means of production and changes in the manner of control of potential impurities and contaminants in regard to the new versus the old are less widely appreciated. This chapter is an overview of the biologics revolution in terms of the rigors of manufacturing required to produce them, their mechanism of action, and caveats of endotoxin control. It is a continulation of the previous chapter that established a basic background knowledge of adaptive immune principles necessary to understand the mode of action of both disease causation and biologics therapeutic treatment via immune modulation.
Collapse
|
73
|
Janvier S, De Spiegeleer B, Vanhee C, Deconinck E. Falsification of biotechnology drugs: current dangers and/or future disasters? J Pharm Biomed Anal 2018; 161:175-191. [DOI: 10.1016/j.jpba.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
|
74
|
Hoernstein SNW, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker EL, Reski R. Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions. J Proteome Res 2018; 17:3749-3760. [PMID: 30226384 DOI: 10.1021/acs.jproteome.8b00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Benjamin Fode
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,Plant Genome and System Biology , Helmholtz Center Munich , D-85764 Neuherberg , Germany
| | - Holger Niederkrüger
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Birgit Berg
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schaaf
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Thomas Frischmuth
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine , University of Wuerzburg , D-97080 Wuerzburg , Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,BIOSS - Centre for Biological Signalling Studies , University of Freiburg , D-79104 Freiburg , Germany
| |
Collapse
|
75
|
Háda V, Bagdi A, Bihari Z, Timári SB, Fizil Á, Szántay C. Recent advancements, challenges, and practical considerations in the mass spectrometry-based analytics of protein biotherapeutics: A viewpoint from the biosimilar industry. J Pharm Biomed Anal 2018; 161:214-238. [PMID: 30205300 DOI: 10.1016/j.jpba.2018.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023]
Abstract
The extensive analytical characterization of protein biotherapeutics, especially of biosimilars, is a critical part of the product development and registration. High-resolution mass spectrometry became the primary analytical tool used for the structural characterization of biotherapeutics. Its high instrumental sensitivity and methodological versatility made it possible to use this technique to characterize both the primary and higher-order structure of these proteins. However, even by using high-end instrumentation, analysts face several challenges with regard to how to cope with industrial and regulatory requirements, that is, how to obtain accurate and reliable analytical data in a time- and cost-efficient way. New sample preparation approaches, measurement techniques and data evaluation strategies are available to meet those requirements. The practical considerations of these methods are discussed in the present review article focusing on hot topics, such as reliable and efficient sequencing strategies, minimization of artefact formation during sample preparation, quantitative peptide mapping, the potential of multi-attribute methodology, the increasing role of mass spectrometry in higher-order structure characterization and the challenges of MS-based identification of host cell proteins. On the basis of the opportunities in new instrumental techniques, methodological advancements and software-driven data evaluation approaches, for the future one can envision an even wider application area for mass spectrometry in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Viktor Háda
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary.
| | - Attila Bagdi
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Zsolt Bihari
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | | | - Ádám Fizil
- Analytical Department of Biotechnology, Gedeon Richter Plc, Hungary
| | - Csaba Szántay
- Spectroscopic Research Department, Gedeon Richter Plc, Hungary.
