51
|
Yamamoto Y, Kiyohara C, Suetsugu-Ogata S, Hamada N, Nakanishi Y. Biological interaction of cigarette smoking on the association between genetic polymorphisms involved in inflammation and the risk of lung cancer: A case-control study in Japan. Oncol Lett 2017; 13:3873-3881. [PMID: 28529598 DOI: 10.3892/ol.2017.5867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation serves an important role in lung carcinogenesis, thus genetic polymorphisms involved in this pathway may affect the risk of lung cancer. The present case-control study focused on the association between lung cancer risk and genetic polymorphisms involved in inflammatory pathways. The study comprised 462 lung cancer cases and 379 controls from Japan. The roles of interleukin 8 (IL8) rs4073, nuclear factor kappa B (NFκB) rs28362491, cytochrome b-245, alpha polypeptide (CYBA) rs4673, NAD(P) H dehydrogenase, quinone 1 (NQO1) rs1800566, nitric oxide synthase 2 and inducible (NOS2) rs2297518 polymorphisms in lung carcinogenesis were investigated. An unconditional logistic model was used to estimate the odds ratio (OR) and 95% confidence interval (CI) for the association between the genetic polymorphisms and lung cancer risk. The multiplicative and additive [relative excess risk due to interaction, attributable proportion due to interaction (AP) and synergy index (SI)] interactions with cigarette smoking were also determined. A significant association was revealed between the TT genotype of NQO1 rs1800566 and an increased risk of lung cancer (OR=1.78; 95% CI=1.14-2.79). The additive interaction evaluations between CYBA rs4673 (AP=0.50, 95% CI=0.15-0.85; SI=2.66, 95% CI=1.01-6.99) and smoking were also statistically significant. NQO1 rs1800566 was significantly associated with lung cancer risk and smoking may influence the association between CYBA rs4673 and the risk of lung cancer. Additional studies with larger control and case populations are warranted in order to confirm the CYBA rs4673-smoking association suggested by the present study.
Collapse
Affiliation(s)
- Yuzo Yamamoto
- Research Institute for Diseases of The Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chikako Kiyohara
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Saiko Suetsugu-Ogata
- Research Institute for Diseases of The Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Hamada
- Research Institute for Diseases of The Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of The Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
52
|
Lawsone suppresses azoxymethane mediated colon cancer in rats and reduces proliferation of DLD-1 cells via NF-κB pathway. Biomed Pharmacother 2017; 89:152-161. [PMID: 28222396 DOI: 10.1016/j.biopha.2017.01.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
Lawsone (LS) a colored napthoquinone compound obtained from the plant Lawsonia inermis L. (Lythraceae) is known for its usefulness of being a precursor for synthesis of some anticancer compounds. Literatures support potent anticancer activity of napthoquinone derivatives in human colon cancer, present study evaluates the effect and mechanism of LS on chemical induced colon cancerous rats and human colon cancer DLD-1 cells, the study was supported by endoscopy, histological and immunohistochemistry analysis. KAD rats were subjected to colon cancer mediated by Azoxymethane (AOM) injections followed Dextran sodium sulfate (DSS) orally in drinking water. After endoscopic confirmation the rats were given LS (200mg/ml) orally for 8 weeks. Presence of aberrant foci, types of tumors and the proliferative effect on tumor lesions was studied by macroscopic, histological and immunohistochemical analysis. To establish the mechanism, human colon DLD-1 cancer cells were exposed to LS and its effect on proliferation were studied. LS reduced aberrant crypt without affecting tumor pathology. Histological study of colon suggested decrease in numbers of adenomas and lesions. Immunohistochemistry confirmed the antiproliferative activity in adenocarcinomas without affecting the cells of normal colon mucosa. Results on human DLD-1 cells showed LS delayed progression of cell cycle by decreasing expression of cyclin B1 as well as cdk1 by inactivating NF-κB without inducing apoptosis. The study concluded role of LS in suppressing cell proliferation of colon tumors. The suppressive activity on DLD-1 cells was not by apoptosis but by decreased NF-κB activity resulting in suppression of expression levels of cyclin B1 and cdk1.
Collapse
|
53
|
Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, Ikari A. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem 2017; 292:2411-2421. [PMID: 28057758 DOI: 10.1074/jbc.m116.762807] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/03/2017] [Indexed: 12/13/2022] Open
Abstract
Claudin-2 is highly expressed in lung adenocarcinoma tissues and increases proliferation in adenocarcinoma cells. The chemicals that reduce claudin-2 expression may have anti-cancer effects, but such therapeutic medicines have not been developed. We found that azacitidine (AZA), a DNA methylation inhibitor, and trichostatin A (TSA) and sodium butyrate (NaB), histone deacetylase (HDAC) inhibitors, decrease claudin-2 levels. The effect of AZA was mediated by the inhibition of phosphorylated Akt and NF-κB. LY-294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), and BAY 11-7082, an NF-κB inhibitor, decreased claudin-2 levels. The reporter activity of claudin-2 was decreased by AZA and LY-294002, which was blocked by the mutation in a putative NF-κB-binding site. NF-κB bound to the promoter region of claudin-2, which was inhibited by AZA and LY-294002. AZA is suggested to decrease the claudin-2 mRNA level mediated by the inhibition of a PI3K/Akt/NF-κB pathway. TSA and NaB did not change phosphorylated Akt and NF-κB levels. Furthermore, these inhibitors did not change the reporter activity of claudin-2 but decreased the stability of claudin-2 mRNA mediated by the elevation of miR-497 microRNA. The binding of histone H3 to the promoter region of miR-497 was inhibited by TSA and NaB, whereas that of claudin-2 was not. These results suggest that HDAC inhibitors decrease claudin-2 levels mediated by the elevation of miR-497 expression. Cell proliferation was additively decreased by AZA, TSA, and NaB, which was partially rescued by ectopic expression of claudin-2. We suggest that epigenetic inhibitors suppress the abnormal proliferation of lung adenocarcinoma cells highly expressing claudin-2.
Collapse
Affiliation(s)
- Asami Hichino
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Miki Okamoto
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Saeko Taga
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Risa Akizuki
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- From the Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| |
Collapse
|
54
|
The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells. Cancer Lett 2016; 388:269-280. [PMID: 27998759 DOI: 10.1016/j.canlet.2016.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/21/2022]
Abstract
Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients.
Collapse
|
55
|
Abstract
The aim of future research in this area is to provide the mechanistic understanding and the tools for effective prevention, early diagnosis, and therapy of lung cancer. With the established causal link between cigarette smoking and the risk of developing lung cancer, the most effective prevention is certainly not to smoke. A much better mechanistic understanding of lung cancer and its variability will support the development and evaluation of potentially reduced risk products for those who maintain smoking as well as for the development of early diagnostic tools and targeted therapies. Because of the complexity of lung cancer and the long duration for its development, nonclinical and clinical research efforts need to complement each other. Recent promising advances in this research area are the understanding of the interaction between genotoxic and epigenetic effects of smoking, the development of laboratory animal models for lung tumorigenesis by smoke inhalation, the unraveling of molecular pathways and signatures in clinical lung cancer research useful for developing diagnostic tools and therapeutic approaches, and the first successful therapy for lung cancer—although less suitable for smokers. The above—in combination with emerging data sets from explorative non-clinical and clinical studies as well as improved modeling approaches—are setting the stage for accelerated progress towards developing successful early diagnostic tools and therapies as well as for the assessment of new consumer products with potentially reduced risk.
