51
|
Maroń AM, Szlapa-Kula A, Matussek M, Kruszynski R, Siwy M, Janeczek H, Grzelak J, Maćkowski S, Schab-Balcerzak E, Machura B. Photoluminescence enhancement of Re(i) carbonyl complexes bearing D-A and D-π-A ligands. Dalton Trans 2020; 49:4441-4453. [PMID: 32181459 DOI: 10.1039/c9dt04871e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three Re(i) carbonyl complexes [ReCl(CO)3(Ln)] bearing 2,2'-bipyridine, 2,2':6',2''-terpyridine, and 1,10-phenanthroline functionalized with diphenylamine/or triphenylamine units (L1-L3) were synthesized to explore the impact of highly electron donating units appended to the imine ligand on the thermal and optoelectronic properties of Re(i) systems. Additionally, for comparison, the ligands L1-3 and parent complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)] were investigated. The thermal stability was evaluated by differential scanning calorimetry. The ground- and excited-state electronic properties of the Re(i) complexes were studied by cyclic voltammetry and differential pulse voltammetry, absorption and emission spectroscopy, as well as using density-functional theory (DFT). The majority of the compounds form amorphous molecular materials with high glass transition temperatures above 100 °C. Compared to the unsubstituted complexes [ReCl(CO)3(bipy)], [ReCl(CO)3(phen)] and [ReCl(CO)3(terpy-κ2N)], the HOMO-LUMO gap of the corresponding Re(i) systems bearing modified imine ligands is reduced, and the decrease in the value of the ΔEH-L is mainly caused by the increase in HOMO energy level. In relation to the parent complexes, all designed Re(i) carbonyls were found to show enhanced photoluminescence, both in solution and in solid state. The investigated ligands and complexes were also preliminarily tested as luminophores in light emitting diodes with the structures ITO/PEDOT:PSS/compound/Al and ITO/PEDOT:PSS/PVK:PBD:compound/Al. The pronounced effect of the ligand chemical structure on electroluminescence ability was clearly visible.
Collapse
Affiliation(s)
- Anna M Maroń
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Marek Matussek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| | - Rafal Kruszynski
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Justyna Grzelak
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Sebastian Maćkowski
- Nanophotonics Group, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100, Torun, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland. and Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819, Zabrze, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, 9th Szkolna Street, 40006, Katowice, Poland.
| |
Collapse
|
52
|
Yokoi K, Balachandran C, Umezawa M, Tsuchiya K, Mitrić A, Aoki S. Amphiphilic Cationic Triscyclometalated Iridium(III) Complex-Peptide Hybrids Induce Paraptosis-like Cell Death of Cancer Cells via an Intracellular Ca 2+-Dependent Pathway. ACS OMEGA 2020; 5:6983-7001. [PMID: 32258934 PMCID: PMC7114882 DOI: 10.1021/acsomega.0c00337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
We report on the design and synthesis of a green-emitting iridium complex-peptide hybrid (IPH) 4, which has an electron-donating hydroxyacetic acid (glycolic acid) moiety between the Ir core and the peptide part. It was found that 4 is selectively cytotoxic against cancer cells, and the dead cells showed a green emission. Mechanistic studies of cell death indicate that 4 induces a paraptosis-like cell death through the increase in mitochondrial Ca2+ concentrations via direct Ca2+ transfer from ER to mitochondria, the loss of mitochondrial membrane potential (ΔΨm), and the vacuolization of cytoplasm and intracellular organelle. Although typical paraptosis and/or autophagy markers were upregulated by 4 through the mitogen-activated protein kinase (MAPK) signaling pathway, as confirmed by Western blot analysis, autophagy is not the main pathway in 4-induced cell death. The degradation of actin, which consists of a cytoskeleton, is also induced by high concentrations of Ca2+, as evidenced by costaining experiments using a specific probe. These results will be presented and discussed.
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Chandrasekar Balachandran
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| | - Aleksandra Mitrić
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Faculty of Technology and Metallurgy, University of Belgrade, 4 Karnegijeva Street, Belgrade 11000, Serbia
| | - Shin Aoki
- Faculty of Pharmaceutical
Sciences, Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki,
Noda, Chiba 278-8510, Japan
| |
Collapse
|
53
|
Kordestani N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O. Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes. ACS COMBINATORIAL SCIENCE 2020; 22:89-99. [PMID: 31913012 DOI: 10.1021/acscombsci.9b00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 μM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.
