51
|
Brown SP, Masland RH. Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 2001; 4:44-51. [PMID: 11135644 DOI: 10.1038/82888] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human visual perception and many visual system neurons adapt to the luminance and contrast of the stimulus. Here we describe a form of contrast adaptation that occurs in the retina. This adaptation had a local scale smaller than the dendritic or receptive fields of single ganglion cells and was insensitive to pharmacological manipulation of amacrine cell function. These results implicate the bipolar cell pathway as a site of contrast adaptation. The time required for contrast adaptation varied with stimulus size, ranging from approximately 100 ms for the smallest stimuli, to seconds for stimuli the size of the receptive field. The differing scales and time courses of these effects suggest that multiple types of contrast adaptation are used in viewing natural scenes.
Collapse
Affiliation(s)
- S P Brown
- Program in Neuroscience, Goldenson 228, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
52
|
Abstract
As part of an exploration of the feasibility of an epi-retinal prosthesis, we developed an experimental method to electrically stimulate and record from retinal neurons using a micro-fabricated multi-electrode array. An isolated retina is placed on an array of 10 microm diameter disk electrodes with the ganglion cell side of the retina facing the electrode surfaces. The retina is bathed in oxygenated Ames' medium and warmed in order to sustain it in vitro for the duration of an experiment, typically 4-9 h. To reduce stimulus artifacts, the electrodes are grouped into two clusters - one used for stimulation and the other for recording--spaced several hundred microns apart, and electrodes are insulated with both silicon nitride and a 10 microm thick layer of polyimide. Stimuli are delivered to the array using an optically isolated current source stimulator, and the resulting responses recorded with an eight channel nerve response amplifier. Stimulation and recording are performed under computer control. A variety of physiologic measurements is described in order to illustrate the strengths and drawbacks of this method.
Collapse
Affiliation(s)
- A E Grumet
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | | | | |
Collapse
|
53
|
Brown SP, He S, Masland RH. Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 2000; 27:371-83. [PMID: 10985356 DOI: 10.1016/s0896-6273(00)00044-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied the fine spatial structure of the receptive fields of retinal ganglion cells and its relationship to the dendritic geometry of these cells. Cells from which recordings had been made were microinjected with Lucifer yellow, so that responses generated at precise locations within the receptive field center could be directly compared with that cell's dendritic structure. While many cells with small receptive fields had domeshaped sensitivity profiles, the majority of large receptive fields were composed of multiple regions of high sensitivity. The density of dendritic branches at any one location did not predict the regions of high sensitivity. Instead, the interactions between a ganglion cell's dendritic tree and the local mosaic of bipolar cell axons seem to define the fine structure of the receptive field center.
Collapse
Affiliation(s)
- S P Brown
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
54
|
Cellerino A, Novelli E, Galli-Resta L. Retinal ganglion cells with NADPH-diaphorase activity in the chick form a regular mosaic with a strong dorsoventral asymmetry that can be modelled by a minimal spacing rule. Eur J Neurosci 2000; 12:613-20. [PMID: 10712641 DOI: 10.1046/j.1460-9568.2000.00944.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a class of retinal ganglion cells in the chick retina that can be labelled by NADPH-diaphorase histochemistry. These cells have a remarkable topographic distribution, being restricted to the dorsal hemiretina, and form a highly regular mosaic, as revealed by the analysis of nearest neighbour distribution and Delaunay triangulation. Autocorrelation analysis of the mosaic of NADPH-diaphorase-positive retinal ganglion cells shows that the mosaic spatial organization could be generated with the single constraint that two elements cannot be closer than a given minimal distance (d(min)), which we confirmed by computer simulations. In contrast with what has been observed in other mosaics, here d(min) varies with cell density. However, the observed variation of the exclusion area is consistent with an original assembly of the mosaic with a constant d(min) (as is the case in other mosaics), followed by differential expansion of the retina during development.
Collapse
Affiliation(s)
- A Cellerino
- Istituto di Neurofisiologia del CNR, via S. Zeno 51, I-56127, Pisa, Italy.
| | | | | |
Collapse
|
55
|
Cherniak C, Changizi M, Kang D. Large-scale optimization of neuron arbors. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1999; 59:6001-9. [PMID: 11969583 DOI: 10.1103/physreve.59.6001] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/1998] [Indexed: 11/07/2022]
Abstract
At the global as well as local scales, some of the geometry of types of neuron arbors-both dendrites and axons-appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynamically; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is that such neuron tree samples globally minimize their total volume-rather than, for example, surface area or branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5% of optimum. This model also applies comparably to arterial and river networks.
Collapse
Affiliation(s)
- C Cherniak
- Committee on History and Philosophy of Science, Department of Philosophy, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
56
|
|
57
|
Abstract
The somas and dendrites of intact retinal ganglion cells were exposed by enzymatic removal of the overlying endfeet of the Müller glia. Simultaneous whole cell patch recordings were made from a ganglion cell's dendrite and the cell's soma. When a dendrite was stimulated with depolarizing current, impulses often propagated to the soma, where they appeared as a mixture of small depolarizations and action potentials. When the soma was stimulated, action potentials always propagated back through the dendrite. The site of initiation of action potentials, as judged by their timing, could be shifted between soma and dendrite by changing the site of stimulation. Applying QX-314 to the soma could eliminate somatic action potentials while leaving dendritic impulses intact. The absolute amplitudes of the dendritic action potentials varied somewhat at different distances from the soma, and it is not clear whether these variations are real or technical. Nonetheless, the qualitative experiments clearly suggest that the dendrites of retinal ganglion cells generate regenerative Na+ action potentials, at least in response to large direct depolarizations.
Collapse
Affiliation(s)
- T J Velte
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
58
|
Abstract
A ganglion cell's receptive field is defined as that region on the retinal surface in which a light stimulus will produce a response. While neighboring ganglion cells may respond to the same stimulus in a region where their receptive fields overlap, it generally has been assumed that each cell makes an independent decision about whether to fire. Recent recordings from cat and salamander retina using multiple electrodes have challenged this view of independent firing by showing that neighboring ganglion cells have an increased tendency to fire together within +/-5 ms. However, there is still uncertainty about which types of ganglion cells fire together, the mechanisms that produce coordinated spikes, and the overall function of coordinated firing. To address these issues, the responses of up to 80 rabbit retinal ganglion cells were recorded simultaneously using a multielectrode array. Of the 11 classes of rabbit ganglion cells previously identified, coordinated firing was observed in five. Plots of the spike train cross-correlation function suggested that coordinated firing occurred through two mechanisms. In the first mechanism, a spike in an interneuron diverged to produce simultaneous spikes in two ganglion cells. This mechanism predominated in four of the five classes including the ON brisk transient cells. In the second mechanism, ganglion cells appeared to activate each other reciprocally. This was the predominant pattern of correlated firing in OFF brisk transient cells. By comparing the receptive field profiles of ON and OFF brisk transient cells, a peripheral extension of the OFF brisk transient cell receptive field was identified that might be produced by lateral spike spread. Thus an individual OFF brisk transient cell can respond both to a light stimulus directed at the center of its receptive field and to stimuli that activate neighboring OFF brisk transient cells through their receptive field centers.
Collapse
Affiliation(s)
- S H DeVries
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
59
|
|
60
|
Bloomfield SA, Xin D. A comparison of receptive-field and tracer-coupling size of amacrine and ganglion cells in the rabbit retina. Vis Neurosci 1997; 14:1153-65. [PMID: 9447695 DOI: 10.1017/s0952523800011846] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent studies have shown that amacrine and ganglion cells in the mammalian retina are extensively coupled as revealed by the intercellular movement of the biotinylated tracers biocytin and Neurobiotin. These demonstrations of tracer coupling suggest that electrical networks formed by proximal neurons (i.e. amacrine and ganglion cells) may underlie the lateral propagation of signals across the inner retina. We studied this question by comparing the receptive-field size, dendritic-field size, and extent of tracer coupling of amacrine and ganglion cells in the dark-adapted, superfused, isolated retina eyecup of the rabbit. Our results indicate that while the center-receptive fields of proximal neurons are approximately 15% larger than their corresponding dendritic diameters, this slight difference can be explained by factors other than electrical coupling such as tissue shrinkage associated with histological processing. However, the extent of tracer coupling of amacrine and ganglion cells was, on average, about twice the size of the corresponding receptive fields. Thus, the receptive field of an individual proximal neuron matched far more closely to its dendritic diameter than to the size of the tracer-coupled network of cells to which it belonged. The exception to this rule was the AII amacrine cells for which center-receptive fields were 2-3 times the size of their dendritic diameters but matched closely to the size of the tracer-coupled arrays. Thus, with the exception of AII cells, our data indicate that tracer coupling between proximal neurons is not associated with an enlargement of their receptive fields. Our results, then, provide no evidence for electrical coupling or, at least, indicate that extensive lateral spread of visual signals does not occur in the proximal mammalian retina.