Collapse
|
56
|
Huang L, Li F, Deng P, Hu C. [ARTICLE WITHDRAWN] MicroRNA-223 Promotes Tumor Progression in Lung Cancer A549 Cells via Activation of the NF-κB Signaling Pathway. Oncol Res 2016; 24:405-413. [PMID: 28281961 PMCID: PMC7838624 DOI: 10.3727/096504016x14685034103437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN NOVEMBER 2020
Collapse
Affiliation(s)
- Li Huang
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Fang Li
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Pengbo Deng
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
57
|
Zhang B, Wang H, Yang L, Zhang Y, Wang P, Huang G, Zheng J, Ren H, Qin S. OTUD7B and NIK expression in non-small cell lung cancer: Association with clinicopathological features and prognostic implications. Pathol Res Pract 2016; 212:893-898. [PMID: 27499151 DOI: 10.1016/j.prp.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the correlation among OTUD7B and NIK expression and the clinicopathological characteristics in NSCLC patients. METHODS One hundred and twenty patients were involved in this study. We detected OTUD7B and NIK expression by immunohistochemistry and analyzed their correlation with clinicopathological data. RESULTS The expression of OTUD7B and NIK were negatively correlated in NSCLC tumor samples (rs=-0.421, P<0.001). The higher expression of OTUD7B was associated with smaller tumor size(P=0.018), less lymph node metastasis (P=0.012) and earlier TNM stage(P=0.039), while the higher expression of NIK was only related to more lymph node metastasis(P=0.031) and later TNM stage(P=0.011). MMP-9 was negatively correlated with OTUD7B and positively correlated with NIK. In addition, the high expression of OTUD7B was associated with good prognosis of NSCLC patients (log-rank=6.714, P=0.0096), and a high OTUD7B/low NIK index can predict an even better prognosis (log-rank=11.794, P=0.0006). Moreover, the multivariate Cox regression analysis showed that OTUD7B rather than NIK is an independent marker of overall survival in NSCLC patients(HR=1.602, 95% CI 1.009-2.544, P=0.046). CONCLUSIONS OTUD7B and NIK may play important roles in the development of lung cancer. The combination of OTUD7B and NIK expression may be a good index for predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Huangzhen Wang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Litao Yang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Yiwen Zhang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Peili Wang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Guanghong Huang
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Jie Zheng
- Clinical Research Center,the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Hong Ren
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Sida Qin
- Department Two of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
58
|
Exploring the inhibitory potential of bioactive compound from Luffa acutangula against NF-κB—A molecular docking and dynamics approach. Comput Biol Chem 2016; 62:29-35. [DOI: 10.1016/j.compbiolchem.2016.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/23/2016] [Accepted: 03/27/2016] [Indexed: 12/25/2022]
|
59
|
Aqil F, Kausar H, Agrawal AK, Jeyabalan J, Kyakulaga AH, Munagala R, Gupta R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp Mol Pathol 2016; 101:12-21. [PMID: 27235383 DOI: 10.1016/j.yexmp.2016.05.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 01/06/2023]
Abstract
Celastrol (CEL), a plant-derived triterpenoid, is a known inhibitor of Hsp90 and NF-κB activation pathways and has recently been suggested to be of therapeutic importance in various cancers. However, the molecular mechanisms of celastrol-mediated effects in lung cancer are not systematically studied. Moreover, it suffers from poor bioavailability and off-site toxicity issues. This study aims to study the effect of celastrol loaded into exosomes against two non-small cell-lung carcinoma (NSCLC) cell lines and explore the molecular mechanisms to determine the proteins governing the cellular responses. We observed that celastrol inhibited the proliferation of A549 and H1299 NSCLC cells in a time- and concentration-dependent manner as indexed by MTT assay. Mechanistically, CEL pre-treatment of H1299 cells completely abrogated TNFα-induced NF-κB activation and upregulated the expression of ER-stress chaperones Grp 94, Grp78, and pPERK. These changes in ER-stress mediators were paralleled by an increase in apoptotic response as evidenced by higher annexin-V/PI positive cells evaluated by FACS and immunoblotting which showed upregulation of the ER stress specific pro-apoptotic transcription factor, GADD153/CHOP and alteration of Bax/Bcl2 levels. Exosomes loaded with CEL exhibited enhanced anti-tumor efficacy as compared to free CEL against lung cancer cell xenograft. CEL did not exhibit any gross or systemic toxicity in wild-type C57BL6 mice as determined by hematological and liver and kidney function test. Together, our data demonstrate the chemotherapeutic potential of CEL in lung cancer and that exosomal formulation enhances its efficacy and reduces dose related toxicity.
Collapse
Affiliation(s)
- Farrukh Aqil
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Hina Kausar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Ashish Kumar Agrawal
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Jeyaprakash Jeyabalan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Al-Hassan Kyakulaga
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Radha Munagala
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh Gupta
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
60
|
Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA, Richmond A, Young LR, Yull FE, Blackwell TS. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology 2016; 5:e1168549. [PMID: 27471643 DOI: 10.1080/2162402x.2016.1168549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023] Open
Abstract
Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages.
Collapse
Affiliation(s)
- Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Taylor P Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Jiqing Sai
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Dong-Sheng Cheng
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Raphael P Hunt
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
61
|
Galvani E, Sun J, Leon LG, Sciarrillo R, Narayan RS, Tjin Tham Sjin R, Lee K, Ohashi K, Heideman DA, Alfieri RR, Heynen GJ, Bernards R, Smit EF, Pao W, Peters GJ, Giovannetti E. NF-κB drives acquired resistance to a novel mutant-selective EGFR inhibitor. Oncotarget 2015; 6:42717-32. [PMID: 26015408 PMCID: PMC4767465 DOI: 10.18632/oncotarget.3956] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/08/2015] [Indexed: 01/22/2023] Open
Abstract
The clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) harbouring activating EGFR mutations is limited by the emergence of acquired resistance, mostly ascribed to the secondary EGFR-T790M mutation. Selective EGFR-T790M inhibitors have been proposed as a new, extremely relevant therapeutic approach. Here, we demonstrate that the novel irreversible EGFR-TKI CNX-2006, a structural analog of CO-1686, currently tested in a phase-1/2 trial, is active against in vitro and in vivo NSCLC models expressing mutant EGFR, with minimal effect on the wild-type receptor. By integration of genetic and functional analyses in isogenic cell pairs we provide evidence of the crucial role played by NF-κB1 in driving CNX-2006 acquired resistance and show that NF-κB activation may replace the oncogenic EGFR signaling in NSCLC when effective and persistent inhibition of the target is achieved in the presence of the T790M mutation. In this context, we demonstrate that the sole, either genetic or pharmacologic, inhibition of NF-κB is sufficient to reduce the viability of cells that adapted to EGFR-TKIs. Overall, our findings support the rational inhibition of members of the NF-κB pathway as a promising therapeutic option for patients who progress after treatment with novel mutant-selective EGFR-TKIs.
Collapse
Affiliation(s)
- Elena Galvani
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jing Sun
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Leticia G. Leon
- Instituto de Tecnologias Biomedicas, Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife, Spain
| | - Rocco Sciarrillo
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Department Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ravi S. Narayan
- Department Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Kwangho Lee
- Celgene Avilomics Research, Bedford, MA, USA
| | - Kadoaki Ohashi
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Roberta R. Alfieri
- Department of Clinical and Experimental Medicine, University of Parma, Parma, Italy
| | - Guus J. Heynen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Egbert F. Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - William Pao
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Godefridus J. Peters
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, DIPINT, University of Pisa, Pisa, Italy
| |
Collapse
|
62
|
Smoking, inflammation and small cell lung cancer: recent developments. Wien Med Wochenschr 2015; 165:379-86. [PMID: 26289596 DOI: 10.1007/s10354-015-0381-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15 % of all lung tumors and represents an invasive neuroendocrine malignancy with poor survival rates. This cancer is highly prevalent in smokers and characterized by inactivation of p53 and retinoblastoma. First in vitro expansion of circulating tumor cells (CTCs) of SCLC patients allowed for investigation of the cell biology of tumor dissemination. In the suggested CTC SCLC model, the primary tumor attracts and educates tumor-promoting and immunosuppressive macrophages which in turn arm CTCs to spread and generate distal lesions. Preexisting inflammatory processes associated with chronic obstructive pulmonary disease (COPD) seem to potentiate the subsequent activity of tumor-associated macrophages (TAM). Activation of signal transducer and activator of transcription 3 (STAT3) and expression of chitinase-3-like 1/YKL-40 in SCLC CTCs seems to be associated with drug resistance. In conclusion, inflammation-associated generation of invasive and chemoresistant CTCs most likely explains the characteristic features of SCLC, namely early dissemination and rapid failure of chemotherapy.