Collapse
Affiliation(s)
- Nazanin Kordestani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Luís R. Raposo
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Giuseppe Bruno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Giovanni Bella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jason D. Braun
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
54
|
Rhenium(I) polypyridine complexes coordinated to an ethyl-isonicotinate ligand: Luminescence and in vitro anti-cancer studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
55
|
Álvarez D, Díaz J, Menéndez MI, López R. Addition of Re‐Bonded Nucleophilic Ligands to Activated Alkynes: A Theoretical Rationalization. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Álvarez
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica Universidad de Extremadura Avenida de la Universidad s/n 110071 Cáceres Extremadura Spain
| | - M. Isabel Menéndez
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| | - Ramón López
- Departamento de Química Física y Analítica Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Asturias Spain
| |
Collapse
|
56
|
Mandal S, Mallick S, Garu P, Chowdhury J, Samadder A, Das J, Khuda-Bukhsh AR, Chattopadhyay S. The first examples of triply bonded dirhenium(II,II) complexes that contain bis(diphenylphosphino)methane and dithiocarbamato ligands: spectroscopic, structural, cytotoxicity and computational studies. NEW J CHEM 2020. [DOI: 10.1039/c9nj06122c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The synthesis, structure and properties of the hitherto unreported triply bonded dirhenium(II,II) dithiocarbamato complexes have been reported.
Collapse
Affiliation(s)
- Suman Mandal
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Suman Mallick
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | - Purnananda Garu
- Department of Chemistry
- University of Kalyani
- Nadia 741235
- India
| | | | | | - Jayeeta Das
- Department of Zoology
- University of Kalyani
- Nadia 741235
- India
| | | | | |
Collapse
|
57
|
Collery P, Desmaele D, Vijaykumar V. Design of Rhenium Compounds in Targeted Anticancer Therapeutics. Curr Pharm Des 2019; 25:3306-3322. [DOI: 10.2174/1381612825666190902161400] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Background:
Many rhenium (Re) complexes with potential anticancer properties have been synthesized
in the recent years with the aim to overcome the clinical limitations of platinum agents. Re(I) tricarbonyl
complexes are the most common but Re compounds with higher oxidation states have also been investigated, as
well as hetero-metallic complexes and Re-loaded self-assembling devices. Many of these compounds display
promising cytotoxic and phototoxic properties against malignant cells but all Re compounds are still at the stage
of preclinical studies.
Methods:
The present review focused on the rhenium based cancer drugs that were in preclinical and clinical
trials were examined critically. The detailed targeted interactions and experimental evidences of Re compounds
reported by the patentable and non-patentable research findings used to write this review.
Results:
In the present review, we described the most recent and promising rhenium compounds focusing on their
potential mechanism of action including, phototoxicity, DNA binding, mitochondrial effects, oxidative stress
regulation or enzyme inhibition. Many ligands have been described that modulating the lipophilicity, the luminescent
properties, the cellular uptake, the biodistribution, and the cytotoxicity, the pharmacological and toxicological
profile.
Conclusion:
Re-based anticancer drugs can also be used in targeted therapies by coupling to a variety of biologically
relevant targeting molecules. On the other hand, combination with conventional cytotoxic molecules, such
as doxorubicin, allowed to take into profit the targeting properties of Re for example toward mitochondria.
Through the example of the diseleno-Re complex, we showed that the main target could be the oxidative status,
with a down-stream regulation of signaling pathways, and further on selective cell death of cancer cells versus
normal cells.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaele
- Institut Galien, Universite Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Veena Vijaykumar
- Biotechnology Department, REVA University, Bangalore, 560064, India
| |
Collapse
|
58
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
59
|
Peng W, Hegazy AM, Jiang N, Chen X, Qi HX, Zhao XD, Pu J, Ye RR, Li RT. Identification of two mitochondrial-targeting cyclometalated iridium(III) complexes as potent anti-glioma stem cells agents. J Inorg Biochem 2019; 203:110909. [PMID: 31689591 DOI: 10.1016/j.jinorgbio.2019.110909] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 02/05/2023]
Abstract
Glioma stem cells (GSCs) are thought to be responsible for the recurrence and invasion of glioblastoma multiform (GBM), which have been evaluated and exploited as the therapeutic target for GBM. Cyclometalated iridium(III) complexes have been demonstrated as the potential anticancer agents, however, their antitumor efficacies against GSCs are still unknown. Herein, we investigated the antitumor activity of two cyclometalated iridium(III) complexes [Ir(ppy)2L](PF6) (Ir1) and [Ir(thpy)2L](PF6) (Ir2) (ppy = 2-phenylpyridine, thpy = 2-(2-thienyl)pyridine and L = 4,4'-Bis(hydroxymethyl)-2,2'-bipyridine) against GSCs. The results clearly indicate that Ir1 and Ir2 kill GSCs selectively with IC50 values ranging from 5.26-9.05 μM. Further mechanism research display that Ir1 and Ir2 can suppress the proliferation of GSCs, penetrate into GSCs efficiently, localize to mitochondria, and induce mitochondria-mediated apoptosis, including the loss of mitochondrial membrane (MMP), elevation of intracellular reactive oxygen species (ROS) and caspases activation. Moreover, Ir1 and Ir2 can destroy the GSCs self-renewal and unlimited proliferation capacity by affecting the GSCs colony formation. According our knowledge, this is the first study to investigate the anti-GSCs properties of cyclometalated iridium(III) complexes.