Collapse
Affiliation(s)
- S A Bloomfield
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
61
|
Devries SH, Baylor DA. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 1997; 78:2048-60. [PMID: 9325372 DOI: 10.1152/jn.1997.78.4.2048] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The arrangement of ganglion cell receptive fields on the retinal surface should constrain several properties of vision, including spatial resolution. Anatomic and physiological studies on the mammalian retina have shown that the receptive fields of several types of ganglion cells tile the retinal surface, with the degree of receptive field overlap apparently being similar for the different classes. It has been difficult to test the generality of this arrangement, however, because it is hard to sample many receptive fields in the same preparation with conventional single-unit recording. In our experiments, the response properties and receptive fields of up to 80 neighboring ganglion cells in the isolated rabbit retina were characterized simultaneously by recording with a multielectrode array. The cells were divided into 11 classes on the basis of their characteristic light responses and the temporal structures of their impulse trains. The mosaic arrangement of receptive fields for cells of a given class was examined after the spatial profile of each receptive field was fitted with a generalized Gaussian surface. For eight cell classes the mosaic arrangement was similar: the profiles of neighboring cells approached each other at the 1-sigma border. Thus field centers were 2 sigma apart. The layout of fields for the remaining three classes was not well characterized because the fields were poorly fitted by a single Gaussian or because the cells responded selectively to movement. The 2-sigma center-center spacing may be a general principle of functional organization that minimizes spatial aliasing and confers a uniform spatial sensitivity on the ganglion cell population.
Collapse
Affiliation(s)
- S H Devries
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
62
|
Abstract
We examined the tracer coupling pattern of more than 15 morphological types of amacrine and ganglion cells in the rabbit retina. Individual cells were injected intracellularly with the biotinylated tracer Neurobiotin, which was then allowed to diffuse across gap junctions to label neighboring neurons. We found that homologous and/or heterologous tracer coupling was common for most proximal neurons. In fact, the starburst amacrine cell was the only amacrine cell type that showed no evidence of coupling. The remaining types of amacrine cell were coupled exclusively to other amacrines, either homologously or, more often, through a combination of homologous and heterologous junctions. In only one case did we visualize labeled ganglion cells following injection of Neurobiotin into an amacrine cell. In contrast, injection of Neurobiotin into ganglion cells almost always resulted in the labeling of amacrine cells. Taken together, these results suggest a directionality to the movement of tracer across gap junctions connecting amacrine and ganglion cells. We found that the coupling pattern for a given morphological type of cell was generally stereotypic and consistent across retinas. The notable exceptions to this finding were alpha ganglion cells and cells with morphology corresponding to that of on-off direction selective ganglion cells. In both cases, individual cells showed either extensive coupling to both amacrine and ganglion cells or no coupling at all. A notable finding was that, in every case, the neighboring cells within a tracer-coupled array were always within one gap junction of the injected neuron. Furthermore, in many cases, the array formed by the somata of tracer-coupled cells was almost perfectly coincident with the dendritic arbor of the injected cell. Thus, our results indicate that whereas coupling is extensive within the proximal retina, individual cells partake in coupled networks that are stereotypic and highly circumscribed.
Collapse
Affiliation(s)
- D Xin
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
63
|
Muller JF, Dacheux RF. Alpha ganglion cells of the rabbit retina lose antagonistic surround responses under dark adaptation. Vis Neurosci 1997; 14:395-401. [PMID: 9147490 DOI: 10.1017/s0952523800011512] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alpha ganglion cells from the midperiphery of the rabbit retina were recorded intracellularly under visual control, in a superfused everted eyecup, and labeled with HRP. Their physiology and large somata with broad dendritic arbors identified them as uniform populations of ON- and OFF-center alpha ganglion cells, which typically displayed transient/sustained light-evoked responses. When dark adapted, the light-evoked responses from both ON- and OFF-center alpha ganglion cells were more sustained than those generally seen under light-adapted conditions. During dark-adapted (scotopic) conditions, stimulation with dim full-field illumination and small spots, either positioned over the soma or displaced 450 microns from the soma, all elicited pure center responses. After light adaptation (photopic conditions), the displaced small spots that previously evoked center responses elicited antagonistic surround responses from both ON- and OFF-center cells. Thus, as originally described in cat retina (Barlow et al., 1957), the receptive-field organization of ganglion cells changed between dark and light adaptation, and an absence or presence of surround antagonism was indicative of scotopic versus photopic states.
Collapse
Affiliation(s)
- J F Muller
- Eye Foundation Hospital, Department of Ophthalmology, University of Alabama at Birmingham 35233, USA
| | | |
Collapse
|
64
|
Optical recordings of the effects of cholinergic ligands on neurons in the ganglion cell layer of mammalian retina. J Neurosci 1996. [PMID: 8756436 DOI: 10.1523/jneurosci.16-16-05060.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic regulation of the activity of rabbit retinal ganglion cells and displaced amacrine cells was investigated using optical recording of changes in intracellular free calcium ([Ca2+]i). Labeling of neurons in the mature retina was achieved by injecting calcium green-1 dextran (CaGD) into the isolated retina. Nicotine increased ganglion cell [Ca2+]i, affecting every loaded cell in some preparations; the pharmacology of nicotine was consistent with an action at neuronal nicotinic receptors, and specifically it was kappa-(neuronal-)bungarotoxin-sensitive but alpha-bungarotoxin-insensitive. Muscarine also raised [Ca2+]i, but it was less potent than nicotine, affecting only a subpopulation of ganglion cells, with an M1-like muscarinic receptor pharmacology. Neither the nicotine- nor muscarine-induced increases of ganglion cell [Ca2+]i were blocked by the glutamate receptor antagonists 6,7-dinitroquinoxaline-2,3-dione and aminophosphonopentanoic acid. Therefore, the effects of cholinergic agonists on ganglion cell [Ca2+]i were not attributable to an indirect effect mediated by glutamatergic bipolar cells. The effects of nicotine and muscarine were abolished in calcium-free solution, indicating that the responses depend on calcium influx. Displaced (Cb) cholinergic amacrine cells were also loaded with CaGD and were identified by selective labeling with the nuclear dye 4',6-diamidino-2-phenyl-indole. Cb amacrine cells did not respond to either nicotine or muscarine, but responded vigorously to the glutamate receptor agonist kainic acid. There is anatomical evidence indicating that cholinergic amacrine cells make synaptic contact with each other, but the present results do not support the hypothesis that communication between these cells is cholinergic.
Collapse
|
65
|
Abstract
Using a reduced-silver neurofibrillar method, we stained a population of bipolar cells in the capybara retina. These cells are distributed throughout the retina following the same topography of other retinal cell classes as the A-type horizontal cells and ganglion cells. The level of axonal stratification, mosaic regularity, and dendritic coverage factor suggest that these neurofibrillar bipolar cells comprise a population of sublamina a cone bipolar cells.
Collapse
Affiliation(s)
- E S Yamada
- Departamento de Fisiologia, Universidade Federal do Pará, Brasil
| | | |
Collapse
|
66
|
Sandmann D, Boycott BB, Peichl L. The horizontal cells of artiodactyl retinae: a comparison with Cajal's descriptions. Vis Neurosci 1996; 13:735-46. [PMID: 8870229 DOI: 10.1017/s0952523800008610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The morphology of horizontal cells in ox, sheep, and pig retinae as observed after Lucifer Yellow injections are described and compared with the descriptions of Golgi-stained cells by Ramón y Cajal (1893). Horizontal cells in the retinae of less domesticated species, wild pig, fallow and sika deer, mouflon, and aurochs were also examined. All these retinae have two types of horizontal cell; their morphologies are in common, although with some familial differences. Their basic appearance is as Cajal described; except in one important respect, a single axon-like process could not be identified on the external horizontal cells. It is concluded that external horizontal cells of artiodactyls correspond to the axonless (A-type) cells of other mammals. Cajal's internal horizontal cells have a single axon which contacts rods. This type corresponds to the B-type cells of other mammalian retinae. Artiodactyl A- and B-type horizontal cells differ from those of many other mammals in that the B-type dendritic tree is robust and the A-type dendritic tree is delicate. Historically, this morphological difference between orders of mammals has led to some confusion. The comparisons presented here suggest that the morphological types of primate horizontal cells can be integrated into a general mammalian classification.