Collapse
|
63
|
Giopanou I, Lilis I, Papaleonidopoulos V, Marazioti A, Spella M, Vreka M, Papadaki H, Stathopoulos GT. Comprehensive Evaluation of Nuclear Factor-κΒ Expression Patterns in Non-Small Cell Lung Cancer. PLoS One 2015; 10:e0132527. [PMID: 26147201 PMCID: PMC4493092 DOI: 10.1371/journal.pone.0132527] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/15/2015] [Indexed: 12/22/2022] Open
Abstract
Nuclear factor (NF)-κB signalling is required for lung adenocarcinoma development in mice, and both of its subunits RelA and RelB were independently reported to be highly expressed in human non-small cell lung cancer (NSCLC). To comprehensively examine NF-κB expression in NSCLC, we analyzed serial sections of primary tumor samples from 77 well-documented patients (36 adenocarcinomas, 40 squamous cell carcinomas and 3 large cell carcinomas) for immunoreactivity of RelA, RelB, P50, and P52/P100. Tumor and intratumoral stroma areas were discriminated based on proliferating cell nuclear antigen immunoreactivity and inflammatory infiltration was assessed in intratumoral stroma areas. NF-κB immunoreactivity was quantified by intensity, extent, and nuclear localization and was cross-examined with tumor cell proliferation, inflammatory infiltration, and clinical-pathologic data. We found that the expression of the different NF-κB subunits was not concordant, warranting our integral approach. Overall, RelA, RelB, and P50 were expressed at higher levels compared with P52/P100. However, RelA and P50 were predominantly expressed in intratumoral stroma, but RelB in tumor cells. Importantly, tumor area RelA expression was correlated with the intensity of inflammatory infiltration, whereas RelB expression was identified in proliferating tumor cells. Using multiple logistic regression, we identified that tumor RelB expression was an independent predictor of lymph node metastasis, and tumor P50 was an independent predictor of TNM6 stage IIB or higher, whereas tumor RelA was an independent predictor of inflammatory infiltration. We conclude that pathologic studies of NF-κB expression in cancer should include multiple pathway components. Utilizing such an approach, we identified intriguing associations between distinct NF-κB subunits and clinical and pathologic features of NSCLC.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Malamati Vreka
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Helen Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgios T. Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- * E-mail:
| |
Collapse
|
64
|
Dimitrakopoulos FID, Antonacopoulou AG, Kottorou A, Marousi S, Koukourikou I, Kalofonou M, Panagopoulos N, Scopa C, Dougenis D, Papadaki H, Papavassiliou AG, Kalofonos HP. Variant of BCL3 gene is strongly associated with five-year survival of non-small-cell lung cancer patients. Lung Cancer 2015; 89:311-9. [PMID: 26122346 DOI: 10.1016/j.lungcan.2015.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVES BCL3, a known atypical IκB family member, has been documented to be upregulated in hematological malignancies and in some solid tumors, functioning as a crucial player in tumor development. Recently, rs8100239, a tag-Single Nucleotide Polymorphism (SNP) in BCL3 (T>A) has been identified, but there are no data regarding its involvement in non-small-cell lung cancer (NSCLC) initiation and progression. MATERIALS AND METHODS To study the possible association of BCL3 with NSCLC, 268 patients and 279 healthy controls were genotyped for rs8100239. Moreover, BCL3 protein expression was also investigated in 112 NSCLC cases through an immunohistochemical analysis. RESULTS NSCLC patients with AA genotype displayed significantly worse prognosis compared to T allele carriers (P<0.001), who had less frequent intermediate nuclear BCL3 expression (P=0.042). In addition, overexpression of BCL3 was detected in tumor specimens, compared to normal tissue (P<0.001). Furthermore, BCL3 protein levels were associated with five-year survival (P=0.039), maximum diameter of lesion (P=0.012), grade (P=0.002) and relapse frequency (P=0.041). CONCLUSIONS The present study is the first to show a relationship between the genetic variation rs8100239 of BCL3 and cancer patients' survival. It also represents the first quantitative evaluation of BCL3 expression in NSCLC. Our findings indicate that rs8100239 may be considered as a novel prognostic indicator, demonstrating also the overexpression of BCL3 protein in NSCLC and implicating this pivotal molecule in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | - Anna G Antonacopoulou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Stella Marousi
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Ioulia Koukourikou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | - Melpomeni Kalofonou
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece
| | | | - Chrisoula Scopa
- Department of Pathology, Medical School, University of Patras, Greece
| | - Dimitrios Dougenis
- Department of Cardiothoracic Surgery, Medical School, University of Patras, Greece
| | - Helen Papadaki
- Department of Anatomy, Medical School, University of Patras, Greece
| | | | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Internal Medicine, Medical School, University of Patras, Greece.
| |
Collapse
|
65
|
Yu J, Wang L, Zhang T, Shen H, Dong W, Ni Y, Du J. Co-expression of β-arrestin1 and NF-кB is associated with cancer progression and poor prognosis in lung adenocarcinoma. Tumour Biol 2015; 36:6551-8. [PMID: 25820700 DOI: 10.1007/s13277-015-3349-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/16/2015] [Indexed: 01/05/2023] Open
Abstract
β-arrestin1 and NF-κB have been demonstrated to be associated with tumorigenesis, tumor progression, and metastasis. Thus far, there is nevertheless little study about these two molecules in lung adenocarcinoma. The aim of this study was to investigate the correlation between β-arrestin1 and NF-κB expression and the clinicopathological characteristics in lung adenocarcinoma. A total of 115 surgically resected lung adenocarcinoma patients were recruited for the study. Expression of β-arrestin1 and p65 were detected by immunohistochemistry (IHC) in lung adenocarcinoma tissue samples. Nuclear expression of β-arrestin1 and p65 were observed in 39.1 % (45/115) and 46.1 % (53/115) cases of lung adenocarcinoma, respectively. And high expression of β-arrestin1 had negative prognostic impact for overall survival (OS) and disease-free survival (DFS) (p = 0.034 and p = 0.033). In addition, overexpression of p65 indicated a significantly poor OS and DFS than those of lower-expression (p = 0.038 and p = 0.041). Furthermore, co-expression of nuclear β-arrestin1 and p65 correlated with poorer OS and DFS in lung adenocarcinoma patients. Multivariate analysis using the Cox regression model confirmed that co-expression of nuclear β-arrestin1 and p65 was an independent prognostic factor for tumor progression (p = 0.008). In conclusion, these data indicated that co-expression of nuclear β-arrestin1 and p65 was a novel predictor for worse prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianyu Yu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, 324 Jingwu Road, Jinan, 250021, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
66
|
Yang L, Zhou Y, Li Y, Zhou J, Wu Y, Cui Y, Yang G, Hong Y. Mutations of p53 and KRAS activate NF-κB to promote chemoresistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells. Cancer Lett 2015; 357:520-6. [DOI: 10.1016/j.canlet.2014.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022]
|
67
|
Zhao W, Wang Y, Wang Y, Gao N, Han Z, Yu H. Potential anti-cancer effect of curcumin in human lung squamous cell carcinoma. Thorac Cancer 2015; 6:508-16. [PMID: 26273408 PMCID: PMC4511331 DOI: 10.1111/1759-7714.12222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022] Open
Abstract
Background To explore the molecular mechanisms of the anti-cancer effect of curcumin in human lung squamous cell carcinoma (LSQCC) SK-MES-1 cells. Methods Cell viability was determined using MTT assay. Ribonucleic acid sequencing was performed to measure expression levels of transcripts in LSQCC cells treated with 15 μmol/L curcumin (treatment groups) or an equal amount of dimethylsulfoxide (control). Cuffdiff software was used to identify differentially expressed genes (DEGs) in treatment groups, followed by enrichment analysis of DEGs using the Database for Annotation, Visualization and Integration Discovery. The protein-protein interaction (PPI) networks for up and downregulated DEGs were constructed by Cytoscape software using Search Tool for the Retrieval of Interacting Genes data to identify hub nodes. Results Curcumin significantly reduced cell viability in LSQCC cells. In total, 380 DEGs including 154 upregulated and 126 downregulated genes were found in the treatment groups. The upregulated genes were enriched in base excision repair (BER, such as PCNA, POLL, and MUTYH) and Janus kinase-signal transducer and activator of transcription (JAT-STAT) signaling pathways (such as AKT1 and STAT5A), while the downregulated genes were enriched in nine pathways, including the vascular endothelial growth factor (VEGF) signaling pathway (such as PTK2, VEGFA, MAPK1, and MAPK14) and mitogen-activated protein kinase (MAPK) signaling pathway (ARRB2, MAPK1, MAPK14, and NFKB1). PCNA and AKT1 were the hub nodes in the PPI network of upregulated genes while MAPK1, MAPK14, VEGFA, and NFKB1 were the hub nodes in the PPI network of downregulated genes. Conclusions Curcumin might exert anti-cancer effects on LSQCC via regulating BER, JAT-STAT, VEGF, and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wei Zhao
- Thoracic Surgery Department, Third Hospital of Jilin University Changchun City, China
| | - Yan Wang
- Thoracic Surgery Department, Third Hospital of Jilin University Changchun City, China
| | - Ying Wang
- Pediatrc Department, Hospital of Jilin Provice Changchun City, China
| | - Nan Gao
- Thoracic Surgery Department, Third Hospital of Jilin University Changchun City, China
| | - Zhifeng Han
- Thoracic Surgery Department, Third Hospital of Jilin University Changchun City, China
| | - Haixiang Yu
- Thoracic Surgery Department, Third Hospital of Jilin University Changchun City, China
| |
Collapse
|
68
|
Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, Azaiza D, Biagoni F, Fuchs G, Wilder S, Hellman A, Blandino G, Domany E, Oren M. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ 2015; 22:1328-40. [PMID: 25591738 DOI: 10.1038/cdd.2014.221] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5'aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively. Several tens of miRs were strongly induced by such 'epigenetic therapy'. Two representatives, miR-512-5p (miR-512) and miR-373, were selected for further analysis. Both miRs were secreted in exosomes. Re-expression of both miRs augmented cisplatin-induced apoptosis and inhibited cell migration; miR-512 also reduced cell proliferation. TEAD4 mRNA was confirmed as a direct target of miR-512; likewise, miR-373 was found to target RelA and PIK3CA mRNA directly. Our results imply that miR-512 and miR-373 exert cell-autonomous and non-autonomous tumor-suppressive effects in lung cancer cells, where their re-expression may benefit epigenetic cancer therapy.