Collapse
Affiliation(s)
- Wan Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ahmed M Hegazy
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Zoology Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ning Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xi Chen
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China
| | - Hua-Xin Qi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
| | - Xu-Dong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China; Laboratory of Animal Tumor Models, Department of Thoracic Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Pu
- The First Department of Neurosurgery, The Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China; Kunming Medical University, Kunming 650101, China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
60
|
Świtlicka A, Choroba K, Szlapa-Kula A, Machura B, Erfurt K. Experimental and theoretical insights into spectroscopy and electrochemistry of Re(I) carbonyl with oxazoline-based ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
61
|
Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Brink A, Helliwell JR. Formation of a highly dense tetra-rhenium cluster in a protein crystal and its implications in medical imaging. IUCRJ 2019; 6:695-702. [PMID: 31316813 PMCID: PMC6608631 DOI: 10.1107/s2052252519006651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/09/2019] [Indexed: 05/22/2023]
Abstract
The fact that a protein crystal can serve as a chemical reaction vessel is intrinsically fascinating. That it can produce an electron-dense tetranuclear rhenium cluster compound from a rhenium tri-carbonyl tri-bromo starting compound adds to the fascination. Such a cluster has been synthesized previously in vitro, where it formed under basic conditions. Therefore, its synthesis in a protein crystal grown at pH 4.5 is even more unexpected. The X-ray crystal structures presented here are for the protein hen egg-white lysozyme incubated with a rhenium tri-carbonyl tri-bromo compound for periods of one and two years. These reveal a completed, very well resolved, tetra-rhenium cluster after two years and an intermediate state, where the carbonyl ligands to the rhenium cluster are not yet clearly resolved, after one year. A dense tetranuclear rhenium cluster, and its technetium form, offer enhanced contrast in medical imaging. Stimulated by these crystallography results, the unusual formation of such a species directly in an in vivo situation has been considered. It offers a new option for medical imaging compounds, particularly when considering the application of the pre-formed tetranuclear cluster, suggesting that it may be suitable for medical diagnosis because of its stability, preference of formation and biological compatibility.
Collapse
Affiliation(s)
- Alice Brink
- Department of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein, 9301, South Africa
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, UK
| | - John R. Helliwell
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, UK
| |
Collapse
|
63
|
Tian W, Li J, Su Z, Lan F, Li Z, Liang D, Wang C, Li D, Hou H. Novel Anthraquinone Compounds Induce Cancer Cell Death through Paraptosis. ACS Med Chem Lett 2019; 10:732-736. [PMID: 31097991 DOI: 10.1021/acsmedchemlett.8b00624] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Novel anthraquinone compounds that induce ER stress and paraptosis-like cell death were designed and synthesized. Compound 4a is the first organic micromolecule to kill tumor cells by only paraptosis, and its mechanism of action has been further explored. Paraptosis does not appear to involve either phosphatidylserine translocation associated with apoptosis or cell cycle arrest. The bisbenzyloxy and N-(2-hydroxyethyl)formamide structures may be two critical pharmacophores for paraptosis. Bisbenzyloxy can induce ER stress, and the N-(2-hydroxyethyl)formamide structure can increase the ratio of LC3II/I and cytoplasmic vacuolization and facilitates paraptosis. Some antitumor drugs fail to eradicate malignant cell lines with impaired apoptotic pathways; paraptosis may be a route to kill such cells and provides a new potential strategy for cancer chemotherapy.