| |
Collapse
|
76
|
Heissel S, Bunkenborg J, Kristiansen MP, Holmbjerg AF, Grimstrup M, Mørtz E, Kofoed T, Højrup P. Evaluation of spectral libraries and sample preparation for DIA-LC-MS analysis of host cell proteins: A case study of a bacterially expressed recombinant biopharmaceutical protein. Protein Expr Purif 2018. [DOI: 10.1016/j.pep.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
77
|
Toinon A, Fontaine C, Thion L, Gajewska B, Carpick B, Nougarede N, Uhlrich S. Host cell protein testing strategy for hepatitis B antigen in Hexavalent vaccine – Towards a general testing strategy for recombinant vaccines. Biologicals 2018; 54:1-7. [DOI: 10.1016/j.biologicals.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
|
78
|
Goey CH, Alhuthali S, Kontoravdi C. Host cell protein removal from biopharmaceutical preparations: Towards the implementation of quality by design. Biotechnol Adv 2018; 36:1223-1237. [DOI: 10.1016/j.biotechadv.2018.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 01/05/2023]
|
79
|
Reijers JAA, Kallend DG, Malone KE, Jukema JW, Wijngaard PLJ, Burggraaf J, Moerland M. MDCO-216 Does Not Induce Adverse Immunostimulation, in Contrast to Its Predecessor ETC-216. Cardiovasc Drugs Ther 2018; 31:381-389. [PMID: 28844118 PMCID: PMC5591804 DOI: 10.1007/s10557-017-6746-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Purpose Aim of this study was to demonstrate that MDCO-216 (human recombinant Apolipoprotein A-I Milano) does not induce adverse immunostimulation, in contrast to its predecessor, ETC-216, which was thought to contain host cell proteins (HCPs) that elicited an inflammatory reaction. Methods Data were taken from a clinical trial in which 24 healthy volunteers (HV) and 24 patients with proven stable coronary artery disease (sCAD) received a single intravenous dose of MDCO-216, ranging 5–40 mg/kg. Additionally, whole blood from 35 HV, 35 sCAD patients and 35 patients requiring acute coronary intervention (aCAD group) was stimulated ex vivo with MDCO-216 and ETC-216. Results No inflammatory reaction was observed in HV and sCAD patients following MDCO-216 treatment, judging by body temperature, white cell counts, neutrophil counts, C-reactive protein, circulating cytokines (IL-6, TNF-α), and adverse events. In the ex vivo experiment, the geometric means (SD) of the ratio of MDCO-216 stimulated IL-6 over background levels were 0.8 (1.9), 0.7 (1.5), 1.0 (2.0) for respectively HV, sCAD, aCAD. The corresponding ETC-216 stimulated values were 15.8 (2.9), 9.5 (3.6), 3.8 (4.0). TNF-α results were comparable. Because many ETC-216 stimulated samples had cytokine concentrations >ULOQ, ratios were categorised and marginal homogeneity of the contingency table (MDCO-216 versus ETC-216) was assessed with the Stuart-Maxwell test. P-values were ≤0.0005 for all populations. Conclusions MDCO-216 did not induce adverse immunostimulation in HV and sCAD patients, in contrast to ETC-216. Results from the ex vivo stimulation suggests the same holds true for aCAD patients.
Collapse
Affiliation(s)
- Joannes A A Reijers
- Centre for Human Drug Research, Zernikedreef 8, 2333CL, Leiden, The Netherlands. .,Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - K E Malone
- Good Biomarker Sciences, Leiden, The Netherlands.,Janssen Prevention Center, Janssen Vaccines and Prevention B.V, Leiden, The Netherlands
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - J Burggraaf
- Centre for Human Drug Research, Zernikedreef 8, 2333CL, Leiden, The Netherlands
| | - M Moerland
- Centre for Human Drug Research, Zernikedreef 8, 2333CL, Leiden, The Netherlands
| |
Collapse
|
80
|
Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog 2018; 34:828-837. [PMID: 29693803 DOI: 10.1002/btpr.2640] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Indexed: 12/29/2022]
Abstract
In the 40-year history of biopharmaceuticals, there have been a few cases where the final products contained residual host cell protein (HCP) impurities at levels high enough to be of concern. This article summarizes the industry experience in these cases where HCP impurities have been presented in public forums and/or published. Regulatory guidance on HCP impurities is limited to advising that products be as pure as practical, with no specified numerical limit because the risk associated with HCP exposure often depends on the clinical setting (route of administration, dose, indication, patient population) and the particular impurity. While the overall safety and purity track record of the industry is excellent, these examples illustrate several important lessons learned about the kinds of HCPs that co-purify with products (e.g., product homologs, and HCPs that react with product), and the kinds of clinical consequences of HCP impurities (e.g., direct biological activity, immunogenicity, adjuvant). The literature on industry experience with HCP impurities is scattered, and this review draws in to one reference documented examples where the data have been presented in meetings, patents, product inserts, or press releases, in addition to peer-reviewed journal articles. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:828-837, 2018.