Collapse
Affiliation(s)
- S Adi Harel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - N Bossel Ben-Moshe
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - D R Bublik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - N Moskovits
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - G Toperoff
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - D Azaiza
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - F Biagoni
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - G Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - S Wilder
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - A Hellman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - G Blandino
- Translational Oncogenomic Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - E Domany
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - M Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
69
|
Jikihara H, Qi G, Nozoe K, Hirokawa M, Sato H, Sugihara Y, Shimamoto F. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncol Rep 2014; 33:1131-40. [PMID: 25573280 DOI: 10.3892/or.2014.3705] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022] Open
Abstract
Garlic and its constituents are reported to have a preventive effect against colorectal cancer in animal models. Aged garlic extract (AGE), which is produced by natural extraction from fresh garlic for more than 10 months in aqueous ethanol, also has reputed chemopreventive effects on colon carcinogenesis, but has never been studied for its effects on colon cancer development. We investigated the antitumor effects of AGE in rats with 1,2-dimethylhydrazine (DMH)-induced carcinogenesis, and the mechanism of AGE in human colon cancer cell proliferation. F344 rats randomly divided into three groups were administered DMH (20 mg/kg weight) subcutaneously once a week for 8 weeks in a basal diet. After the last injection, one group of rats was then moved onto a basal diet containing 3% wt/wt AGE, and rats were sacrificed at 8 or 31 weeks. The number of aberrant crypt foci (ACF), histological type of tumor and proliferative activity of the tumor lesions were analyzed by macroscopic, pathological and immunohistochemical methods. DLD-1 human colon cancer cells were utilized to investigate the effect of AGE on anti-cell proliferation. AGE decreased the number of ACF but had no effect on gross tumor pathology. AGE showed a lower number of adenoma and adenocarcinoma lesions by histological analysis. Immunohistochemical staining indicated that AGE suppressed the proliferative activity in adenoma and adenocarcinoma lesions, but showed no effect on normal colon mucosa. Moreover, we demonstrated that AGE delayed cell cycle progression by downregulating cyclin B1 and cdk1 expression via inactivation of NF-κB in the human colorectal cancer cells but did not induce apoptosis. These findings suggest that AGE has an antitumor effect through suppression of cell proliferation.
Collapse
Affiliation(s)
- Hiroshi Jikihara
- Program in Biological System Sciences, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Guangying Qi
- Department of Health Science, Faculty of Human Culture Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Koichiro Nozoe
- Department of Health Science, Faculty of Human Culture Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Mayumi Hirokawa
- Department of Health Science, Faculty of Human Culture Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Hiromi Sato
- Department of Health Science, Faculty of Human Culture Science, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Yuka Sugihara
- Program in Biological System Sciences, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| | - Fumio Shimamoto
- Program in Biological System Sciences, Prefectural University of Hiroshima, Minami-ku, Hiroshima 734-8558, Japan
| |
Collapse
|
70
|
Karim NA, Bui H, Pathrose P, Starnes S, Patil N, Shehata M, Mostafa A, Rao M, Zarzour A, Anderson M. The use of pharmacogenomics for selection of therapy in non-small-cell lung cancer. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2014; 8:139-44. [PMID: 25520568 PMCID: PMC4259862 DOI: 10.4137/cmo.s18369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/21/2014] [Accepted: 09/24/2014] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Performance status (PS) is the only known clinical predictor of outcome in patients with advanced non-small-cell lung cancer (NSCLC), although pharmacogenomic markers may also correlate with outcome. The aim of our study was to correlate clinical and pharmacogenomic measures with overall survival. METHODS This was an IRB approved, retrospective study in which the medical records of 50 patients with advanced NSCLC from 1998–2008 were reviewed, and gender, race, PS, and chemotherapy regimens were documented. Stromal expression of pharmacogenomic markers (VEGFR, ERCC1, 14-3-3σ, pAKT, and PTEN) was measured. Clinical factors and pharmacogenomics markers were compared to overall survival using a Cox proportional hazards model. RESULTS Forty patients received platinum-based therapy. Median age was 65 years. Improved PS, female gender, and gemcitabine therapy were significantly associated with longer overall survival (P = 0.004, P = 0.04, and P = 0.003, respectively). Age was not associated with survival. Caucasians had better overall survival in comparison to African Americans with median survival of 14.8 months versus 10.4 months (P = 0.1). Patients treated with platinum-based therapy had better survival of 15 months versus 8 months for non-platinum based therapy (P = 0.01). There was no significant association between any of the pharmacogenomics markers and overall survival other than in patients treated with platinum, in whom ERCC1 negativity was strongly associated with longer survival (P = 0.007). CONCLUSION ERCC1 negativity with platinum therapy, gemcitabine therapy, good PS, and female gender all correlated with improved overall survival in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Nagla A Karim
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hai Bui
- Department of Pathology, Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Peterson Pathrose
- Divison of Thoracic Surgery, Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Sandra Starnes
- Divison of Thoracic Surgery, Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Ninad Patil
- Department of Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Mahmoud Shehata
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ahmed Mostafa
- Division of Pulmonary, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Mb Rao
- Division of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Ahmad Zarzour
- Internal Medicine Department, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Marshall Anderson
- Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
71
|
Yadav VR, Sahoo K, Awasthi V. Preclinical evaluation of 4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid, in a mouse model of lung cancer xenograft. Br J Pharmacol 2014; 170:1436-48. [PMID: 24102070 DOI: 10.1111/bph.12406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE 4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid CLEFMA is a new anti-cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA-induced tumour suppression. EXPERIMENTAL APPROACH Lung adenocarcinoma H441 and A549, and normal lung fibroblast CCL151 cell lines were used, along with a xenograft model of H441 cells implanted in mice. Tumour tissues were analysed by immunoblotting, immunohistochemistry and/or biochemical assays. The ex vivo results were confirmed by performing selected assays in cultured cells. KEY RESULTS CLEFMA-induced cell death was associated with cleavage of caspases 3/9 and PARP. In vivo, CLEFMA treatment resulted in a dose-dependent suppression of tumour growth and (18) F-fluorodeoxyglucose uptake in tumours, along with a reduction in the expression of the proliferation marker Ki-67. In tumour tissue homogenates, the anti-apoptotic markers (cellular inhibitor of apoptosis protein-1(cIAP1), Bcl-xL, Bcl-2, and survivin) were inhibited and the pro-apoptotic Bax and BID were up-regulated. Further, CLEFMA decreased translocation of phospho-p65-NF-κB into the nucleus. In vitro, it inhibited the DNA-binding and transcriptional activity of NF-κB. It also reduced the expression of COX-2 in tumours and significantly depressed serum TNF-α and IL-6 levels. These effects of CLEFMA were accompanied by a reduced transcription and/or translation of the invasion markers VEGF, MMP9, MMP10, Cyclin D1 and ICAM-1. CONCLUSIONS AND IMPLICATIONS Overall, CLEFMA inhibited growth of lung cancer xenografts and this tumour suppression was associated with NF-κB-regulated anti-inflammatory and anti-metastatic effects.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
72
|
Fong Y, Lin YC, Wu CY, Wang HMD, Lin LL, Chou HL, Teng YN, Yuan SS, Chiu CC. The antiproliferative and apoptotic effects of sirtinol, a sirtuin inhibitor on human lung cancer cells by modulating Akt/β-catenin-Foxo3a axis. ScientificWorldJournal 2014; 2014:937051. [PMID: 25184156 PMCID: PMC4144300 DOI: 10.1155/2014/937051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Sirtuins, NAD(+)-dependent deacetylases, could target both histones and nonhistone proteins in mammalian cells. Sirt1 is the major sirtuin and has been shown to involve various cellular processes, including antiapoptosis, cellular senescence. Sirt1 was reported to be overexpressed in many cancers, including lung cancer. Sirtinol, a specific inhibitor of Sirt1, has been shown to induce apoptosis of cancer cells by elevating endogenous level of reactive oxygen species. In the study, we investigated the effect of sirtinol on the proliferation and apoptosis of nonsmall cell lung cancer (NSCLC) H1299 cells. The results of proliferation assay and colony formation assay showed the antigrowth effect of sirtinol. The annexin-V staining further confirmed the apoptosis induction by sirtinol treatment. Interestingly, the levels of phosphorylated Akt and β-catenin were significantly downregulated with treating the apoptotic inducing doses. On the contrary, sirtinol treatment causes the significantly increased level of FoxO3a, a proapoptotic transcription factor targeted by Sirt1. These above results suggested that sirtinol may inhibit cell proliferation of H1299 cells by regulating the axis of Akt-β-catenin-FoxO3a. Overall, this study demonstrates that sirtinol attenuates the proliferation and induces apoptosis of NSCLC cells, indicating the potential treatment against NSCLC cells by inhibiting Sirt1 in future applications.