Collapse
Affiliation(s)
- Wei Tian
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Junying Li
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhengying Su
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Fu Lan
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Zhaoquan Li
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Dandan Liang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunmiao Wang
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Danrong Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Huaxin Hou
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
64
|
Wang FX, Liang JH, Zhang H, Wang ZH, Wan Q, Tan CP, Ji LN, Mao ZW. Mitochondria-Accumulating Rhenium(I) Tricarbonyl Complexes Induce Cell Death via Irreversible Oxidative Stress and Glutathione Metabolism Disturbance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13123-13133. [PMID: 30888144 DOI: 10.1021/acsami.9b01057] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mitochondria play a critical role in tumorigenesis. Targeting mitochondria and disturbing related events have been emerging as a promising way for chemotherapy. In this work, two binuclear rhenium(I) tricarbonyl complexes of the general formula [Re2(CO)6(dip)2L](PF6)2 (dip = 4,7-diphenyl-1,10-phenanthroline; L = 4,4'-azopyridine (ReN) or 4,4'-dithiodipyridine (ReS)) were synthesized and characterized. ReN and ReS can react with glutathione (GSH). They exhibit good in vitro anticancer activity against cancer cell lines screened. Besides, they can target mitochondria, cause oxidative stress, and disturb GSH metabolism. Both ReN and ReS can induce necroptosis and caspase-dependent apoptosis simultaneously. We also demonstrate that ReN and ReS can inhibit tumor growth in nude mice bearing carcinoma xenografts. Our study shows the potential of Re(I) complexes as chemotherapeutic agents to kill cancer cells via a mitochondria-to-cellular redox strategy.
Collapse
Affiliation(s)
- Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Jin-Hao Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ze-Hua Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Qin Wan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
65
|
Hao H, Liu X, Ge X, Zhao Y, Tian X, Ren T, Wang Y, Zhao C, Liu Z. Half-sandwich iridium(III) complexes with α-picolinic acid frameworks and antitumor applications. J Inorg Biochem 2019; 192:52-61. [DOI: 10.1016/j.jinorgbio.2018.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
|
66
|
Schutte-Smith M, Roodt A, Visser HG. Ambient and high-pressure kinetic investigation of methanol substitution in fac-[Re(Trop)(CO)3(MeOH)] by different monodentate nucleophiles. Dalton Trans 2019; 48:9984-9997. [DOI: 10.1039/c9dt01528k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
First report of high-pressure methanol substitution by entering monodentate L forms fac-[Re(CO)3(Trop)(L)] {ΔV≠(kL) = +9 – +14 cm−3 mol−1}, indicating dissociative/dissociative interchange activation.
Collapse
Affiliation(s)
| | - Andreas Roodt
- Department of Chemistry
- University of the Free State
- PO Box 339
- Bloemfontein
- South Africa
| | - Hendrik G. Visser
- Department of Chemistry
- University of the Free State
- PO Box 339
- Bloemfontein
- South Africa
| |
Collapse
|
67
|
Qiu K, Chen Y, Rees TW, Ji L, Chao H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2017.10.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
Klemens T, Świtlicka A, Szlapa-Kula A, Krompiec S, Lodowski P, Chrobok A, Godlewska M, Kotowicz S, Siwy M, Bednarczyk K, Libera M, Maćkowski S, Pędziński T, Schab-Balcerzak E, Machura B. Experimental and computational exploration of photophysical and electroluminescent properties of modified 2,2′:6′,2″-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine ligands and their Re(I) complexes. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tomasz Klemens
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Świtlicka
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Agata Szlapa-Kula
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Stanisław Krompiec
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Piotr Lodowski
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Anna Chrobok
- Faculty of Chemistry; Silesian University of Technology; 9 Strzody Str. 44-100 Gliwice Poland
| | - Magdalena Godlewska
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences; Kasprzaka 44/52, PO Box 58 01-224 Warszawa Poland
| | - Sonia Kotowicz
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Katarzyna Bednarczyk
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Marcin Libera
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University; 5 Grudziądzka Str. 87-100 Torun Poland
| | - Tomasz Pędziński
- Faculty of Chemistry; Adam Mickiewicz University in Poznań; 89b Umultowska 61-614 Poznań Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
- Centre of Polymer and Carbon Materials; Polish Academy of Sciences; 34 M. Curie-Sklodowska Str. 41-819 Zabrze Poland
| | - Barbara Machura
- Institute of Chemistry; University of Silesia; 9 Szkolna Str. 40-006 Katowice Poland
| |
Collapse
|
69
|
Giffard D, Fischer-Fodor E, Vlad C, Achimas-Cadariu P, Smith GS. Synthesis and antitumour evaluation of mono- and multinuclear [2+1] tricarbonylrhenium(I) complexes. Eur J Med Chem 2018; 157:773-781. [DOI: 10.1016/j.ejmech.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/15/2022]
|
70
|
Lyczko K, Lyczko M, Meczynska-Wielgosz S, Kruszewski M, Mieczkowski J. Tricarbonylrhenium(I) complexes with the N,6-dimethylpyridine-2-carbothioamide ligand: combined experimental and calculation studies. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1476686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Monika Lyczko