Collapse
Affiliation(s)
- D Sandmann
- Max-Planck-Institut für Hirnforschung, Frankfurt a. M., Germany
| | | | | |
Collapse
|
67
|
Abstract
We have studied the distribution of the calcium-binding protein calbindin in the adult rabbit retina by using a commercially available antibody and immunocytochemical methods. The most heavily labeled cells are A-type horizontal cells, but B-type horizontal cells are also lightly labeled by this antibody. Among the horizontal cells, there is a mosaic of small, well-labeled somata, which we have identified as a subset of ON cone bipolar cells. In addition, some wide-field amacrine cells and a few large ganglion cells are also labeled for calbindin. The calbindin bipolar cells form a regular mosaic with a peak density of approximately 1,700 cells/mm2, falling to 550 cells/mm2 in the periphery. They account for about one-twelfth of cone bipolar cells, and they are narrowly stratified deep in sublamina 4 of the inner plexiform layer immediately above the rod bipolar terminals. Double-label experiments using an antibody to protein kinase C (PKC) indicate that the calbindin bipolar cells are completely distinct from the population of rod bipolar cells. Rod bipolar cells outnumber the calbindin cone bipolar cells by a factor of four to five. Further double-label experiments show that the calbindin bipolar cells are also labeled for recoverin. The calbindin bipolar cells are well coupled to AII amacrine cells, and they account for roughly 23% of the AII coupled bipolar cells. This suggests that there are three to four additional ON cone bipolar cell types that are coupled to AII amacrine cells. The calbindin cone bipolar cell described in this paper shares many characteristics with a reconstructed cone bipolar cell that forms the most gap junctions with AII amacrine cells (Strettoi et al. [1994] J. Comp. Neurol. 347:139-149). We conclude that these different methodologies provide complementary descriptions of the same cone bipolar cell type. The calbindin antibody defines a subset of cone bipolar cells in the rabbit retina. The cells in this subset are almost certainly the deepest of the cone bipolar cells. The tight stratification of the calbindin cone bipolar cell suggests that the inner plexiform layer is stratified according to depth, with narrow functional divisions within the broad partition of sublamina b, where ON signals are processed. The strength of coupling between the calbindin cone bipolar cells and AII amacrine cells suggests this pathway plays a major role under scotopic conditions.
Collapse
Affiliation(s)
- S C Massey
- Department of Ophthalmology and Visual Science, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
68
|
Abstract
Although the optic nerve fibers of the cone-dominant ground squirrel retina have been well studied physiologically, the morphological details of the retinal neurons have not. To that end, retinal neurons of the California ground squirrel have been studied in Golgi-impregnated wholemounts. Two types of horizontal cell have been identified: H1 has an axon and axon terminal, whereas H2 is axonless. The dendritic field of H1 cells enlarges in a nonuniform manner with increasing displacement from the central retina. The smallest examples lie centrally in the visual streak, and the largest occur in the superior periphery. Eight types of bipolar cell are distinguished by morphological differences in dendritic branching pattern and field size in the outer plexiform layer, cell body size, and layering within the inner nuclear layer and by the morphology and stratification of axon terminals in the inner plexiform layer. A large bistratified bipolar cell (B8) is introduced here; the other 7 types closely resemble those in the retinas of other sciurid species described by R.W. West (1976, J. Comp. Neurol. 168:355-378; 1978, Vision Res. 18:129-136). The B1 type is proposed as a blue cone bipolar cell. Amacrine cells are classified into 27 cell types. Six of these occur as mirror-image pairs across the inner plexiform layer, the soma of one of each pair being "displaced" to the ganglion cell layer. The best described of these pairs is the very elaborate starburst amacrine cell, A5, which stains regularly in these wholemounted retinas. Changes in dendritic field size of both A5 subtypes with retinal location are quantified. The morphology of three amacrine cell types identified in Spermophilus beecheyi suggests that their possible counterparts in S. mexicanus (West, 1976) were, as displaced amacrine cells, misidentified as ganglion cells. Amacrine cell types that may play roles in the rod pathway, the blue cone pathway, and ganglion cell directional selectivity are discussed. No type of interplexiform cell was observed. Ganglion cells are classified into 19 cell types, 9 of which probably correspond to the ganglion cells described by West (1976) in the Mexican ground squirrel. The bistratified G11 cell is proposed as an ON-OFF directionally selective type.
Collapse
Affiliation(s)
- K A Linberg
- Neuroscience Research Institute, University of California, Santa Barbara 93106-5060, USA
| | | | | |
Collapse
|
69
|
Reichenbach A, Frömter C, Engelmann R, Wolburg H, Kasper M, Schnitzer J. Müller glial cells of the tree shrew retina. J Comp Neurol 1995; 360:257-70. [PMID: 8522646 DOI: 10.1002/cne.903600205] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The tree shrew is one of the few mammalian species whose retinae are strongly cone dominated, which is usually the case in reptilian and avian retinae. Müller cells of the tree shrew (Tupaia belangeri) retina were studied by transmission electron microscopy of tissue sections and freeze-fracture replicas, by immunolabeling of the intermediate filament protein vimentin in radial paraffin sections and in whole retinae, as well as by intracellular dye injection in slices of retinae. In addition, enzymatically isolated cells were stained by Pappenheim's panoptic staining method. The cells showed an ultrastructure that is similar to other mammalian Müller cells with two exceptions: Due to the extensive lateral fins of cone inner segments, the apical microvilli of Müller cells are arranged in peculiar palisades, and the basket-like Müller cell sheaths around neuronal somata in both nuclear layers consist of unusual multilayered membrane lamellae. Unlike Müller cells in other mammalian species studied thus far, but similar to reptilian and avian Müller cells, those of tree shrews commonly have two or more vitread processes rather than one main trunk. Müller cell densities range between some 13,000 mm-2 in the periphery and about 20,000 mm-2 in the retinal center. Neuron:(Müller)glial cell ratios were estimated to be 7.9:1 in the center and 6.2:1 in the periphery. For each Müller cell, about 1.5 (cone) photoreceptor cells, four or five interneurons of the inner nuclear layer, and about one cell of the ganglion cell layer were counted. This is a much lower number of neurons per Müller cell than in most other mammals studied.
Collapse
Affiliation(s)
- A Reichenbach
- Carl Ludwig Institute of Physiology, Leipzig University, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Amthor FR, Oyster CW. Spatial organization of retinal information about the direction of image motion. Proc Natl Acad Sci U S A 1995; 92:4002-5. [PMID: 7732021 PMCID: PMC42090 DOI: 10.1073/pnas.92.9.4002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The visual stimuli that elicit neural activity differ for different retinal ganglion cells and these cells have been categorized by the visual information that they transmit. If specific visual information is conveyed exclusively or primarily by a particular set of ganglion cells, one might expect the cells to be organized spatially so that their sampling of information from the visual field is complete but not redundant. In other words, the laterally spreading dendrites of the ganglion cells should completely cover the retinal plane without gaps or significant overlap. The first evidence for this sort of arrangement, which has been called a tiling or tessellation, was for the two types of "alpha" ganglion cells in cat retina. Other reports of tiling by ganglion cells have been made subsequently. We have found evidence of a particularly rigorous tiling for the four types of ganglion cells in rabbit retina that convey information about the direction of retinal image motion (the ON-OFF direction-selective cells). Although individual cells in the four groups are morphologically indistinguishable, they are organized as four overlaid tilings, each tiling consisting of like-type cells that respond preferentially to a particular direction of retinal image motion. These observations lend support to the hypothesis that tiling is a general feature of the organization of information outflow from the retina and clearly implicate mechanisms for recognition of like-type cells and establishment of mutually acceptable territories during retinal development.