Collapse
Affiliation(s)
- Yao Fong
- Department of Thoracic Surgery, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Yin-Chieh Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Li-Li Lin
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, Tainan 700, Taiwan
| | - Shyng-Shiou Yuan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
- Translational Research Center, Cancer Center, Department of Medical Research, and Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
73
|
EGF receptor uses SOS1 to drive constitutive activation of NFκB in cancer cells. Proc Natl Acad Sci U S A 2014; 111:11721-6. [PMID: 25071181 DOI: 10.1073/pnas.1412390111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of nuclear factor κB (NFκB) is a central event in the responses of normal cells to inflammatory signals, and the abnormal constitutive activation of NFκB is important for the survival of most cancer cells. In nonmalignant human cells, EGF stimulates robust activation of NFκB. The kinase activity of the EGF receptor (EGFR) is required, because the potent and specific inhibitor erlotinib blocks the response. Down-regulating EGFR expression or inhibiting EGFR with erlotinib impairs constitutive NFκB activation in several different types of cancer cells and, conversely, increased activation of NFκB leads to erlotinib resistance in these cells. We conclude that EGF is an important mediator of NFκB activation in cancer cells. To explore the mechanism, we selected an erlotinib-resistant cell line in which the guanine nucleotide exchange factor Son of Sevenless 1 (SOS1), well known to be important for EGF-dependent signaling to MAP kinases, is overexpressed. Increased expression of SOS1 increases NFκB activation in several different types of cancer cells, and ablation of SOS1 inhibits EGF-induced NFκB activation in these cells, indicating that SOS1 is a functional component of the pathway connecting EGFR to NFκB activation. Importantly, the guanine nucleotide exchange activity of SOS1 is not required for NFκB activation.
Collapse
|
74
|
Li Z, Guo Y, Jiang H, Zhang T, Jin C, Young CYF, Yuan H. Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer 2014; 14:276. [PMID: 24755270 PMCID: PMC4077048 DOI: 10.1186/1471-2407-14-276] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 04/15/2014] [Indexed: 01/02/2023] Open
Abstract
Background E2F1 transcription factor plays a vital role in the regulation of diverse cellular processes including cell proliferation, apoptosis, invasion and metastasis. E2F1 overexpression has been demonstrated in small cell lung cancer (SCLC), and extensive metastasis in early phase is the most important feature of SCLC. In this study, we investigated the involvement of E2F1 in the process of invasion and metastasis in SCLC by regulating the expression of matrix metalloproteinases (MMPs). Methods Immunohistochemistry was performed to evaluate the expression of E2F1 and MMPs in SCLC samples in a Chinese Han population. The impact of E2F1 on invasion and metastasis was observed by transwell and wound healing experiments with depletion of E2F1 by specific siRNA. The target genes regulated by E2F1 were identified by chromatin immunoprecipitation (ChIP)-to-sequence, and the expressions of target genes were detected by real time PCR and western blotting. The dual luciferase reporter system was performed to analyze the regulatory relationship between E2F1 and MMPs. Results E2F1 is an independent and adverse prognosis factor that is highly expressed in SCLC in a Chinese Han population. Knockdown of E2F1 by specific siRNA resulted in the downregulation of migration and invasion in SCLC. The expressions of MMP-9 and −16 in SCLC were higher than other MMPs, and their expressions were most significantly reduced after silencing E2F1. ChIP-to-sequence and promoter-based luciferase analysis demonstrated that E2F1 directly controlled MMP-16 expression via an E2F1 binding motif in the promoter. Although one E2F1 binding site was predicted in the MMP-9 promoter, luciferase analysis indicated that this binding site was not functionally required. Further study demonstrated that E2F1 transcriptionally controlled the expression of Sp1 and p65, which in turn enhanced the MMP-9 promoter activity in SCLC cells. The associations between E2F1, Sp1, p65, and MMP-9 were validated by immunohistochemistry staining in SCLC tumors. Conclusions E2F1 acts as a transcriptional activator for MMPs and directly enhances MMP transcription by binding to E2F1 binding sequences in the promoter, or indirectly activates MMPs through enhanced Sp1 and NF-kappa B as a consequence of E2F1 activation in SCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
| |
Collapse
|
75
|
|
76
|
Alvira CM. Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. ACTA ACUST UNITED AC 2014; 100:202-16. [PMID: 24639404 PMCID: PMC4158903 DOI: 10.1002/bdra.23233] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
In contrast to other organs, the lung completes a significant portion of its development after term birth. During this stage of alveolarization, division of the alveolar ducts into alveolar sacs by secondary septation, and expansion of the pulmonary vasculature by means of angiogenesis markedly increase the gas exchange surface area of the lung. However, postnatal completion of growth renders the lung highly susceptible to environmental insults such as inflammation that disrupt this developmental program. This is particularly evident in the setting of preterm birth, where impairment of alveolarization causes bronchopulmonary dysplasia, a chronic lung disease associated with significant morbidity. The nuclear factor κ-B (NFκB) family of transcription factors are ubiquitously expressed, and function to regulate diverse cellular processes including proliferation, survival, and immunity. Extensive evidence suggests that activation of NFκB is important in the regulation of inflammation and in the control of angiogenesis. Therefore, NFκB-mediated downstream effects likely influence the lung response to injury and may also mediate normal alveolar development. This review summarizes the main biologic functions of NFκB, and highlights the regulatory mechanisms that allow for diversity and specificity in downstream gene activation. This is followed by a description of the pro and anti-inflammatory functions of NFκB in the lung, and of NFκB-mediated angiogenic effects. Finally, this review summarizes the clinical and experimental data that support a role for NFκB in mediating postnatal angiogenesis and alveolarization, and discusses the challenges that remain in developing therapies that can selectively block the detrimental functions of NFκB yet preserve the beneficial effects.
Collapse
Affiliation(s)
- Cristina M Alvira
- Division of Critical Care Medicine Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
77
|
Nan J, Du Y, Chen X, Bai Q, Wang Y, Zhang X, Zhu N, Zhang J, Hou J, Wang Q, Yang J. TPCA-1 is a direct dual inhibitor of STAT3 and NF-κB and regresses mutant EGFR-associated human non-small cell lung cancers. Mol Cancer Ther 2014; 13:617-29. [PMID: 24401319 DOI: 10.1158/1535-7163.mct-13-0464] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a clinical therapeutic target to treat a subset of non-small cell lung cancer (NSCLC) harboring EGFR mutants. However, some patients with a similar kind of EGFR mutation show intrinsic resistance to tyrosine kinase inhibitors (TKI). It indicates that other key molecules are involved in the survival of these cancer cells. We showed here that 2-[(aminocarbonyl)amino]-5 -(4-fluorophenyl)-3- thiophenecarboxamide (TPCA-1), a previously reported inhibitor of IκB kinases (IKK), blocked STAT3 recruitment to upstream kinases by docking into SH2 domain of STAT3 and attenuated STAT3 activity induced by cytokines and cytoplasmic tyrosine kinases. TPCA-1 is an effective inhibitor of STAT3 phosphorylation, DNA binding, and transactivation in vivo. It selectively repressed proliferation of NSCLC cells with constitutive STAT3 activation. In addition, using pharmacologic and genetic approaches, we found that both NF-κB and STAT3 could regulate the transcripts of interleukin (IL)-6 and COX-2 in NSCLC harboring EGFR mutations. Moreover, gefitinib treatment only did not efficiently suppress NF-κB and STAT3 activity. In contrast, we found that treatment with TKIs increased phosho-STAT3 level in target cells. Inhibiting EGFR, STAT3, and NF-κB by combination of TKIs with TPCA-1 showed increased sensitivity and enhanced apoptosis induced by gefitinib. Collectively, in this work, we identified TPCA-1 as a direct dual inhibitor for both IKKs and STAT3, whereas treatment targeting EGFR only could not sufficiently repress NF-κB and STAT3 pathways for lung cancers harboring mutant EGFR. Therefore, synergistic treatment of TPCA-1 with TKIs has potential to be a more effective strategy for cancers.
Collapse
Affiliation(s)
- Jing Nan
- Corresponding Author: Jinbo Yang, School of Life Science, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Investigation of NF-κB1 and NF-κBIA gene polymorphism in non-small cell lung cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:530381. [PMID: 24707489 PMCID: PMC3953471 DOI: 10.1155/2014/530381] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/13/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023]
Abstract
Lung cancer is a complex, multifactorial disease which is the leading cause of cancer death in both men and women.