Collapse
Affiliation(s)
- Martin Vanderlaan
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Judith Zhu-Shimoni
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Sansan Lin
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Feny Gunawan
- Department of Analytical Development and Quality Control, Genentech, 1 DNA Way, South San Francisco, CA, 94080
| | - Thomas Waerner
- Department of Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kevin E Van Cott
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
81
|
Kamga MH, Cattaneo M, Yoon S. Integrated continuous biomanufacturing platform with ATF perfusion and one column chromatography operation for optimum resin utilization and productivity. Prep Biochem Biotechnol 2018; 48:383-390. [DOI: 10.1080/10826068.2018.1446151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mark-Henry Kamga
- Bioprocess Development Division, Biovolutions Inc., Woburn, MA, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| | | | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, USA
| |
Collapse
|
82
|
Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity. J Chromatogr A 2018; 1546:89-96. [DOI: 10.1016/j.chroma.2018.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 11/18/2022]
|
83
|
|
84
|
Abiri N, Pang J, Ou J, Shi B, Wang X, Zhang S, Sun Y, Yang D. Assessment of the immunogenicity of residual host cell protein impurities of OsrHSA. PLoS One 2018. [PMID: 29513721 PMCID: PMC5841786 DOI: 10.1371/journal.pone.0193339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in human plasma and is widely used at high doses for treating various diseases. Recombinant HSA is an alternative approach to plasma-derived HSA, providing increased safety and an unlimited supply. However, the safety of the residual host cell proteins (HCPs) co-purified with Oryza sativa HSA (OsrHSA) remains to be determined. An animal system was used to assess the immunogenicity of OsrHSA and its residual HCPs. Low immunogenicity and immunotoxicity of the residual HCPs at a dose of 25 μg/kg, equivalent to 25 times the clinical dosage of HSA, were observed. An anti-drug-antibody (ADA) analysis revealed that anti-HSA, anti-OsrHSA or anti-HCP antibodies developed with a low frequency in pHSA and OsrHSA treatments, but the titers were as low as 1.0–2.0. Furthermore, the titer and the incidence of the specific antibodies were not significantly different between the pHSA and OsrHSA groups, indicating that OsrHSA presents similar immunogenicity to that of pHSA. More importantly, no cytokines were stimulated after the administration of OsrHSA and the residual HCPs, suggesting that there was no risk of a cytokine storm. These results demonstrated that the residual HCPs from OsrHSA have low immunogenicity, indicating that the rice endosperm is one of the best hosts for plant molecular pharming.
Collapse
Affiliation(s)
- Naghmeh Abiri
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianlei Pang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiquan Ou
- Healthgen Biotechnology Co. Ltd., Wuhan, China
| | - Bo Shi
- Healthgen Biotechnology Co. Ltd., Wuhan, China
| | - Xianghong Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Yunxia Sun
- JOINN Laboratories, Inc., Beijing, China
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
85
|
Tzani I, Monger C, Kelly P, Barron N, Kelly RM, Clarke C. Understanding biopharmaceutical production at single nucleotide resolution using ribosome footprint profiling. Curr Opin Biotechnol 2018; 53:182-190. [PMID: 29471208 DOI: 10.1016/j.copbio.2018.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/06/2023]
Abstract
Biopharmaceuticals such as monoclonal antibodies have revolutionised the treatment of a variety of diseases. The production of recombinant therapeutic proteins, however, remains expensive due to the manufacturing complexity of mammalian expression systems and the regulatory burden associated with administrating these medicines to patients in a safe and efficacious manner. In recent years, academic and industrial groups have begun to develop a greater understanding of the biology of host cell lines, such as Chinese hamster ovary (CHO) cells and utilise that information for process development and cell line engineering. In this review, we focus on ribosome footprint profiling (RiboSeq), an exciting next generation sequencing (NGS) method that provides genome-wide information on translation, and discuss how its application can transform our understanding of therapeutic protein production.