Collapse
Affiliation(s)
- F R Amthor
- Department of Psychology, School of Optometry, University of Alabama at Birmingham 35294-1170, USA
| | | |
Collapse
|
71
|
Löhrke S, Brandstätter JH, Boycott BB, Peichl L. Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location. JOURNAL OF NEUROCYTOLOGY 1995; 24:283-300. [PMID: 7543937 DOI: 10.1007/bf01186541] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Classical neurofibrillar staining methods and immunocytochemistry with antibodies to the light, medium and heavy chain subunits of the neurofilament triplet have been used for in situ and in vitro investigation of the organization of neurofilaments in A- and B-type horizontal cells of the adult rabbit retina. Surprisingly, their expression and organization within a cell is dependent on its location along the dorso-ventral axis of the retina. A-type horizontal cells in superior retina consistently stained with a wide variety of neurofibrillar methods to reveal neurofibrillar bundles, which immunocytochemistry showed to contain all three neurofilament subunits. A-type horizontal cells in inferior retina were uniformly refractory to neurofibrillar staining, although they expressed all three subunits. However, there was less of the light and medium subunits; the organization of the filaments into bundles (neurofibrils) is minimal. B-type horizontal cells could not be stained with any neurofibrillar method and were not recognizable by in situ immunocytochemistry. However, B-type cells could be seen to express all three subunits in vitro, but the expression of the light and medium subunits was weak. There was only a slight difference between B-type cells taken from superior and inferior retina. Combined with the results of recent transfection studies, these findings suggest that the amount of the light neurofilament subunit present in a horizontal cell determines its content of neurofibrillar bundles, and that rabbit horizontal cells may contain more neurofilament protein, particularly of the heavy subunit, than is used for neurofilament formation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Löhrke
- Max-Planck-Institut für Hirnforschung, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
72
|
Hartveit E, Brandstätter JH, Sassoè-Pognetto M, Laurie DJ, Seeburg PH, Wässle H. Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J Comp Neurol 1994; 348:570-82. [PMID: 7836563 DOI: 10.1002/cne.903480407] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The localization of the N-methyl-D-aspartate receptor subunit NR2A was studied, by using light microscopic immunocytochemistry, in the retina of adult rat, rabbit, cat, and monkey. Strong, punctate immunolabeling was observed in the inner plexiform layer indicating a synaptic localization of the NR2A subunit. The punctate labeling was concentrated in two bands corresponding to the on- and off-sublaminae of the inner plexiform layer. The punctate character of immunofluorescence suggested a synaptic localization of the receptor. This was confirmed by electron microscopy of immunostained adult rat retina. The staining was localized postsynaptic to cone bipolar cells, and only one of the two postsynaptic elements of the dyad was labeled. Staining was not observed at extrasynaptic plasma membranes. In situ hybridization of adult rat retina showed expression of the NR2A subunit in virtually all ganglion cells and displaced amacrine cells in the ganglion cell layer and in a subset of amacrine cells in the inner nuclear layer. The postnatal developmental expression of the NR2A subunit was studied in rat retina by light microscopic immunocytochemistry. Punctate immunolabeling appeared prior to eye opening, and the developmental profile of NR2A could be compatible with a role in development of circuitry in the inner plexiform layer.
Collapse
Affiliation(s)
- E Hartveit
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, Frankfurt, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
73
|
Deich C, Seifert B, Peichl L, Reichenbach A. Development of dendritic trees of rabbit retinal alpha ganglion cells: relation to differential retinal growth. Vis Neurosci 1994; 11:979-88. [PMID: 7947409 DOI: 10.1017/s0952523800003916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To provide a quantitative description of the postnatal development of dendritic trees in alpha ganglion cells of the rabbit retina, these cells were stained either by intracellular injection of Lucifer yellow or by application of the lipophilic dye DiI. This was done at three developmental stages: postnatal day (P) 8/9, P 16/17, and in adults. For different retinal locations we quantified the alpha cell dendritic field area, the number of dendritic branch points, and the average dendritic length between branch points. According to the alpha cell location, the data were collected in three groups representing the retinal center, midperiphery, and far periphery, respectively. The data were then correlated with the postnatal retinal expansion which is known to differ among the above topographic regions of the retinae (Reichenbach et al., 1993). Our results show that the growth of alpha ganglion cell dendrites is not proportional to, but significantly exceeds, that of the local retinal tissue. Between P 8/9 and adulthood, the area of central alpha cells increases almost six-fold from 26,000 to 144,000 microns 2 (retinal expansion: 2.2-fold), and that of peripheral cells more than 15-fold from 35,000 to 556,000 microns 2 (retinal expansion: four-fold). During this period, the coverage factor of alpha cell dendritic fields increases about three-fold, and reaches adult levels of about 3 (retinal center) and 2.2 (periphery), respectively. The number of dendritic branch points remains nearly constant, and the distance between them increases by a factor close to the square root of the factor by which the dendritic field area grows. Thus, it appears that, from the second postnatal week on, dendritic trees of rabbit alpha ganglion cells increase by intense "interstitial growth," rather than by outgrowth of (new) dendritic branches. This growth pattern is different from that of some other rabbit retinal ganglion cell types, and of alpha ganglion cells of the cat retina, whose dendritic trees expand at a rate equal to or less than that of the surrounding retinal tissue. The consequences for synaptic contacts with bipolar and amacrine cells are discussed; they suggest a high degree of synaptic plasticity during normal postnatal retinal growth.
Collapse
Affiliation(s)
- C Deich
- Carl-Ludwig-Institut für Physiologie, Universität Leipzig, Germany
| | | | | | | |
Collapse
|
74
|
Greferath U, Grünert U, Müller F, Wässle H. Localization of GABAA receptors in the rabbit retina. Cell Tissue Res 1994; 276:295-307. [PMID: 8020065 DOI: 10.1007/bf00306115] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The distribution of gamma-aminobutyric acidA (GABAA) receptors in the rabbit retina is investigated and compared with the distribution of GABAergic neurons using immunocytochemical methods. Antibodies against the alpha 1, beta 2/3, and gamma 2 subunits of the GABAA receptor label subpopulations of bipolar, amacrine and ganglion cells. Double labeling experiments show that the gamma 2 subunit is colocalized with the alpha 1 and the beta 2/3 subunits in bipolar, amacrine and ganglion cells. Electron microscopy reveals that in the outer plexiform layer, GABAA receptor immunoreactivity is present on dendrites of cone bipolar cells adjacent to the cone pedicles. Bipolar cell dendrites are also receptor-positive at synapses from interplexiform cells. Some receptor immunoreactivity is found intracellularly in processes of horizontal cells. In the inner plexiform layer, GABAA receptor immunoreactivity is present on both rod bipolar and cone bipolar axon terminals at putative GABAergic input sites. Amacrine and ganglion cell processes in sublamina a and b are also labeled.
Collapse
Affiliation(s)
- U Greferath
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | | | | | |
Collapse
|
75
|
Peichl L, González-Soriano J. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 1994; 11:501-17. [PMID: 8038125 DOI: 10.1017/s095252380000242x] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Retinal horizontal cells of four rodent species, rat, mouse, gerbil, and guinea pig were examined to determine whether they conform to the basic pattern of two horizontal cell types found in other mammalian orders. Intracellular injections of Lucifer-Yellow were made to reveal the morphologies of individual cells. Immunocytochemistry with antisera against the calcium-binding proteins calbindin D-28k and parvalbumin was used to assess population densities and mosaics. Lucifer-Yellow injections showed axonless A-type and axon-bearing B-type horizontal cells in guinea pig, but revealed only B-type cells in rat and gerbil retinae. Calbindin immunocytochemistry labeled the A- and B-type populations in guinea pig, but only a homogeneous regular mosaic of cells with B-type features in rat, mouse, and gerbil. All calbindin-immunoreactive horizontal cells in the latter species were also parvalbumin-immunoreactive; comparison with Nissl-stained retinae showed that both antisera label all of the horizontal cells. Taken together, the data from cell injections and the population studies provide strong evidence that rat, mouse, and gerbil retinae have only one type of horizontal cell, the axon-bearing B-type, whereas the guinea pig has both A- and B-type cells. Thus, at least three members of the family Muridae differ from other rodents and deviate from the proposed mammalian scheme of horizontal cell types. The absence of A-type cells is apparently not linked to any peculiarities in the photoreceptor populations, and there is no consistent match between the topographic distributions of the horizontal cells and those of the cone photoreceptors or ganglion cells across the four rodent species. However, the cone to horizontal cell ratio is rather similar in the species with and without A-type cells.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| | | |
Collapse
|
76
|
Buhl EH. Intracellular injection in fixed slices in combination with neuroanatomical tracing techniques and electron microscopy to determine multisynaptic pathways in the brain. Microsc Res Tech 1993; 24:15-30. [PMID: 8435499 DOI: 10.1002/jemt.1070240104] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intracellular Lucifer Yellow filling in fixed tissue has been recently introduced as a novel neuroanatomical approach to reveal the detailed morphology of individual neurons in isolated preparations of the central nervous system. Since dye injections are performed under visual control, the method is characterized by a high degree of inherent staining selectivity, thus circumventing the element of randomness often considered to be the crux of classical golgi-impregnation techniques. Moreover, the opportunity to optically monitor the injection procedure renders fixed slice preparations highly advantageous to be used in combination with retrograde fluorescent tracing. Subsequently, dye-filled neurons may be subjected to a simple photoconversion procedure leading to the intracellular formation of a stable polymer thus obtaining permanent specimens for light microscopy purposes. Due to the osmiophilic nature of the precipitate the photoconverted material is equally suitable for correlated electron microscopy, thus enabling the analysis of neuronal microcircuitry. At the ultrastructural level, sources of afferent input to identified projection neurons may be revealed by lesion-induced anterograde degeneration of synaptic terminals, therefore enabling the direct demonstration of multisynaptic links. Finally, morphologically identified neurons may be immunocytochemically characterized at the pre- and postembedding levels. It is therefore suggested that their methodological versatility and relative technical ease render intracellular fixed-slice injections a promising complement to the catalogue of anatomical techniques.