NF-κB is a transcription factor which is known to affect the expression of more than 150 genes related to inflammation, lymphocyte activation, cell proliferation, differentiation, and apoptosis, as well as contributing to cell apoptosis and survival. However, NF-κBIA (IκBα) is the inhibitor of the transcription factor. The -94ins/delATTG polymorphism of the NF-κB1 gene promoter region which causes a functional effect and NF-κBIA 3′UTR A → G polymorphism has been shown to be related to various inflammatory diseases and cancer. Ninety-five NSCLC patients and 99 healthy controls were included in study. The NF-κB1 -94ins/delATTG and NF-κBIA 3′UTR A → G polymorphism have been studied by using PCR-RFLP method. It was found that the NF-κB1 -94ins/delATTG DD genotype and D allele frequencies were higher in patients than healthy controls and the presence of the DD genotype has a 3.5-fold increased risk of the disease (P: 0.014). This study is the first to investigate the NF-κB1 -94ins/delATTG and NF-κBIA 3′UTR A → G polymorphism together in the Turkish population. According to the results, the NF-κB1 -94ins/del ATTG promoter polymorphism may have a role in lung carcinogenesis and prognosis.
Collapse
|
79
|
Togano T, Watanabe M, Itoh K, Umezawa K, Masuda N, Higashihara M, Horie R. Activation of Akt involves resistance to NF-κB inhibition and abrogation of both triggers synergistic apoptosis in lung adenocarcinoma cells. Lung Cancer 2014; 83:139-45. [DOI: 10.1016/j.lungcan.2013.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/14/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
80
|
Nair VS, Gevaert O, Davidzon G, Plevritis SK, West R. NF-κB protein expression associates with (18)F-FDG PET tumor uptake in non-small cell lung cancer: a radiogenomics validation study to understand tumor metabolism. Lung Cancer 2014; 83:189-96. [PMID: 24355259 PMCID: PMC3922123 DOI: 10.1016/j.lungcan.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/18/2013] [Accepted: 11/02/2013] [Indexed: 12/25/2022]
Abstract
INTRODUCTION We previously demonstrated that NF-κB may be associated with (18)F-FDG PET uptake and patient prognosis using radiogenomics in patients with non-small cell lung cancer (NSCLC). To validate these results, we assessed NF-κB protein expression in an extended cohort of NSCLC patients. METHODS We examined NF-κBp65 by immunohistochemistry (IHC) using a Tissue Microarray. Staining intensity was assessed by qualitative ordinal scoring and compared to tumor FDG uptake (SUVmax and SUVmean), lactate dehydrogenase A (LDHA) expression (as a positive control) and outcome using ANOVA, Kaplan Meier (KM), and Cox-proportional hazards (CPH) analysis. RESULTS 365 tumors from 355 patients with long-term follow-up were analyzed. The average age for patients was 67±11 years, 46% were male and 67% were ever smokers. Stage I and II patients comprised 83% of the cohort and the majority had adenocarcinoma (73%). From 88 FDG PET scans available, average SUVmax and SUVmean were 8.3±6.6, and 3.7±2.4 respectively. Increasing NF-κBp65 expression, but not LDHA expression, was associated with higher SUVmax and SUVmean (p=0.03 and 0.02 respectively). Both NF-κBp65 and positive FDG uptake were significantly associated with more advanced stage, tumor histology and invasion. Higher NF-κBp65 expression was associated with death by KM analysis (p=0.06) while LDHA was strongly associated with recurrence (p=0.04). Increased levels of combined NF-κBp65 and LDHA expression were synergistic and associated with both recurrence (p=0.04) and death (p=0.03). CONCLUSIONS NF-κB IHC was a modest biomarker of prognosis that associated with tumor glucose metabolism on FDG PET when compared to existing molecular correlates like LDHA, which was synergistic with NF-κB for outcome. These findings recapitulate radiogenomics profiles previously reported by our group and provide a methodology for studying tumor biology using computational approaches.
Collapse
Affiliation(s)
- Viswam S Nair
- Division of Pulmonary & Critical Care Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States.
| | - Olivier Gevaert
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Guido Davidzon
- Department of Radiology, Division of Nuclear Medicine, Loyola University Chicago, Stritch School of Medicine, 2160 S, 1st Avenue, Maywood, IL 60153, United States
| | - Sylvia K Plevritis
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States
| | - Robert West
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, United States
| |
Collapse
|
81
|
Yin M, Ren X, Zhang X, Luo Y, Wang G, Huang K, Feng S, Bao X, Huang K, He X, Liang P, Wang Z, Tang H, He J, Zhang B. Selective killing of lung cancer cells by miRNA-506 molecule through inhibiting NF-κB p65 to evoke reactive oxygen species generation and p53 activation. Oncogene 2014; 34:691-703. [PMID: 24469051 DOI: 10.1038/onc.2013.597] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/10/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
The tumor suppressor p53, nuclear factor-κB (NF-κB) and reactive oxygen species (ROS) have crucial roles in tumorigenesis, although the mechanisms of cross talk between these factors remain largely unknown. Here we report that miR-506 upregulation occurs in 83% of lung cancer patients (156 cases), and its expression highly correlates with ROS. Ectopic expression of miR-506 inhibits NF-κB p65 expression, induces ROS accumulation and then activates p53 to suppress lung cancer cell viability, but not in normal cells. Interestingly, p53 promotes miR-506 expression level, indicating that miR-506 mediates cross talk between p53, NF-κB p65 and ROS. Furthermore, we demonstrated that miR-506 mimics inhibited tumorigenesis in vivo, implicating that miR-506 might be a potential therapeutic molecule for selective killing of lung cancer cells.
Collapse
Affiliation(s)
- M Yin
- 1] The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China [2] School of Life Science, University of Science and Technology of China, Hefei, China
| | - X Ren
- 1] The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China [2] School of Life Science, University of Science and Technology of China, Hefei, China
| | - X Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Y Luo
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - G Wang
- The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - K Huang
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - S Feng
- Guangzhou RiboBio Co., Ltd, Guangzhou, China
| | - X Bao
- The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - K Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - X He
- School of Life Science, University of Science and Technology of China, Hefei, China
| | - P Liang
- 1] The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Z Wang
- The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - J He
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - B Zhang
- 1] The State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China [2] School of Life Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
82
|
Christensen CL, Zandi R, Gjetting T, Cramer F, Poulsen HS. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther 2014; 9:437-52. [DOI: 10.1586/era.09.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
83
|
Caramori G, Papi A. Pathogenic link between chronic obstructive pulmonary disease and squamous cell lung cancer. Expert Rev Respir Med 2014; 1:171-5. [DOI: 10.1586/17476348.1.2.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
84
|
Lin IL, Chou HL, Lee JC, Chen FW, Fong Y, Chang WC, Huang HW, Wu CY, Chang WT, Wang HMD, Chiu CC. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB. Cancer Cell Int 2014; 14:1. [PMID: 24393431 PMCID: PMC3893380 DOI: 10.1186/1475-2867-14-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/23/2013] [Indexed: 01/30/2023] Open
Abstract
The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.
Collapse
Affiliation(s)
- I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Feng-Wei Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yao Fong
- Chest Surgery, Chi-Mei Foundation Medical Center, Yung Kang City, Tainan, 901, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy; Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hurng Wern Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan
| | - Wen-Tsan Chang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Min David Wang
- Department of Fragrance and Cosmetic Science; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
85
|
Abo El-Magd GH, Abd El-Fattah O, Saied EM. Immunohistochemical expression of nuclear factor kappa-B/p65 and cyclooxygenase-2 in non-small cell lung cancer patients: Prognostic value and impact on survival. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2014. [DOI: 10.1016/j.ejcdt.2013.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
86
|
Rousalova I, Banerjee S, Sangwan V, Evenson K, McCauley JA, Kratzke R, Vickers SM, Saluja A, D'Cunha J. Minnelide: a novel therapeutic that promotes apoptosis in non-small cell lung carcinoma in vivo. PLoS One 2013; 8:e77411. [PMID: 24143232 PMCID: PMC3797124 DOI: 10.1371/journal.pone.0077411] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. METHODS Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. RESULTS In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. CONCLUSION In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC.
Collapse
Affiliation(s)
- Ilona Rousalova
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Snoek BC, Wilt LHAMD, Jansen G, Peters GJ. Role of E3 ubiquitin ligases in lung cancer. World J Clin Oncol 2013; 4:58-69. [PMID: 23936758 PMCID: PMC3708064 DOI: 10.5306/wjco.v4.i3.58] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/10/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
E3 ubiquitin ligases are a large family of proteins that catalyze the ubiquitination of many protein substrates for targeted degradation by the 26S proteasome. Therefore, E3 ubiquitin ligases play an essential role in a variety of biological processes including cell cycle regulation, proliferation and apoptosis. E3 ubiquitin ligases are often found overexpressed in human cancers, including lung cancer, and their deregulation has been shown to contribute to cancer development. However, the lack of specific inhibitors in clinical trials is a major issue in targeting E3 ubiquitin ligases with currently only one E3 ubiquitin ligase inhibitor being tested in the clinical setting. In this review, we focus on E3 ubiquitin ligases that have been found deregulated in lung cancer. Furthermore, we discuss the processes in which they are involved and evaluate them as potential anti-cancer targets. By better understanding the mechanisms by which E3 ubiquitin ligases regulate biological processes and their exact role in carcinogenesis, we can improve the development of specific E3 ubiquitin ligase inhibitors and pave the way for novel treatment strategies for cancer patients.