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
- Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland
| | | |
Collapse
|
71
|
Banerjee HN, Vaughan D, Boston A, Thorne G, Payne G, Sampson J, Manglik V, Olczak P, Powell BV, Winstead A, Shaw R, Mandal SK. The Effects of Synthesized Rhenium Acetylsalicylate Compounds on Human Astrocytoma Cell Lines. ACTA ACUST UNITED AC 2018; 10. [PMID: 29707104 PMCID: PMC5915335 DOI: 10.4172/1948-5956.1000512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose Because of the scarcity of suitable brain cancer drugs, researchers are frantically trying to discover novel and highly potent drugs free of side effects and drug-resistance. Rhenium compounds are known to be nontoxic and exhibit no drug resistance. For that reason, we have developed a series of novel rhenium acetylsalicylato (RAC or ASP) complexes to test their cytotoxicity on brain cancer cells. Also we have attempted to explore the DNAbinding properties of these compounds because many drugs either directly or indirectly bind to DNA. Methods We have treated the RAC series compounds on human astrocytoma brain cancer cell lines and rat normal brain astrocyte cells and determined the efficacy of these complexes through in vitro cytotoxicity assay. We carried out the DNA-binding study through UV titrations of a RAC compound with DNA. Also we attempted to determine the planarity of the polypyridyl ligands of the RAC series compounds using DFT calculations. Results RAC6 is more potent than any other RAC series compounds on HTB-12 human astrocytoma cancer cells as well as on Glioblastoma Multiforme D54 cell lines. In fact, The IC-50 value of RAC6 on HTB-12 cancer cells is approximately 2 μM. As expected, the RAC series compounds were not active on normal cells. The DFT calculations on the RAC series compounds were done and suggest that the polypyridyl ligands in the complexes are planar. The UV-titrations of RAC9 with DNA were carried out. It suggests that RAC9 and possibly all RAC series compounds bind to minor grooves of the DNA. Conclusion Because of the very low activity of RAC6 on normal cells and low lC50 value of on astrocytoma (HTB-12) cell lines, it is possible that RAC6 and its derivatives may potentially find application in the treatment of brain cancers. The DFT calculations and UV titrations suggest that RAC series compounds either bind to DNA intercalatively or minor grooves of the DNA or both. However, it is highly premature to make any definite statement in the absence of other techniques.
Collapse
Affiliation(s)
- Hirendra N Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Deidre Vaughan
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Ava Boston
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Gabriel Thorne
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Gloria Payne
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Josiah Sampson
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Vinod Manglik
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC, USA
| | - Pola Olczak
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Brent V Powell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Angela Winstead
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Roosevelt Shaw
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Santosh K Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| |
Collapse
|
72
|
Nuclearity manipulation in Schiff-base fac-tricarbonyl complexes of Mn(I) and Re(I). Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
König M, Siegmund D, Raszeja LJ, Prokop A, Metzler-Nolte N. Resistance-breaking profiling and gene expression analysis on an organometallic Re I-phenanthridine complex reveal parallel activation of two apoptotic pathways. MEDCHEMCOMM 2018; 9:173-180. [PMID: 30108911 PMCID: PMC6072495 DOI: 10.1039/c7md00545h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 11/21/2022]
Abstract
Emerging resistances of tumors against multiple anti-cancer agents are a major concern in the chemotherapeutical treatment of various cancers. Clearly, this raises the need for novel therapeutics with new modes of action. Herein, we report on the favorable in vitro anti-proliferative properties of a phenanthridine-containing ReI(CO)3 complex (compound 1, also abbreviated LR-166) and identify major contributions to its mode of action. The complex induces apoptosis in low micromolar concentrations even in drug-resistant Burkitt-like lymphoma (BJAB) and leukemia (Nalm-6) cell lines with known overexpression of p-glycoproteins as was confirmed by measuring the amount of hypodiploid DNA via FACS Scan analysis. Importantly, a gene expression analysis in combination with toxicity studies on a number of modified cell lines (leukemia: NALM-6, lymphoma: BJAB, melanoma: MelHO) and the reduction of mitochondrial membrane potential (determined by adding JC-1 dye, followed by FACS analysis) confirmed the activation of both, the extrinsic and the intrinsic apoptotic pathway. Finally, the mechanism of action was shown not to be influenced by overexpression of the anti-apoptotic factor Bcl-2 in Mel-HO cells which are known to be resistant to a variety of drugs. All taken together, our experiments underscore the unique opportunities inherent in this novel lead structure of Re complexes to act as an effective chemotherapeutic agent in a combination therapy to overcome documented drug resistances in tumors.