Collapse
Affiliation(s)
- Ioanna Tzani
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co., Dublin, Ireland
| | - Craig Monger
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co., Dublin, Ireland
| | - Paul Kelly
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co., Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co., Dublin, Ireland
| | - Ronan M Kelly
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North, 1200 Kentucky Avenue, Indianapolis, IN 46225, United States
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, Co., Dublin, Ireland.
| |
Collapse
|
86
|
McGivney JB, Csordas AT, Walker FM, Bagley ER, Gruber EM, Mage PL, Casas-Finet J, Nakamoto MA, Eisenstein M, Larkin CJ, Strouse RJ, Soh HT. Strategy for Generating Sequence-Defined Aptamer Reagent Sets for Detecting Protein Contaminants in Biotherapeutics. Anal Chem 2018; 90:3262-3269. [PMID: 29436820 DOI: 10.1021/acs.analchem.7b04775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biologic drugs are typically manufactured in mammalian host cells, and it is critical from a drug safety and efficacy perspective to detect and remove host cell proteins (HCPs) during production. This is currently achieved with sets of polyclonal antibodies (pAbs), but these suffer from critical shortcomings because their composition is inherently undefined, and they cannot detect nonimmunogenic HCPs. In this work, we report a high-throughput screening and array-based binding characterization strategy that we employed to generate a set of aptamers that overcomes these limitations to achieve sensitive, broad-spectrum detection of HCPs from the widely used Chinese hamster ovary (CHO) cell line. We identified a set of 32 DNA aptamers that achieve better sensitivity than a commercial pAb reagent set and can detect a comparable number of HCPs over a broad range of isoelectric points and sizes. Importantly, these aptamers detect multiple contaminants that are known to be responsible for therapeutic antibody degradation and toxicity in patients. Because HCP aptamer reagents are sequence-defined and chemically synthesized, we believe they may enable safer production of biologic drugs, and this strategy should be broadly applicable for the generation of HCP detection reagents for other cell lines.
Collapse
Affiliation(s)
- James B McGivney
- BioPharmaceutical Development , MedImmune, LLC , Gaithersburg , Maryland 20878 , United States
| | - Andrew T Csordas
- Institute for Collaborative Biotechnologies , University of California , Santa Barbara , California 93106 , United States
| | - Faye M Walker
- Institute for Collaborative Biotechnologies , University of California , Santa Barbara , California 93106 , United States
| | - Elizabeth R Bagley
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Emily M Gruber
- Institute for Collaborative Biotechnologies , University of California , Santa Barbara , California 93106 , United States
| | - Peter L Mage
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Jose Casas-Finet
- BioPharmaceutical Development , MedImmune, LLC , Gaithersburg , Maryland 20878 , United States
| | - Margaret A Nakamoto
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States
| | - Michael Eisenstein
- Institute for Collaborative Biotechnologies , University of California , Santa Barbara , California 93106 , United States
| | - Christopher J Larkin
- BioPharmaceutical Development , MedImmune, LLC , Gaithersburg , Maryland 20878 , United States
| | - Robert J Strouse
- BioPharmaceutical Development , MedImmune, LLC , Gaithersburg , Maryland 20878 , United States
| | - H Tom Soh
- Department of Electrical Engineering , Stanford University , Stanford , California 94305 , United States.,Department of Radiology , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
87
|
Husson G, Delangle A, O’Hara J, Cianferani S, Gervais A, Van Dorsselaer A, Bracewell D, Carapito C. Dual Data-Independent Acquisition Approach Combining Global HCP Profiling and Absolute Quantification of Key Impurities during Bioprocess Development. Anal Chem 2017; 90:1241-1247. [DOI: 10.1021/acs.analchem.7b03965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gauthier Husson
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS,
IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Aurélie Delangle
- Department
of Analytical Sciences Biologicals, UCB Pharma s.a., Chemin du
Foriest, B-1420 Braine L’alleud, Belgium
| | - John O’Hara
- Department
of Analytical Sciences Biologicals, UCB Pharma s.a., 216 Bath
Road, Slough SL1 4EN, U.K
| | - Sarah Cianferani
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS,
IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Annick Gervais
- Department
of Analytical Sciences Biologicals, UCB Pharma s.a., Chemin du
Foriest, B-1420 Braine L’alleud, Belgium
| | - Alain Van Dorsselaer
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS,
IPHC, UMR 7178, F-67000 Strasbourg, France
| | - Dan Bracewell
- Dept.
Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, U.K
| | - Christine Carapito
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS,
IPHC, UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
88
|
Baldus PA, Brown M, Wright RS, Campbell JA, Lute S, Chavez B, Brorson K, Mozier N. Comparison of purification strategies for antibodies used in a broad spectrum host cell protein immunoassay. Biotechnol Bioeng 2017; 115:413-422. [DOI: 10.1002/bit.26482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Phoebe A. Baldus
- Analytical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield Missouri
| | - Matthew Brown
- Division of Biotechnology Research and Review II; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland
| | - Richard S. Wright
- Bioprocess Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Andover Massachusetts
| | - Jessica A. Campbell
- Analytical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield Missouri
| | - Scott Lute
- Division of Biotechnology Research and Review II; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland
| | - Brittany Chavez
- Division of Biotechnology Research and Review II; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland
| | - Kurt Brorson
- Division of Biotechnology Research and Review II; Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland
| | - Ned Mozier
- Analytical Research and Development; Biotherapeutics Pharmaceutical Sciences; Pfizer Inc.; Chesterfield Missouri
| |
Collapse
|
89
|
Gunawan F, Nishihara J, Liu P, Sandoval W, Vanderlaan M, Zhang H, Krawitz D. Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA. Biotechnol Bioeng 2017; 115:382-389. [DOI: 10.1002/bit.26466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Feny Gunawan
- Analytical Operations; Genentech, 1 DNA Way; South San Francisco California
| | - Julie Nishihara
- Protein Analytical Chemistry; Genentech, 1 DNA Way; South San Francisco California
| | - Peter Liu
- Microchem Proteomics; Genentech, 1 DNA Way; South San Francisco California
| | - Wendy Sandoval
- Microchem Proteomics; Genentech, 1 DNA Way; South San Francisco California
| | - Marty Vanderlaan
- Analytical Operations; Genentech, 1 DNA Way; South San Francisco California
| | - Heidi Zhang
- Protein Analytical Chemistry; Genentech, 1 DNA Way; South San Francisco California
| | | |
Collapse
|
90
|
Host Cell Proteins in Biologics Manufacturing: The Good, the Bad, and the Ugly. Antibodies (Basel) 2017; 6:antib6030013. [PMID: 31548528 PMCID: PMC6698861 DOI: 10.3390/antib6030013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 01/15/2023] Open
Abstract
Significant progress in the manufacturing of biopharmaceuticals has been made by increasing the overall titers in the USP (upstream processing) titers without raising the cost of the USP. In addition, the development of platform processes led to a higher process robustness. Despite or even due to those achievements, novel challenges are in sight. The higher upstream titers created more complex impurity profiles, both in mass and composition, demanding higher separation capacities and selectivity in downstream processing (DSP). This creates a major shift of costs from USP to DSP. In order to solve this issue, USP and DSP integration approaches can be developed and used for overall process optimization. This study focuses on the characterization and classification of host cell proteins (HCPs) in each unit operation of the DSP (i.e., aqueous two-phase extraction, integrated countercurrent chromatography). The results create a data-driven feedback to the USP, which will serve for media and process optimizations in order to reduce, or even eliminate nascent critical HCPs. This will improve separation efficiency and may lead to a quantitative process understanding. Different HCP species were classified by stringent criteria with regard to DSP separation parameters into “The Good, the Bad, and the Ugly” in terms of pI and MW using 2D-PAGE analysis depending on their positions on the gels. Those spots were identified using LC-MS/MS analysis. HCPs, which are especially difficult to remove and persistent throughout the DSP (i.e., “Bad” or “Ugly”), have to be evaluated by their ability to be separated. In this approach, HCPs, considered “Ugly,” represent proteins with a MW larger than 15 kDa and a pI between 7.30 and 9.30. “Bad” HCPs can likewise be classified using MW (>15 kDa) and pI (4.75–7.30 and 9.30–10.00). HCPs with a MW smaller than 15 kDa and a pI lower than 4.75 and higher than 10.00 are classified as “Good” since their physicochemical properties differ significantly from the product. In order to evaluate this classification scheme, it is of utmost importance to use orthogonal analytical methods such as IEX, HIC, and SEC.