Collapse
|
88
|
Ebrahim W, Aly AH, Wray V, Mándi A, Teiten MH, Gaascht F, Orlikova B, Kassack MU, Lin W, Diederich M, Kurtán T, Debbab A, Proksch P. Embellicines A and B: Absolute Configuration and NF-κB Transcriptional Inhibitory Activity. J Med Chem 2013; 56:2991-9. [DOI: 10.1021/jm400034b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Weaam Ebrahim
- Institut für Pharmazeutische
Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstrasse 1, Geb. 26.23, D-40225 Düsseldorf,
Germany
| | - Amal H. Aly
- Institut für Pharmazeutische
Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstrasse 1, Geb. 26.23, D-40225 Düsseldorf,
Germany
| | - Victor Wray
- Helmholtz Centre
for Infection
Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Attila Mándi
- Department of Organic Chemistry,
University of Debrecen, POB 20, 4010 Debrecen, Hungary
| | - Marie-Hélène Teiten
- Laboratoire de Biologie Moléculaire
et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen
L-2540 Luxembourg, Luxembourg
| | - François Gaascht
- Laboratoire de Biologie Moléculaire
et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen
L-2540 Luxembourg, Luxembourg
| | - Barbora Orlikova
- Laboratoire de Biologie Moléculaire
et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen
L-2540 Luxembourg, Luxembourg
| | - Matthias U. Kassack
- Institut
für Pharmazeutische
und Medizinische Chemie, Heinrich-Heine-Universität, Universitätsstrasse
1, Geb. 26.23, D-40225 Düsseldorf, Germany
| | - WenHan Lin
- National Research Laboratories
of Natural and Biomimetic Drugs, Peking University, Health Science
Center, 100083 Beijing, People’s Republic of China
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire
et Cellulaire du Cancer, Hôpital Kirchberg 9, rue Edward Steichen
L-2540 Luxembourg, Luxembourg
- Department of Pharmacy, College
of Pharmacy, Seoul National University, 599 Kwanak-ro, Kwanak-gu,
Seoul, 151-742, Korea
| | - Tibor Kurtán
- Department of Organic Chemistry,
University of Debrecen, POB 20, 4010 Debrecen, Hungary
| | - Abdessamad Debbab
- Institut für Pharmazeutische
Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstrasse 1, Geb. 26.23, D-40225 Düsseldorf,
Germany
| | - Peter Proksch
- Institut für Pharmazeutische
Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf,
Universitätsstrasse 1, Geb. 26.23, D-40225 Düsseldorf,
Germany
| |
Collapse
|
89
|
Nigro E, Scudiero O, Sarnataro D, Mazzarella G, Sofia M, Bianco A, Daniele A. Adiponectin affects lung epithelial A549 cell viability counteracting TNFα and IL-1ß toxicity through AdipoR1. Int J Biochem Cell Biol 2013; 45:1145-53. [PMID: 23500159 DOI: 10.1016/j.biocel.2013.03.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/26/2013] [Accepted: 03/06/2013] [Indexed: 11/19/2022]
Abstract
Adiponectin (Acrp30) exerts protective functions on metabolic and cellular processes as energy metabolism, cell proliferation and differentiation by two widely expressed receptors, AdipoR1 and AdipoR2. To date, the biological role of Acrp30 in lung has not been completely assessed but altered levels of Acrp30 and modulated expression of both AdipoRs have been related to establishment and progression of chronic obstructive pulmonary disease (COPD) and lung cancer. Here, we investigated the effects of Acrp30 on A549, a human alveolar epithelial cell line, showing how, in a time and dose-dependent manner, it decreases cell viability and increases apoptosis through ERK1/2 and AKT. Furthermore, we examined the effects of Acrp30 on A549 cells exposed to TNFα and/or IL-1ß, two potent lung inflammatory cytokines. We showed that Acrp30, in dose- and time-dependent manner, reduces cytotoxic effects of TNFα and/or IL-1ß improving cell viability and decreasing apoptosis. In addition, Acrp30 inhibits NF-κB nuclear trans-activation and induces the expression of the anti-inflammatory IL-10 cytokine without modifying that of pro-inflammatory IL-6, IL-8, and MCP-1 molecules via ERK1/2 and AKT. Finally, specifically silencing AdipoR1 or AdipoR2, we observed that NF-κB inhibition is mainly mediated by AdipoR1. Taken together, our data provides novel evidence for a direct effect of Acrp30 on the proliferation and inflammation status of A549 cells strongly supporting the hypothesis for a protective role of Acrp30 in lung. Further studies are needed to fully elucidate the Acrp30 lung effects in vivo but our results confirm this adipokine as a promising therapeutic target in lung diseases.
Collapse
|
90
|
Functional polymorphisms in NFκB1/IκBα predict risks of chronic obstructive pulmonary disease and lung cancer in Chinese. Hum Genet 2013; 132:451-60. [PMID: 23322360 DOI: 10.1007/s00439-013-1264-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022]
Abstract
Lung inflammation is the major pathogenetic feature for both chronic obstructive pulmonary disease (COPD) and lung cancer. The nuclear factor-kappa B (NFκB) and its inhibitor (IκB) play crucial roles in inflammatory. Here, we tested the hypothesis that single nucleotide polymorphisms (SNPs) in NFκB/IκB confer consistent risks for COPD and lung cancer. Four putative functional SNPs (NFκB1: -94del>insATTG; NFκB2: -2966G>A; IκBα: -826C>T, 2758G>A) were analyzed in southern and validated in eastern Chineses to test their associations with COPD risk in 1,511 COPD patients and 1,677 normal lung function controls, as well as lung cancer risk in 1,559 lung cancer cases and 1,679 cancer-free controls. We found that the -94ins ATTG variants (ins/del + ins/ins) in NFκB1 conferred an increased risk of COPD (OR 1.27, 95% CI 1.06-1.52) and promoted COPD progression by accelerating annual FEV1 decline (P = 0.015). The 2758AA variant in IκBα had an increased risk of lung cancer (OR 1.53, 95% CI 1.30-1.80) by decreasing IκBα expression due to the modulation of microRNA hsa-miR-449a but not hsa-miR-34b. Furthermore, both adverse genotypes exerted effect on increasing lung cancer risk in individuals with pre-existing COPD, while the -94del>insATTG did not in those without pre-existing COPD. However, no significant association with COPD or lung cancer was observed for -2966G>A and -826C>T. Our data suggested a common susceptible mechanism of inflammation in lung induced by genetic variants in NFκB1 (-94del>ins ATTG) or IκBα (2758G>A) to predict risk of COPD or lung cancer.
Collapse
|
91
|
Panico F, Casali C, Rossi G, Rizzi F, Morandi U, Bettuzzi S, Davalli P, Corbetta L, Storelli ES, Corti A, Fabbri LM, Astancolle S, Luppi F. Prognostic role of clusterin in resected adenocarcinomas of the lung. Lung Cancer 2012; 79:294-9. [PMID: 23276503 DOI: 10.1016/j.lungcan.2012.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
RATIONALE Clusterin expression may change in various human malignancies, including lung cancer. Patients with resectable non-small cell lung cancer (NSCLC), including adenocarcinoma, have a poor prognosis, with a relapse rate of 30-50% within 5 years. Nuclear factor kB (Nf-kB) is an intracellular protein involved in the initiation and progression of several human cancers, including the lung. OBJECTIVES We investigate the role of clusterin and Nf-kB expression in predicting the prognosis of patients with early-stage surgically resected adenocarcinoma of the lung. FINDINGS The level of clusterin gradually decreased from well-differentiated to poorly differentiated adenocarcinomas. Clusterin expression was significantly higher in patients with low-grade adenocarcinoma, in early-stage disease and in women. Clusterin expression was inversely related to relapse and survival in both univariate and multivariate analyses. Finally, we observed an inverse correlation between Nf-kB and clusterin. CONCLUSIONS Clusterin expression represents an independent prognostic factor in surgically resected lung adenocarcinoma and was proven to be a useful biomarker for fewer relapses and longer survival in patients in the early stage of disease. The inverse correlation between Nf-kB and clusterin expression confirm the previously reported role of clusterin as potent down regulator of Nf-kB.