Collapse
Affiliation(s)
- E H Buhl
- MRC Anatomical Neuropharmacology Unit, University Department of Pharmacology, Oxford, United Kingdom
| |
Collapse
|
77
|
Djamgoz MB, Kolb H. Ultrastructural and functional connectivity of intracellularly stained neurones in the vertebrate retina: correlative analyses. Microsc Res Tech 1993; 24:43-66. [PMID: 8435500 DOI: 10.1002/jemt.1070240106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A variety of intracellular recording and staining techniques has been used to establish structure-function and, in some cases, structure-function-neurochemical correlations in fish, turtle, and cat retinae. Cone photoreceptor-horizontal cell connectivity has been studied extensively in the cyprinid fish retina by intracellular staining with horseradish peroxidase (HRP) and subsequent electron microscopy. The available data suggest that horizontal cell dendrites around the ridge of the synaptic ribbon are postsynaptic, whilst finger-like extensions ("spinules") of lateral dendrites function as inhibitory feedback terminals. An interesting feature of this interaction is its plasticity: the feedback pathway is suppressed in the dark and becomes potentiated by light adaptation of the retina. Intracellular recordings and stainings of ganglion cells in both turtle and cat retinae have been possible. Prelabelling of ganglion cells by retrograde transport of rhodamine from the tectum allows ganglion cells to be stained under visual control, and their synaptic inputs determined by electron microscopy. Such studies have been extended to double labelling by using autoradiography or postembedding immunohistochemistry to identify the neurotransmitter content of the labelled cell and/or the neurotransmitter(s) converging upon it. It is envisaged that further applications of intracellular staining followed by double- or even triple-labelling will continue to enhance greatly our understanding of the functional architecture of the vertebrate retina.
Collapse
Affiliation(s)
- M B Djamgoz
- Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|
78
|
Abstract
The topographical distribution of retinal ganglion cells in seven breeds of dog (Canis lupus f. familiaris) and in the wolf (Canis lupus) was studied in retinal wholemounts stained with cresyl violet or with a reduced silver method. A prominent feature of all wolf retinae was a pronounced "visual streak" of high ganglion cell density, extending from the central area far into both temporal and nasal retina. By contrast, either a pronounced or a moderate visual streak was found in dog retinae. It is hypothesized that a pronounced streak is an archetypal feature of Canis lupus, and that the moderate streak in some dogs is a corollary of breeding during domestication. Irrespective of the differences in streak form and retinal area, the estimated total number of ganglion cells was about 200,000 cells in the wolf and 115,000 in the dog. Ganglion cell density maxima in the central area of the wolf were about 12,000-14,000/mm2, and in the dog they ranged from 6,400/mm2 to 14,400/mm2. This implies individual differences in visual acuity. Alpha ganglion cells constituted 3-14% of all ganglion cells in the dog and 1-18% in the wolf, depending on retinal location. A distinct feature of all dogs and wolves was the absence of alpha cells in a substantial region of temporal peripheral retina. This has not been found in any other mammalian species and suggests corresponding functional deficits.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| |
Collapse
|
79
|
Abstract
The morphological types of ganglion cells in the dog and wolf retina were studied by intracellular staining with Lucifer Yellow. These retinae contain a range of ganglion cell types that closely correspond to those found in cat retina: alpha cells with large somata and large, relatively densely branched dendritic trees; beta cells with medium-sized somata and small, densely branched dendritic trees; and a variety of other types with smaller somata and varying dendritic branching patterns and dendritic field sizes. The correspondence of canine and cat ganglion cell types strengthens the view that there is a common set of ganglion cell types in carnivores. Alpha and beta cell dendritic trees of dog and wolf are monostratified in either the inner or the outer part of the inner plexiform layer, suggesting an on/off dichotomy in the response to light. Dendritic field sizes of dog alpha and beta cells increase from the central area to peripheral retina: alpha cell fields from 160-200 microns to about 1,100 microns diameter, and beta cell fields from 25 microns to about 360 microns diameter. These sizes are quantitatively very similar to those found in cat retina. The close qualitative and quantitative morphological correspondence of cat and dog ganglion cells suggests that they are also functionally very similar. It is likely that dog alpha cells have brisk-transient (Y), and dog beta cells brisk-sustained (X) concentric receptive fields. From the smallest beta cell sizes it is concluded that the visual acuity of the dog may be as good as that of the cat.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Frankfurt, Germany
| |
Collapse
|
80
|
Famiglietti EV. New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. J Comp Neurol 1992; 324:295-321. [PMID: 1383290 DOI: 10.1002/cne.903240302] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The morphology and dendritic branching patterns of retinal ganglion cells have been studied in Golgi-impregnated, whole-mount preparations of rabbit retina. Among a large number of morphological types identified, two have been found that correspond to the morphology of ON and ON-OFF directionally selective (DS) ganglion cells identified in other studies. These two kinds of DS ganglion cell are compared with each other, as well as with examples of class I, class II, and class III cells, defined here with reference to our previous studies. Cell body, dendritic field size and branching pattern are analyzed in this paper and levels of dendritic stratification are examined in the following paper. ON DS ganglion cells are about 10% larger in soma size and about 5 times the dendritic field area of ON-OFF DS ganglion cells, when compared at the same retinal location. These two morphological types of ganglion cell can be said to define the upper and lower bounds of an intermediate range of cell body and dendritic field sizes within the whole population of ganglion cells. Nevertheless, in previous physiological studies receptive field sizes of the two types were shown to be similar. This discrepancy between morphological and physiological evidence is considered in the Discussion in terms of a model of the excitatory receptive field of ON-OFF DS ganglion cells incorporating starburst amacrine cells. A new set of metrics is introduced here for the quantitative analysis and characterization of the branching pattern of neuronal arborizations. This method compares the lengths of terminal and preterminal dendritic branches (treated separately), as a function of the distances of their origins from the soma, viewed graphically in a two-dimensional scatter plot. These values are derived from computer-aided 3D logging of the dendritic trees, and distance from the soma is measured as the shortest distance tracked along the dendritic branches. From these metrics of the "branch length distributions," scale-independent branching statistics are derived. These make use of mean branch lengths and distances, slopes of lines fitted to the distributions, and elliptical indices of scatter in the distributions. By these measures, ON and ON-OFF DS ganglion cells have similar branching patterns, which they share to varying degrees with functionally unrelated class III.1 ganglion cells. The scale of the branching patterns of ON and ON-OFF DS cells and their degree of uniformity are different, however.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E V Famiglietti
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
81
|
Wingate RJ, Fitzgibbon T, Thompson ID. Lucifer yellow, retrograde tracers, and fractal analysis characterise adult ferret retinal ganglion cells. J Comp Neurol 1992; 323:449-74. [PMID: 1430318 DOI: 10.1002/cne.903230402] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dendritic morphology of retinal ganglion cells in the ferret was studied by the intracellular injection of lucifer yellow in fixed tissue. Ganglion cells were identified by the retrograde transport of red or green fluorescent microspheres that had been injected into different target nuclei, usually the lateral geniculate nucleus or superior colliculus. This approach allows the comparison of dendritic morphologies of ganglion cells in the same retina with different central projections and also identifies cells with branching axons. The digitised images of dendritic arbors were analysed quantitatively by a variety of measures. Dendritic complexity was assessed by calculating the fractal dimension of each arbor. The ferret has distinct alpha, beta, and gamma morphological classes of cells similar to those found in the cat. The gamma cell class was morphologically diverse and could be subdivided into "sparse," "loose," and "tight" groups, reflecting increasing dendritic complexity. Whereas the beta cell projection was limited to the lateral geniculate nucleus alone, alpha and gamma cells could project to either or both nuclei. Retinal ganglion cells labelled from the pretectal nuclei formed a morphologically distinct class of retinal ganglion cells. The ipsilateral projection lacked alpha cells and the most complex, "tight" gamma cells. However, ipsilaterally projecting "loose" gamma cells overlapped alpha cells in both soma and dendritic dimensions. Different morphological classes of retinal ganglion cells hence show characteristic axon behaviour both in their decussation at the chiasm and in which targets they innervate. Fractal measures were used to contrast variation within and between these identified classes.