Collapse
Affiliation(s)
- Marcel König
- Department of Paedriatic Oncology , Children's Hospital Cologne , Amsterdamer Strasse 59 , 50735 Cologne , Germany
| | - Daniel Siegmund
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry , Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstrasse 150 , D-44801 Bochum , Germany .
| | - Lukasz J Raszeja
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry , Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstrasse 150 , D-44801 Bochum , Germany .
| | - Aram Prokop
- Department of Paedriatic Oncology , Children's Hospital Cologne , Amsterdamer Strasse 59 , 50735 Cologne , Germany
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry , Faculty of Chemistry and Biochemistry , Ruhr University Bochum , Universitätsstrasse 150 , D-44801 Bochum , Germany .
| |
Collapse
|
74
|
Morelli Frin KP, da Rocha DC, Mamud JF, Polo AS. Photoisomerization of di-nuclear rhenium(i) bpe-based compounds. Photochem Photobiol Sci 2018; 17:1443-1449. [DOI: 10.1039/c8pp00274f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photoisomerization processes of [{(NN)(CO)3Re}2(trans-bpe)]2+ complexes showed the contribution of the singlet pathway in addition to the usually observed triplet one. The luminescence observed for the cis-complexes in CH3CN is able to efficiently photosensitize the generation of 1O2.
Collapse
|
75
|
He L, Wang KN, Zheng Y, Cao JJ, Zhang MF, Tan CP, Ji LN, Mao ZW. Cyclometalated iridium(iii) complexes induce mitochondria-derived paraptotic cell death and inhibit tumor growthin vivo. Dalton Trans 2018; 47:6942-6953. [DOI: 10.1039/c8dt00783g] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A potent anticancer Ir(iii) complex induces paraptotic cell death by causing mitochondrial dysfunction rapidly and inhibits tumor growth significantlyin vivo.
Collapse
Affiliation(s)
- Liang He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Ming-Fang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
76
|
Ye RR, Cao JJ, Tan CP, Ji LN, Mao ZW. Valproic Acid-Functionalized Cyclometalated Iridium(III) Complexes as Mitochondria-Targeting Anticancer Agents. Chemistry 2017; 23:15166-15176. [PMID: 28833658 DOI: 10.1002/chem.201703157] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/14/2017] [Indexed: 01/04/2025]
Abstract
Valproic acid (VPA) is a short-chain, fatty acid type histone deacetylase inhibitor (HDACi), which can cause growth arrest and induce differentiation of transformed cells. Phosphorescent cyclometalated IrIII complexes have emerged as potential anticancer agents. By conjugation of VPA to IrIII complexes through an ester bond, VPA-functionalized cyclometalated iridium(III) complexes 1 a-3 a were designed and synthesized. These complexes display excellent two-photon properties, which are favorable for live-cell imaging. The ester bonds in 1 a-3 a can be hydrolyzed quickly by esterase and display similar inhibition of HDAC activity to VPA. Notably, 1 a-3 a can overcome cisplatin resistance effectively and are about 54.5-89.7 times more cytotoxic than cisplatin against cisplatin-resistant human lung carcinoma (A549R) cells. Mechanistic studies indicate that 1 a-3 a can penetrate into human cervical carcinoma (HeLa) cells quickly and efficiently, accumulate in mitochondria, and induce a series of cell-death-related events mediated by mitochondria. This study gives insights into the design and anticancer mechanisms of multifunctional anticancer agents.