Collapse
Affiliation(s)
- Francesca Panico
- Section of Respiratory Diseases, Department of Oncology, Haematology & Pulmonology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lee I, Lee SJ, Kang TM, Kang WK, Park C. Unconventional role of the inwardly rectifying potassium channel Kir2.2 as a constitutive activator of RelA in cancer. Cancer Res 2012; 73:1056-62. [PMID: 23269273 DOI: 10.1158/0008-5472.can-12-2498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The constitutive activation of NF-κB is a major event leading to the initiation, development, and progression of cancer. Recently, we showed that the size of preestablished tumors was reduced after the depletion of Kir2.2, an inwardly rectifying potassium channel. To determine the precise mechanism of action of Kir2.2 in the control of tumor growth, we searched for interacting proteins. Notably, NF-κB p65/RelA was identified as a binding partner of Kir2.2 in a yeast two-hybrid analysis. Further analyses revealed that Kir2.2 directly interacted with RelA in vitro and coimmunoprecipitated with RelA from cell lysates. Kir2.2 increased RelA phosphorylation at S536 and facilitated its translocation from the cytoplasm to the nucleus, thereby activating the transcription factor and increasing the expression level of NF-κB targets, including cyclin D1, matrix metalloproteinase (MMP)9, and VEGF. Kir2.2 was overexpressed in human cancer and the expression level was correlated with increased colony formation and tumor growth in mouse tumor models. On the basis of these findings, we propose an unconventional role for Kir2.2 as a constitutive RelA-activating protein, which is likely to contribute to tumor progression in vivo.
Collapse
Affiliation(s)
- Inkyoung Lee
- Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
93
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
94
|
Cramer F, Christensen CL, Poulsen TT, Badding MA, Dean DA, Poulsen HS. Insertion of a nuclear factor kappa B DNA nuclear-targeting sequence potentiates suicide gene therapy efficacy in lung cancer cell lines. Cancer Gene Ther 2012; 19:675-83. [PMID: 22898898 PMCID: PMC11070189 DOI: 10.1038/cgt.2012.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 02/01/2023]
Abstract
Lung cancer currently causes the majority of cancer-related deaths worldwide and new treatments are in high demand. Gene therapy could be a promising treatment but currently lacks sufficient efficiency for clinical use, primarily due to limited cellular and nuclear DNA delivery. In the present study, we investigated whether it was possible to exploit the endogenous nuclear-shuttling activity by the nuclear factor kappa B (NFκB) system, which is highly prominent in many cancers as well as lung cancer. We observed that insertion of a DNA nuclear-targeting sequence (DTS) recognized by NFκB could improve plasmid nuclear delivery and enhance the therapeutic effect of a validated transcriptionally cancer-targeted suicide gene therapy system. A clear correlation between the number of inserted NFκB-binding sites and the therapeutic effect of the suicide system was observed in both small cell lung cancer (SCLC) and non-SCLC cell lines. The effect was observed to be due to elevated nuclear translocation of the suicide gene-encoding plasmids. The results show that a significant improvement of gene therapeutic efficiency can be obtained by increasing the intracellular trafficking of therapeutic DNA. This is to our knowledge the first time a DTS strategy has been implemented for suicide gene therapy.
Collapse
Affiliation(s)
- F Cramer
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - CL Christensen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - TT Poulsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - MA Badding
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - DA Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - HS Poulsen
- Department of Radiation Biology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
95
|
Zuo Y, Huang J, Zhou B, Wang S, Shao W, Zhu C, Lin L, Wen G, Wang H, Du J, Bu X. Synthesis, cytotoxicity of new 4-arylidene curcumin analogues and their multi-functions in inhibition of both NF-κB and Akt signalling. Eur J Med Chem 2012; 55:346-57. [PMID: 22889562 DOI: 10.1016/j.ejmech.2012.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/27/2022]
Abstract
A series of new 4-arylidene curcumin analogues (4-arylidene-1,7-bisarylhepta-1,6-diene-3,5-diones) were synthesized and found to be potent antiproliferative agents against a panel of cancer cell lines at submicromolar to low micromolar concentrations by SRB assay. Their inhibitory abilities against NF-κB was evaluated by High Content Analysis (HCA) based immunofluorescence assay; and the Akt signalling inhibition was determined by fluorescence polarization assay and western blot respectively. The Structure-Activity Relationship was discussed. Our results revealed that 4-arylidene curcumin analogues may work in a multi-targets manner in cancer cell.
Collapse
Affiliation(s)
- Yinglin Zuo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lin CL, Chen RF, Chen JYF, Chu YC, Wang HM, Chou HL, Chang WC, Fong Y, Chang WT, Wu CY, Chiu CC. Protective effect of caffeic acid on paclitaxel induced anti-proliferation and apoptosis of lung cancer cells involves NF-κB pathway. Int J Mol Sci 2012; 13:6236-6245. [PMID: 22754361 PMCID: PMC3382759 DOI: 10.3390/ijms13056236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 01/19/2023] Open
Abstract
Caffeic acid (CA), a natural phenolic compound, is abundant in medicinal plants. CA possesses multiple biological effects such as anti-bacterial and anti-cancer growth. CA was also reported to induce fore stomach and kidney tumors in a mouse model. Here we used two human lung cancer cell lines, A549 and H1299, to clarify the role of CA in cancer cell proliferation. The growth assay showed that CA moderately promoted the proliferation of the lung cancer cells. Furthermore, pre-treatment of CA rescues the proliferation inhibition induced by a sub-IC50 dose of paclitaxel (PTX), an anticancer drug. Western blot showed that CA up-regulated the pro-survival proteins survivin and Bcl-2, the down-stream targets of NF-κB. This is consistent with the observation that CA induced nuclear translocation of NF-κB p65. Our study suggested that the pro-survival effect of CA on PTX-treated lung cancer cells is mediated through a NF-κB signaling pathway. This may provide mechanistic insights into the chemoresistance of cancer calls.
Collapse
Affiliation(s)
- Chien-Liang Lin
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-L.L.); (R.-F.C.)
| | - Ruei-Feng Chen
- Department of Life Science and Institute of Zoology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-L.L.); (R.-F.C.)
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mails: (J.Y.-F.C.); (Y.-C.C.); (H.-L.C.)
| | - Ying-Chieh Chu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mails: (J.Y.-F.C.); (Y.-C.C.); (H.-L.C.)
| | - Hui-Min Wang
- Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mails: (J.Y.-F.C.); (Y.-C.C.); (H.-L.C.)
| | - Wei-Chiao Chang
- Graduate Institute of Medical Genetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mail:
| | - Yao Fong
- Chest Surgery, Chi-Mei Foundation Medical Center, Yung Kang City, Tainan 901, Taiwan; E-Mail:
| | - Wen-Tsan Chang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; E-Mail:
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien Hai Road, Kaohsiung 804, Taiwan; E-Mail:
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan; E-Mails: (J.Y.-F.C.); (Y.-C.C.); (H.-L.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-7-312-1101 (ext. 2368); Fax: +886-7-312-5339
| |
Collapse
|
97
|
NSCLC and the alternative pathway of NF-κB: uncovering an unknown relation. Virchows Arch 2012; 460:515-23. [PMID: 22562129 DOI: 10.1007/s00428-012-1230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/23/2012] [Indexed: 02/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although our knowledge on the pathobiology of the disease has increased in the last decades, the prognosis of lung cancer patients has hardly changed. Many signaling pathways are implicated in lung carcinogenesis, but the role of the alternative pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lung cancer pathogenesis and progression has not been investigated. The aim of our study was to investigate the role of this pathway in non-small cell lung cancer (NSCLC) patients. NF-κB2 and RelB protein expression was retrospectively assessed by immunohistochemistry in tissue samples from 109 NSCLC patients. RelB and NF-κB2 protein levels differed between tumors and adjacent nonneoplastic lung parenchyma. Cytoplasmic immunoreactivity of NF-κB2 and RelB was correlated with tumor stage (p = 0.03 and p = 0.016, respectively). In addition, cytoplasmic NF-κB2 levels were related to tumor grade (p = 0.046). Expression of RelB in the cytoplasm was tumor histologic type-specific, with squamous cell carcinomas having the highest protein levels. Nuclear expression of RelB and NF-κB2 differed between tumor and nonneoplastic tissues, possibly indicating activation of the alternative pathway of NF-κB in cancer cells. Moreover, lymph node metastasis was related to nuclear NF-κB2 expression in tumor cells. The deregulation of the alternative NF-κB pathway in NSCLC could play a role in the development and progression of the disease.
Collapse
|
98
|
Kao SJ, Su JL, Chen CK, Yu MC, Bai KJ, Chang JH, Bien MY, Yang SF, Chien MH. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression. Toxicol Appl Pharmacol 2012; 261:105-15. [PMID: 22503731 DOI: 10.1016/j.taap.2012.03.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer.
Collapse
Affiliation(s)
- Shang-Jyh Kao
- Department of Chest Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-κB activation inhibition. Eur J Med Chem 2012; 50:393-404. [DOI: 10.1016/j.ejmech.2012.02.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/06/2012] [Accepted: 02/11/2012] [Indexed: 11/17/2022]
|
100
|
Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health. Int J Mol Sci 2012; 13:4202-4232. [PMID: 22605974 PMCID: PMC3344210 DOI: 10.3390/ijms13044202] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
Collapse
|