Collapse
Affiliation(s)
- R J Wingate
- Oxford University, University Laboratory of Physiology, United Kingdom
| | | | | |
Collapse
|
82
|
Hokoç JN, Moraes AM. Beta-like ganglion cells in the South American opossum retina: a Golgi study. JOURNAL OF NEUROCYTOLOGY 1992; 21:614-22. [PMID: 1506879 DOI: 10.1007/bf01187121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using the Golgi technique we investigated the morphology of the ganglion cells of the South American opossum retina. We focused our attention on a type of ganglion cell which has a relatively small dendritic field diameter and a medium-sized soma, making it a morphological equivalent of beta ganglion cells of cat retina. Both radial sections of the retina, where the stratification level of ganglion cells dendrites can be observed in the inner plexiform layer (IPL), and flat preparations of the retina, where the whole dendritic field of the ganglion cells can be examined and quantified, have been studied. Usually these cells have one to three primary dendrites, giving rise to short spiny branches. The dendrites of these cells are segregated in two groups, one with dendritic trees arborizing in the inner two thirds and another group arborizing in the outer third of the IPL. The two groups of beta-like cells probably represent the physiological ON- and OFF-center types of ganglion cell as found in cat retina. The mean cell body and dendritic field diameters of 47 cells were 18.5 +/- 1.6 microns, (size range 16-21 microns) and 91.5 +/- 16 microns (range 54-133 microns), respectively. Cell body and dendritic fields sizes were homogeneous across the retina of the opossum. In the opossum the relatively large dendritic fields of the beta-like ganglion cells in the area centralis are consistent with the poor visual acuity of this species.
Collapse
Affiliation(s)
- J N Hokoç
- Departamento Neurobiologia, Instituto de Biofisca Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | |
Collapse
|
83
|
Cook JE, Becker DL, Kapila R. Independent mosaics of large inner- and outer-stratified ganglion cells in the goldfish retina. J Comp Neurol 1992; 318:355-66. [PMID: 1578007 DOI: 10.1002/cne.903180402] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Goldfish retinal ganglion cells were filled with horseradish peroxidase and studied in flatmounts. Two regular mosaics of large neurons with many of the properties of mammalian alpha ganglion cells were found, differing from each other in spacing, size, and dendritic stratification. The existence of biplexiform ganglion cells with additional dendrites in the outer plexiform layer was also confirmed. One of the two alpha-like mosaics consisted of giant ganglion cells with thick primary dendrites and large, sparsely branched dendritic trees in the outer sublamina of the inner plexiform layer (IPL). In fish 55-65 mm long, about 300 formed a tessellated array across each retina. Their somata (mean area 277 +/- 6 microns 2) were displaced to varying degrees into the IPL, neighbours in the mosaic often occupying different levels. Their dendrites ramified in one stratum near the inner nuclear layer, at a mean depth of 70.8 +/- 0.5% of the IPL. The other alpha-like mosaic comprised about 900 large ganglion cells, with slightly smaller somata (mean area 193 +/- 4 microns 2) in the ganglion cell layer. Most of their dendrites lay in a narrow stratum at 41.9 +/- 0.5% of the depth of the IPL. However, deviations (usually into more vitread strata) were common, which was not true for similar cells in the distantly related cichlid fish Oreochromis. Measurements of nearest neighbour distance (NND) for 4 outer and 4 inner mosaics showed that they were at least as regular as the alpha cell mosaics of mammals: the ratio of the mean NND to the standard deviation ranged from 4.03 for the least regular outer mosaic to 6.47 for the most regular inner mosaic. The wide phylogenetic distribution of these paired, regular mosaics points to a fundamental role in vision. The presence of some variability in dendritic stratification even within the exceptionally regular inner-stratified mosaic suggests that classifications based entirely on the detailed morphology of individual neurons may not always correlate well with their primary functional roles. Where possible, neuronal morphology and spatial distribution should be studied together.
Collapse
Affiliation(s)
- J E Cook
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | |
Collapse
|
84
|
Guiloff GD, Kolb H. Ganglion cell types of the turtle retina that project to the optic tectum: Intracellular HRP injections of retrogradely, rhodamine-marked cell bodies. Vis Neurosci 1992; 8:295-313. [PMID: 1562567 DOI: 10.1017/s0952523800005046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The turtle retina has been shown to have a variety of different morphological ganglion cell types as well as distinct physiological ganglion cell types. The major projection of the retina to the brain in nonmammalian vertebrates is to the optic tectum. In this study, we address the question of which retinal ganglion cell types project to the optic tectum in the turtle. Fluorescent rhodamine-labeled microspheres were used to trace the retinal ganglion cell projection to the superficial layers of the optic tectum. The fluorescent ganglion cell somata, retrogradely marked by transport from the contralateral optic tectum, were impaled with micropipettes containing rhodamine-horseradish peroxidase solution and this dye was iontophoresed into the cells under visual control. Most of the morphological ganglion cell types described in Golgi studies (Kolb, 1982; Kolb et al., 1988) were stained. Thus, the small cell types G1, G2, G3, G5, G6, and G7; the medium-sized types G10, G11, G12, G13, and G14; and the large-sized types G15, G16, G19, G20, and G21 project to the optic tectum in the turtle. We have added a new type, G2a, which proves to have some differences from the original G2 in branching pattern. We were unable to stain the small type G4, the medium-sized types G8 and G9, and the large cell types G17 and G18: this suggests that they might not project to the superficial layers of the dorsolateral optic tectum, at least, in the turtle.