Collapse
Affiliation(s)
- Rui-Rong Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
77
|
Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, Wilson JJ. In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes. J Am Chem Soc 2017; 139:14302-14314. [PMID: 28948792 PMCID: PMC8091166 DOI: 10.1021/jacs.7b08640] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Seven rhenium(I) complexes of the general formula fac-[Re(CO)3(NN)(OH2)]+ where NN = 2,2'-bipyridine (8), 4,4'-dimethyl-2,2'-bipyridine (9), 4,4'-dimethoxy-2,2'-bipyridine (10), dimethyl 2,2'-bipyridine-4,4'-dicarboxylate (11), 1,10-phenanthroline (12), 2,9-dimethyl-1,10-phenanthroline (13), or 4,7-diphenyl-1,10-phenanthroline (14), were synthesized and characterized by 1H NMR spectroscopy, IR spectroscopy, mass spectrometry, and X-ray crystallography. With the exception of 11, all complexes exhibited 50% growth inhibitory concentration (IC50) values that were less than 20 μM in HeLa cells, indicating that these compounds represent a new potential class of anticancer agents. Complexes 9, 10, and 13 were as effective in cisplatin-resistant cells as wild-type cells, signifying that they circumvent cisplatin resistance. The mechanism of action of the most potent complex, 13, was explored further by leveraging its intrinsic luminescence properties to determine its intracellular localization. These studies indicated that 13 induces cytoplasmic vacuolization that is lysosomal in nature. Additional in vitro assays indicated that 13 induces cell death without causing an increase in intracellular reactive oxygen species or depolarization of the mitochondrial membrane potential. Further studies revealed that the mode of cell death does not fall into one of the canonical categories such as apoptosis, necrosis, paraptosis, and autophagy, suggesting that a novel mode of action may be operative for this class of rhenium compounds. The in vivo biodistribution and metabolism of complex 13 and its 99mTc analogue 13* were also evaluated in naı̈ve mice. Complexes 13 and 13* exhibited comparable biodistribution profiles with both hepatic and renal excretion. High-performance liquid chromatography inductively coupled plasma mass-spectrometry (HPLC-ICP-MS) analysis of mouse blood plasma and urine postadministration showed considerable metabolic stability of 13, rendering this potent complex suitable for in vivo applications. These studies have shown the biological properties of this class of compounds and demonstrated their potential as promising theranostic anticancer agents that can circumvent cisplatin resistance.
Collapse
Affiliation(s)
- Kevin M. Knopf
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brendan L. Murphy
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samantha N. MacMillan
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Martin P. Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James’s Hospital and Trinity College Dublin, Dublin, Ireland
| | - Eszter Boros
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13 Street, Suite 2301, Charlestown, MA 02129, USA
| | - Justin J. Wilson
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
78
|
Wilder PT, Weber DJ, Winstead A, Parnell S, Hinton TV, Stevenson M, Giri D, Azemati S, Olczak P, Powell BV, Odebode T, Tadesse S, Zhang Y, Pramanik SK, Wachira JM, Ghimire S, McCarthy P, Barfield A, Banerjee HN, Chen C, Golen JA, Rheingold AL, Krause JA, Ho DM, Zavalij PY, Shaw R, Mandal SK. Unprecedented anticancer activities of organorhenium sulfonato and carboxylato complexes against hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells. Mol Cell Biochem 2017; 441:151-163. [PMID: 28913709 DOI: 10.1007/s11010-017-3181-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/01/2017] [Indexed: 01/23/2023]
Abstract
Cisplatin and other metal-based drugs often display side effects and tumor resistance after prolonged use. Because rhenium-based anticancer complexes are often less toxic, a novel series of organorhenium complexes were synthesized of the types: XRe(CO)3Z (X = α-diimines and Z = p-toluenesulfonate, 1-naphthalenesulfonate, 2-naphthalenesulfonate, picolinate, nicotinate, aspirinate, naproxenate, flufenamate, ibuprofenate, mefenamate, tolfenamate, N-acetyl-tryptophanate), and their biological properties were examined. Specifically, in hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells, the p-toluenesulfonato, 1-naphthalenesulfonato, 2-naphthalenesulfonato, picolinato, nicotinato, acetylsalicylato, flufenamato, ibuprofenato, mefenamato, and N-acetyl-tryptophanato complexes were found to be far more potent than conventional drug cisplatin. DNA-binding studies were performed in each case via UV-Vis titrations, cyclic voltammetry, gel electrophoresis, and viscosity, which suggest DNA partial intercalation interaction, and the structure-activity relationship studies suggest that the anticancer activities increase with the increasing lipophilicities of the compounds, roughly consistent with their DNA-binding activities.