Collapse
|
91
|
Henry SM, Sutlief E, Salas-Solano O, Valliere-Douglass J. ELISA reagent coverage evaluation by affinity purification tandem mass spectrometry. MAbs 2017; 9:1065-1075. [PMID: 28708446 PMCID: PMC5627587 DOI: 10.1080/19420862.2017.1349586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host cell proteins (HCPs) must be adequately removed from recombinant therapeutics by downstream processing to ensure patient safety, product quality, and regulatory compliance. HCP process clearance is typically monitored by enzyme-linked immunosorbent assay (ELISA) using a polyclonal reagent. Recently, mass spectrometry (MS) has been used to identify specific HCP process impurities and monitor their clearance. Despite this capability, ELISA remains the preferred analytical approach due to its simplicity and throughput. There are, however, inherent difficulties reconciling the protein-centric results of MS characterization with ELISA, or providing assurance that ELISA has acceptable coverage against all process-specific HCP impurities that could pose safety or efficacy risks. Here, we describe efficient determination of ELISA reagent coverage by proteomic analysis following affinity purification with a polyclonal anti-HCP reagent (AP-MS). The resulting HCP identifications can be compared with the actual downstream process impurities for a given process to enable a highly focused assessment of ELISA reagent suitability. We illustrate the utility of this approach by performing coverage evaluation of an anti-HCP polyclonal against both an HCP immunogen and the downstream HCP impurities identified in a therapeutic monoclonal antibody after Protein A purification. The overall goal is to strategically implement affinity-based mass spectrometry as part of a holistic framework for evaluating HCP process clearance, ELISA reagent coverage, and process clearance risks. We envision coverage analysis by AP-MS will further enable a framework for HCP impurity analysis driven by characterization of actual product-specific process impurities, complimenting analytical methods centered on consideration of the total host cell proteome.
Collapse
|
92
|
Identification of a host cell protein impurity in therapeutic protein, P1. J Pharm Biomed Anal 2017; 141:32-38. [DOI: 10.1016/j.jpba.2017.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/20/2022]
|
93
|
Effective strategies for host cell protein clearance in downstream processing of monoclonal antibodies and Fc-fusion proteins. Protein Expr Purif 2017; 134:96-103. [DOI: 10.1016/j.pep.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
|
94
|
Kreimer S, Gao Y, Ray S, Jin M, Tan Z, Mussa NA, Tao L, Li Z, Ivanov AR, Karger BL. Host Cell Protein Profiling by Targeted and Untargeted Analysis of Data Independent Acquisition Mass Spectrometry Data with Parallel Reaction Monitoring Verification. Anal Chem 2017; 89:5294-5302. [PMID: 28402653 DOI: 10.1021/acs.analchem.6b04892] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Host cell proteins (HCPs) are process-related impurities of biopharmaceuticals that remain at trace levels despite multiple stages of downstream purification. Currently, there is interest in implementing LC-MS in biopharmaceutical HCP profiling alongside conventional ELISA, because individual species can be identified and quantitated. Conventional data dependent LC-MS is hampered by the low concentration of HCP-derived peptides, which are 5-6 orders of magnitude less abundant than the biopharmaceutical-derived peptides. In this paper, we present a novel data independent acquisition (DIA)-MS workflow to identify HCP peptides using automatically combined targeted and untargeted data processing, followed by verification and quantitation using parallel reaction monitoring (PRM). Untargeted data processing with DIA-Umpire provided a means of identifying HCPs not represented in the assay library used for targeted, peptide-centric, data analysis. An IgG1 monoclonal antibody (mAb) purified by Protein A column elution, cation exchange chromatography, and ultrafiltration was analyzed using the workflow with 1D-LC. Five protein standards added at 0.5 to 100 ppm concentrations were detected in the background of the purified mAb, demonstrating sensitivity to low ppm levels. A calibration curve was constructed on the basis of the summed peak areas of the three highest intensity fragment ions from the highest intensity peptide of each protein standard. Sixteen HCPs were identified and quantitated on the basis of the calibration curve over the range of low ppm to over 100 ppm in the purified mAb sample. The developed approach achieves rapid HCP profiling using 1D-LC and specific identification exploiting the high mass accuracy and resolution of the mass spectrometer.