Collapse
Affiliation(s)
- G D Guiloff
- Department of Physiology, School of Medicine, University of Utah, Salt Lake City
| | | |
Collapse
|
85
|
Famiglietti EV. Polyaxonal amacrine cells of rabbit retina: size and distribution of PA1 cells. J Comp Neurol 1992; 316:406-21. [PMID: 1374437 DOI: 10.1002/cne.903160403] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type 1 polyaxonal (PA1) amacrine cells have been identified previously in rabbit retina, and their morphological characteristics have been described in detail in the preceding paper. Like other polyaxonal amacrine cells they bear distinct dendritic and axonal branching systems, the latter of which originates in two to six thin, branching axons which emerge from or near to the cell body. Unlike other types of polyaxonal amacrine cells, however, their branching is stratified at the a/b sublaminar border and their cell bodies are most often displaced interstitially in the inner plexiform layer (IPL). This report emphasizes quantitative features of the population of PA1 cells, documented in Golgi-impregnated and Nissl-stained retinas, and provides further evidence in Nissl preparations for the amacrine-cell nature of polyaxonal amacrine cells. The cell bodies of Golgi-impregnated PA1 amacrine cells are relatively large: 12-15 microns in equivalent diameter over the range extending from the visual streak 6 mm into ventral retina. Over the same range, dendritic trees are 400-800 microns in equivalent diameter, but they are much smaller than the axonal arborizations, which extend up to and perhaps beyond 2 mm from the cell body. Interstitial cell bodies appropriate to PA1 cells have been identified in Nissl-stained, whole-mounted rabbit retinas. In the plane of the retina, these are comparable in area to smaller medium-size ganglion cells, but their very pale Nissl staining, high nuclear/cytoplasmic ratio, and absence of nucleolar staining are all characteristics of amacrine cells. Interstitial displacement of presumed PA1 cells is rare in the visual streak, and the frequency of interstitial cells reaches a peak between 1 and 2 mm ventral to the streak. Counts in Nissl-stained retinas and estimates from nearest neighbor analyses in these and in Golgi-impregnated retinas indicate a density of PA1 cells in the range of 15-16 cells/mm2 at about 2 mm ventral to the streak, when an estimated 25% shrinkage of the material is taken into account. Dendritic field overlap, based upon this estimate, is calculated to be about fourfold, while a lower bound to estimates of the overlap of axonal arborizations is nearly an order of magnitude higher. Many similarities are noted in a qualitative and quantitative comparison of PA1 amacrine cells in rabbit and monkey retinas. In assessing the contribution of the structural organization of PA1 amacrine cells to their possible functional role(s), it is notable that their appearance conforms not to amacrine cells as commonly viewed, but to a more conventional model of neuronal dynamic polarization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E V Famiglietti
- Department of Anatomy, University of Calgary, Faculty of Medicine, Alberta, Canada
| |
Collapse
|
86
|
Tauchi M, Morigiwa K, Fukuda Y. Morphological comparisons between outer and inner ramifying alpha cells of the albino rat retina. Exp Brain Res 1992; 88:67-77. [PMID: 1541363 DOI: 10.1007/bf02259129] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The somato-dendritic morphologies of large ganglion cells were studied by intracellular injections of Lucifer yellow in perfused in vitro preparations of the albino rat retina. The ganglion cells were prelabeled with retrogradely transported granular blue or labeled with acridine orange dropped into the perfusate of in vitro preparations. After the dye injection, somato-dendritic morphologies were successfully studied for 210 cells, the majority of which had a large soma more than 20 microns in diameter and were identified as alpha cells. According to the level of dendritic extensions within the inner plexiform layer (IPL) these alpha cells were further classified into inner ramifying (inner) and outer ramifying (outer) cells. Both qualitative and quantitative observations led us to conclude the following: 1) The outer cells have a spherical soma with relatively few primary dendrites, while inner cells have a large polygonal soma with more primary dendrites. 2) The dendritic field of inner cells was always larger than that of outer cells at every retinal location. The dendritic field diameter tended to increase as a function of retinal eccentricity from the optic disk, the tendency being more clear among inner cells. 3) The dendrites of outer cells branch more frequently in the proximal part of the dendritic field while those of inner cells branch more distally. 4) Total dendritic length of outer cells increases linearly with eccentricity whereas that of the inner cells does not change much irrespective of retinal location.
Collapse
Affiliation(s)
- M Tauchi
- Department of Sensory Impairments, National Rehabilitation Center for the Disabled, Tokorozawa, Japan
| | | | | |
Collapse
|
87
|
Jensen RJ. Intracellular recording of light responses from visually identified ganglion cells in the rabbit retina. J Neurosci Methods 1991; 40:101-12. [PMID: 1800846 DOI: 10.1016/0165-0270(91)90058-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this report electrophysiological recordings were made from fluorescently labeled ganglion cells in the rabbit retina. Using a retinal strip preparation, cells in the ganglion cell layer were stained following a brief application of the fluorescent dye acridine orange to the bathing solution. Through an epifluorescence microscope the tip of a recording microelectrode could be positioned near a cell of interest. Extracellular recordings from ganglion cells showed that good recovery of light responses was obtained following a brief exposure of the retina to fluorescent light (400-440 nm excitation). The rate of recovery, however, depended upon the prevailing background light level. Large acridine orange-stained cell bodies in the peripheral retina were impaled under visual control by micropipette electrodes filled with either Lucifer Yellow or the fluorescent dye pyranine. When stained intracellularly, all possessed an axon identifying them as ganglion cells. The majority (approximately 80%) of the cells recorded intracellularly were identified physiologically as either ON-center or OFF-center brisk ganglion cells. The other cells encountered were ON-OFF directionally selective ganglion cells.
Collapse
Affiliation(s)
- R J Jensen
- Department of Biomedical Sciences, Southern College of Optometry, Memphis, TN 38104
| |
Collapse
|
88
|
Fry KR, Chen NX, Glazebrook PA, Lam DM. Postnatal development of ganglion cells in the rabbit retina: characterizations with AB5 and GABA antibodies. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 61:45-53. [PMID: 1914157 DOI: 10.1016/0165-3806(91)90112-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of cell-specific monoclonal antibodies provides a means by which the emergence, differentiation and maturation of retinal neurons can be studied. The present study investigates the labelling of ganglion cells in the developing rabbit retina by a ganglion cell-specific monoclonal antibody, AB5(12,13). AB5 labelling of ganglion cells was observed as early as day postnatal. By 6-8 days postnatal, AB5-labelled ganglion cells had begun differentiating into the various ganglion cell subtypes observed in the adult retina. This differentiation process appeared to continue throughout the first 3 weeks postnatal. The AB5 monoclonal antibody was also used in a double-label paradigm with an anti-gamma-aminobutyric acid (GABA) polyclonal antibody to differentiate the GABAergic ganglion cells from other GABAergic elements in the retina and to study their development. GABAergic ganglion cells were first observed at 3 days postnatal and by 6 days postnatal, it was possible to observe a wide variety of GABAergic ganglion cells ranging from small cells to large alpha-type cells. The appearance of AB5 labelling in ganglion cells at relatively early stages of development suggests that the AB5 monoclonal antibody may be a useful tool for studying the development of ganglion cell structure, distribution, synaptic relationships and neurochemical specificity.
Collapse
Affiliation(s)
- K R Fry
- Alice R. McPherson Laboratory of Retina Research, Baylor College of Medicine, The Woodlands, TX 77381
| | | | | | | |
Collapse
|
89
|
Peichl L. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis Neurosci 1991; 7:155-69. [PMID: 1931799 DOI: 10.1017/s0952523800011020] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A specific morphological class of ganglion cell, the alpha cell, was first defined in cat retina. Alpha cells have since been found in a wide range of mammalian retinae, including several orders of placental and marsupial mammals. Characteristically, they have the largest somata and a large dendritic field with a typical branching pattern. They occur as inner and outer stratifying subpopulations, presumably corresponding to ON-center and OFF-center receptive fields. In all species, alpha cells account for less than 10% of the ganglion cells, their somata are regularly spaced, and their dendritic fields evenly and economically cover the retina in a mosaic-like fashion. The morphology of alpha cells and many features, both of single cells and of the population, are conserved across species with different habitats and life-styles. This suggests that alpha cells are a consistent obligatory ganglion cell type in every mammalian retina and probably subserve some fundamental task(s) in visual performance. Some general rules about the construction principles of ganglion cell classes are inferred from the alpha cells, stressing the importance of population parameters for the definition of a class. The principle, that a functionally and morphologically homogeneous population should have a regular arrangement and a complete and even coverage of the retina to perform its part in image processing at each retinal location, is especially evident across species and across ganglion cell types.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Frankfurt/M., Germany
| |
Collapse
|
90
|
Cook JE, Becker DL. Regular mosaics of large displaced and non-displaced ganglion cells in the retina of a cichlid fish. J Comp Neurol 1991; 306:668-84. [PMID: 2071699 DOI: 10.1002/cne.903060409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large retinal ganglion cells in the tilapid cichlid fish Oreochromis spilurus (standard length 15-54 mm) were filled with horseradish peroxidase and studied in flatmounts. Three types, with distinct patterns of dendritic stratification, formed spatially independent, nonrandom mosaics. One type (about 0.3% of all ganglion cells) resembled the outer (off) alpha cells of mammals. They were very large, with thick primary dendrites and large, sparsely branched planar trees in the outer part of the inner plexiform layer (IPL). About 300 were arrayed regularly across each retina, their exact number and spacing depending on its size. Their somata were often displaced into the IPL, even where neighbours in the mosaic were orthotopic. Another type (0.8%) resembled the inner (on) alpha cells of mammals. These had slightly smaller somata that were never displaced and smaller trees in the middle layers of the IPL. About 800 were arrayed uniformly and regularly across each retina. A rarer type (0.06-0.08%) had two planar trees: one forming a coarse mosaic in the outer part of the inner plexiform layer (co-planar with the trees of outer alpha-like cells) and another in the outer plexiform layer. These "biplexiform" cells were smaller and rounder than alpha-like cells and always displaced. The dendrites were finer and less tapered. Cells in which we could identify an outer plexiform tree failed to cover the retina completely, but were nonrandomly distributed. We draw three main conclusions: (1) some nonmammalian vertebrates have separate inner and outer mosaics of large ganglion cells like those of mammals, (2) the vertical displacement of ganglion cell somata can vary widely within a single mosaic and may thus be functionally irrelevant, and (3) biplexiform ganglion cells exist in fish but differ in morphology from the biplexiform types described in some other vertebrates.