Collapse
Affiliation(s)
- Paul T Wilder
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics & Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Weber
- Department of Biochemistry and Molecular Biology, Center for Biomolecular Therapeutics & Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angela Winstead
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Sabreea Parnell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Tiara V Hinton
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Monet Stevenson
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Dipak Giri
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Samira Azemati
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Pola Olczak
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Brent V Powell
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Solomon Tadesse
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Yongchao Zhang
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Saroj K Pramanik
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - James M Wachira
- Department of Biology, Morgan State University, Baltimore, MD, USA
| | - Sujan Ghimire
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | | | - Alexis Barfield
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University - University of North Carolina, Elizabeth City, NC, USA
| | - Hirendra N Banerjee
- Department of Natural, Pharmacy and Health Sciences, Elizabeth City State University - University of North Carolina, Elizabeth City, NC, USA
| | - Chao Chen
- Department of Chemistry, University of California, San Diego, CA, USA
| | - James A Golen
- Department of Chemistry, University of California, San Diego, CA, USA
| | | | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Douglas M Ho
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Roosevelt Shaw
- Department of Chemistry, Morgan State University, Baltimore, MD, USA
| | - Santosh K Mandal
- Department of Chemistry, Morgan State University, Baltimore, MD, USA.
| |
Collapse
|
79
|
Gonçalves MR, Frin KP. Synthesis, characterization, photophysical and electrochemical properties of rhenium(I) tricarbonyl diimine complexes with triphenylphosphine ligand. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Liu T, Chai H, Wang L, Yu Z. Exceptionally Active Assembled Dinuclear Ruthenium(II)-NNN Complex Catalysts for Transfer Hydrogenation of Ketones. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00356] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tingting Liu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huining Chai
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liandi Wang
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
| | - Zhengkun Yu
- Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan
Road, Dalian, Liaoning 116023, China
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
81
|
Miao WQ, Zhang MM, Wang XS. Synthesis of Pyridophenanthrolines via
a Three-Component Reaction Involving 1,10-Phenanthrolin-5-Amine. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei-Qing Miao
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| | - Mei-Mei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University; Xuzhou Jiangsu 221116 China
| |
Collapse
|
82
|
Lee LCC, Leung KK, Lo KKW. Recent development of luminescent rhenium(i) tricarbonyl polypyridine complexes as cellular imaging reagents, anticancer drugs, and antibacterial agents. Dalton Trans 2017; 46:16357-16380. [DOI: 10.1039/c7dt03465b] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Perspective summarizes recent advances in the biological applications of luminescent rhenium(i) tricarbonyl polypyridine complexes.
Collapse
Affiliation(s)
| | - Kam-Keung Leung
- Department of Chemistry
- City University of Hong Kong
- P. R. China
| | | |
Collapse
|
83
|
Frin KPM, de Almeida RM. Mono- and di-nuclear Re(i) complexes and the role of protonable nitrogen atoms in quenching emission by hydroquinone. Photochem Photobiol Sci 2017; 16:1230-1237. [DOI: 10.1039/c7pp00092h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using the simplest type of supramolecular architecture as an easy approach to understand the quenching mechanism of rhenium(i) compounds.
Collapse
|
84
|
A survey of the mechanisms of action of anticancer transition metal complexes. Future Med Chem 2016; 8:2263-2286. [DOI: 10.4155/fmc-2016-0153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Metal complexes have been the subject of numerous investigations in oncology but, despite the plethora of newly synthesized compounds, their precise mechanisms of action remain generally unknown or, for the best, incompletely determined. The continuous development of efficient and sensitive techniques in analytical chemistry and molecular biology gives scientists new tools to gather information on how metal complexes can be effective toward cancer. This review focuses on recent findings about the anticancer mechanism of action of metal complexes and how the ligands can be used to tune their pharmacological and physicochemical properties.
Collapse
|
85
|
Coe BJ, Foxon SP, Pilkington RA, Sánchez S, Whittaker D, Clays K, Van Steerteghem N, Brunschwig BS. Rhenium(I) Tricarbonyl Complexes with Peripheral N-Coordination Sites: A Foundation for Heterotrimetallic Nonlinear Optical Chromophores. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin J. Coe
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Simon P. Foxon
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Rachel A. Pilkington
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Sergio Sánchez
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Daniel Whittaker
- School
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Koen Clays
- Department
of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Nick Van Steerteghem
- Department
of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | - Bruce S. Brunschwig
- Molecular
Materials Research Center, Beckman Institute, MC 139-74, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|