Collapse
Affiliation(s)
- Simion Kreimer
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Yuanwei Gao
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Mi Jin
- Bristol-Myers Squibb , Biologics Process and Product Development, 38 Jackson Road, Devens, Massachusetts 01434, United States
| | - Zhijun Tan
- Bristol-Myers Squibb , Biologics Process and Product Development, 38 Jackson Road, Devens, Massachusetts 01434, United States
| | - Nesredin A Mussa
- Bristol-Myers Squibb , Biologics Process and Product Development, 38 Jackson Road, Devens, Massachusetts 01434, United States
| | - Li Tao
- Bristol-Myers Squibb , Biologics Process and Product Development, 38 Jackson Road, Devens, Massachusetts 01434, United States
| | - Zhengjian Li
- Bristol-Myers Squibb , Biologics Process and Product Development, 38 Jackson Road, Devens, Massachusetts 01434, United States
| | - Alexander R Ivanov
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Barry L Karger
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| |
Collapse
|
95
|
Migani D, Smales CM, Bracewell DG. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells. Biotechnol Prog 2017; 33:666-676. [PMID: 28249362 PMCID: PMC5485175 DOI: 10.1002/btpr.2455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/17/2017] [Indexed: 11/21/2022]
Abstract
Recombinant human Acid Alpha Glucosidase (GAA) is the therapeutic enzyme used for the treatment of Pompe disease, a rare genetic disorder characterized by GAA deficiency in the cell lysosomes (Raben et al., Curr Mol Med. 2002; 2:145-166). The manufacturing process for GAA can be challenging, in part due to protease degradation. The overall goal of this study was to understand the effects of GAA overexpression on cell lysosomal phenotype and host cell protein (HCP) release, and any resultant consequences for protease levels and ease of manufacture. To do this we first generated a human recombinant GAA producing stable CHO cell line and designed the capture chromatographic step anion exchange (IEX). We then collected images of cell lysosomes via transmission electron microscopy (TEM) and compared the resulting data with that from a null CHO cell line. TEM imaging revealed 72% of all lysosomes in the GAA cell line were engorged indicating extensive cell stress; by comparison only 8% of lysosomes in the null CHO had a similar phenotype. Furthermore, comparison of the HCP profile among cell lines (GAA, mAb, and Null) capture eluates, showed that while most HCPs released were common across them, some were unique to the GAA producer, implying that cell stress caused by overexpression of GAA has a molecule specific effect on HCP release. Protease analysis via zymograms showed an overall reduction in proteolytic activity after the capture step but also revealed the presence of co-eluting proteases at approximately 80 KDa, which MS analysis putatively identified as dipeptidyl peptidase 3 and prolyl endopeptidase. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:666-676, 2017.
Collapse
Affiliation(s)
- Damiano Migani
- The Advanced Centre of Biochemical Engineering, Dept. of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUnited Kingdom
| | - C. Mark Smales
- Industrial Biotechnology Centre and School of BiosciencesUniversity of KentCanterburyKentCT2 7NJUnited Kingdom
| | - Daniel G. Bracewell
- The Advanced Centre of Biochemical Engineering, Dept. of Biochemical EngineeringUniversity College LondonBernard Katz BuildingLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
96
|
Thomson AS, Mai S, Byrne MP. A novel approach to characterize host cell proteins associated with therapeutic monoclonal antibodies. Biotechnol Bioeng 2017; 114:1208-1214. [DOI: 10.1002/bit.26256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Andrew S. Thomson
- R&D Platform Technology & Science; GlaxoSmithKline; King of Prussia Pennsylvania 19406
| | - Shing Mai
- R&D Platform Technology & Science; GlaxoSmithKline; King of Prussia Pennsylvania 19406
| | - Michael P. Byrne
- R&D Platform Technology & Science; GlaxoSmithKline; King of Prussia Pennsylvania 19406
| |
Collapse
|
97
|
Chiu J, Valente KN, Levy NE, Min L, Lenhoff AM, Lee KH. Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol Bioeng 2016; 114:1006-1015. [PMID: 27943242 DOI: 10.1002/bit.26237] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/09/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
While the majority of host cell protein (HCP) impurities are effectively removed in typical downstream purification processes, a small population of HCPs are particularly challenging. Previous studies have identified HCPs that are challenging for a variety of reasons. Lipoprotein lipase (LPL)-a Chinese hamster ovary (CHO) HCP that functions to hydrolyze esters in triglycerides-was one of ten HCPs identified in previous studies as being susceptible to retention in downstream processing. LPL may degrade polysorbate 80 (PS-80) and polysorbate 20 (PS-20) in final product formulations due to the structural similarity between polysorbates and triglycerides. In this work, recombinant LPL was found to have enzymatic activity against PS-80 and PS-20 in a range of solution conditions that are typical of mAb formulations. LPL knockout CHO cells were created with CRISPR and TALEN technologies and resulting cell culture harvest fluid demonstrated significantly reduced polysorbate degradation without significant impact on cell viability when compared to wild-type samples. Biotechnol. Bioeng. 2017;114: 1006-1015. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Josephine Chiu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Kristin N Valente
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Nicholas E Levy
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716.,Delaware Biotechnology Institute, Newark, Delaware, 19711
| |
Collapse
|
98
|
Zhu G, Sun L, Heidbrink-Thompson J, Kuntumalla S, Lin HY, Larkin CJ, McGivney JB, Dovichi NJ. Capillary zone electrophoresis tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies. Electrophoresis 2016; 37:616-22. [PMID: 26530276 DOI: 10.1002/elps.201500301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
Abstract
We have evaluated CZE-ESI-MS/MS for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a 5-point calibration curve by spiking 12 standard proteins into a solution of a human mAb. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ∼70-min separation window (∼90-min total analysis duration) and ∼300-peak capacity. We also analyzed the sample using ultra-performance LC-MS/MS. CZE-MS/MS generated approximately five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at ∼100 ppm level with respect to the antibody.
Collapse
Affiliation(s)
- Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Hung-yu Lin
- Department of Analytical Biotechnology, MedImmune, Gaithersburg, MD, USA
| | | | - James B McGivney
- Department of Analytical Biotechnology, MedImmune, Gaithersburg, MD, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
99
|
Haile LA, Puig M, Polumuri SK, Ascher J, Verthelyi D. In Vivo Effect of Innate Immune Response Modulating Impurities on the Skin Milieu Using a Macaque Model: Impact on Product Immunogenicity. J Pharm Sci 2016; 106:751-760. [PMID: 27923493 DOI: 10.1016/j.xphs.2016.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 01/04/2023]
Abstract
Unwanted immune responses to therapeutic proteins can severely impact their safety and efficacy. Studies show that the presence of trace amounts of host cells and process-related impurities that stimulate pattern recognition receptors (PRR) can cause local inflammation and enhance product immunogenicity. Here we used purified PRR agonists as model impurities to assess the minimal level of individual innate immune response modulating impurities (IIRMIs) that could activate a local immune response. We show that levels of endotoxin as low as 10 pg (0.01 EU), 1 ng for polyinosinic:polycytidylic acid (PolyI:C), 100 ng for synthetic diacylated liopprotein, thiazoloquinolone compound, or muramyl dipeptide, 1 μg for flagellin or β-glucan, or 5 μg for CpG-oligodeoxynucleotide increased expression of genes linked to innate immune activation and inflammatory processes in the skin of rhesus macaques. Furthermore, spiking studies using rasburicase as a model therapeutic showed that the levels of PRR agonists that induced detectable gene upregulation in the skin were associated with increased immunogenicity for rasburicase. This study underscores the need for testing multiple IIRMIs in biologics, strengthening the connection between the local mRNA induction in skin, innate immune activation, and antibody development in primates, and provides an indication of the levels of IIRMI in therapeutic products that could impact product immunogenicity.
Collapse
Affiliation(s)
- Lydia A Haile
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Swamy K Polumuri
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Jill Ascher
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993
| | - Daniela Verthelyi
- Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, Maryland 20993.
| |
Collapse
|
100
|
Swanson RK, Xu R, Nettleton DS, Glatz CE. Accounting for host cell protein behavior in anion-exchange chromatography. Biotechnol Prog 2016; 32:1453-1463. [PMID: 27556579 DOI: 10.1002/btpr.2342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/27/2016] [Indexed: 11/11/2022]
Abstract
Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016.
Collapse
Affiliation(s)
- Ryan K Swanson
- Dept. of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011
| | - Ruo Xu
- Dept. of Statistics, Iowa State University, Ames, IA, 50011
| | | | - Charles E Glatz
- Dept. of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011
| |
Collapse
|