Collapse
Affiliation(s)
- J E Cook
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | |
Collapse
|
91
|
Pu ML, Amthor FR. Dendritic morphologies of retinal ganglion cells projecting to the lateral geniculate nucleus in the rabbit. J Comp Neurol 1990; 302:675-93. [PMID: 1702124 DOI: 10.1002/cne.903020320] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small injections of fluorescent Rhodamine-latex microspheres and Fast Blue were made into the dorsal lateral geniculate nucleus (dLGN) of fifteen rabbits. After 8-15 day survival times, the somas of projecting ganglion cells were found to be labelled in the contralateral retinas by retrograde transport. The dendritic morphologies of the labelled ganglion cells were revealed by intracellular injection of Lucifer Yellow or horseradish peroxidase while superfusing the retinas. At least ten distinct dendritic morphologies were observed among 161 injected ganglion cells. The three most commonly recovered dendritic morphologies were those of: (1) alpha-like cells; (2) large, complex dendritic field cells; and (3) cells with small, dense dendritic fields that resemble intracellularly identified brisk sustained cells (Amthor et al., J. Comp. Neurol. 1989; 280:72-96). Smaller percentages of cells whose dendritic morphologies resembled those of several physiologically identified sluggish and complex receptive field ganglion cell classes (Amthor et al., J. Comp. Neurol. 1989; 280:72-96, 97-21) were also recovered. Several morphological types were also found that were previously unknown or could not be confidently related to those of previously known classes. Most dLGN injections labelled many different types of ganglion cells, but restricted injections in some dLGN loci labelled only a limited number of ganglion cell classes.
Collapse
Affiliation(s)
- M L Pu
- Department of Physiological Optics, School of Optometry, University of Alabama, Birmingham 35294
| | | |
Collapse
|
92
|
Dann JF, Buhl EH. Morphology of retinal ganglion cells in the flying fox (Pteropus scapulatus): a lucifer yellow investigation. J Comp Neurol 1990; 301:401-16. [PMID: 2262598 DOI: 10.1002/cne.903010306] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The morphology of retinal ganglion cells was determined in megachiroptera, commonly known as flying foxes. Retinal ganglion cells were intracellularly injected with the fluorescent dye Lucifer yellow in fixed retinae from adult little red flying foxes (Pteropus scapulatus) captured in their natural habitat. Ganglion cells closely resembled the three main classes of cat retinal ganglion cells, and therefore were classified into alpha-, beta-, and gamma-type cells. The size of the alpha- and beta-type somas and dendritic fields increased with increasing distance from the area centralis. However, this eccentricity dependence was not as pronounced as in the cat. The gamma-type cells were sub-divided into mono-, bi-, and diffusely stratified, in accordance with the ramification of their dendrites within the inner plexiform layer. The alpha- and beta-type cells were uni-stratified in either the sublamina of the inner plexiform layer closest to the ganglion cell layer or in that closest to the inner nuclear layer. These laminae correspond to those in the cat retina which contain the dendritic ramifications of ganglion cells whose central receptive fields respond best to onset of light (the "on-centre" cells), or to ganglion cells whose centres respond optimally to light being extinguished (the "off-centre" cells). Thus the flying fox retina contains a morphological correlate of the "on"/"off" dichotomy of alpha and beta cells in the cat retina. In general the flying fox retinal ganglion cells exhibit a degree of morphological complexity reminiscent of cat retinal cells and this may reflect similar functional properties.
Collapse
Affiliation(s)
- J F Dann
- Department Physiology and Pharmacology, University of Queensland, St Lucia, Australia
| | | |
Collapse
|
93
|
Ammermüller J, Guiloff G, Normann R, Kolb H. A 'puff and advance' technique for visually controlled staining of turtle retinal ganglion cells. J Neurosci Methods 1990; 32:235-43. [PMID: 1696675 DOI: 10.1016/0165-0270(90)90146-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a 'puff and advance' technique for visually controlled staining of retinal ganglion cells (GCs) in the unfixed, living retina for light and electron microscopy. Glass microelectrodes are filled with rhodamine-isothiocyanate labeled horseradish peroxidase (Rh-HRP), or Lucifer yellow (LY), or a mixture of both, or with 5,6-carboxytetramethylrhodamine (5,6-Rh) and advanced tangentially through the GC layer with microscopic observation using epifluorescence. Brief "puffs" of LY or 5,6-Rh are constantly ejected from the advancing electrode tip by a train of negative current pulses. GC penetration is signaled by virtually instantaneous staining of its soma (and eventually its axon and dendrites if the electrode is not advanced further). An impaled GC can be electron densely stained with the Rh-HRP complex by switching to positive current pulses. The extent of dye filling is monitored through the microscope using a filter combination appropriate for the dye. After fixation, standard histochemical procedures reveal HRP stained GCs in wholemount views for light microscopical examination. Furthermore, the preservation of the labeled cells and the neuropil is of a quality to allow electron microscopic analysis for synaptic input. This technique can be used in combination with LY backfiling of GCs from the optic nerve and with retinas in which GCs have been prelabeled with rhodamine beads retrogradely transported from the optic tectum as well.
Collapse
Affiliation(s)
- J Ammermüller
- Dept. of Neurobiology, University of Oldenburg, F.R.G
| | | | | | | |
Collapse
|
94
|
Wong RO. Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Neurol 1990; 294:109-32. [PMID: 2324327 DOI: 10.1002/cne.902940109] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The postnatal dendritic maturation of small field type 1 (SF1), medium field type 1 (MF1) and type 2 (MF2), and large field type 1 (alpha) ganglion cells in the rabbit retina was compared qualitatively and quantitatively. Dendritic tree structure was revealed by intracellular injection of the fluorescent dye Lucifer yellow, and the stained cells were then morphologically separated on the basis of some area, dendritic field size, total dendritic length, number of nodes, and mean internodal distance. Cells in the visual streak and an area inferior to the streak were sampled from retinae between birth and adulthood. The dendrites of all studied classes of rabbit ganglion cells were extensively covered by short spine-like appendages. As in cat retina, many dendritic spines disappeared by the end of the third postnatal week, at which stage the adult dendritic form could be recognised. However, there was differential loss in the number of spines from the dendrites of the four cell classes. In both the streak and inferior retina, adult SF1 cells had the same number of spines/dendritic unit length throughout postnatal life, whereas MF1 and MF2 ganglion cells lost at least half of their number of spines/unit dendritic length by maturity. Alpha ganglion cells lost virtually all their dendritic spines by adulthood. In both retinal locations, there were small changes in the number of nodes (dendritic branch points) of small field and medium field ganglion cells but alpha cells lost between 70 to 80% of their nodes by adulthood. The dendrites of ganglion cells with contrasting morphology thus undergo differential remodelling during postnatal maturation. The completion of the period of dendritic remodelling coincided with the first appearance of adult receptive field organisation, suggesting that structural remodelling, in particular that involving dendritic spines, may be associated with the development of the cell's synaptic circuitry. The dendrites of neighbouring postnatal ganglion cells in the rabbit retina also grow by different amounts; the increase in dendritic tree area, total dendritic length, and mean internodal distances of alpha cells exceeded that of small field and medium field cells in corresponding retinal positions. This implies that retinal dendrites elongate by active growth rather than by "passive stretching."
Collapse
Affiliation(s)
- R O Wong
- National Vision Research Institute of Australia, Carlton, Vic
| |
Collapse
|
95
|
Dunlop SA. Early development of retinal ganglion cell dendrites in the marsupial Setonix brachyurus, quokka. J Comp Neurol 1990; 293:425-47. [PMID: 2324323 DOI: 10.1002/cne.902930307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dendritic morphology of retinal ganglion cells was studied in flat-mounted retinae of the marsupial Setonix brachyurus, quokka. In the adults, horseradish peroxidase (HRP) was applied to the vitread surface of flattened retinae. Wide-, large-, medium-, and small-field classes appeared to correspond to gamma, alpha, delta, and beta cells, respectively, in the cat (Boycott and Wässle, J. Physiol. 249:397-419, 1974). To reveal the early stages of dendritic development, HRP was placed on the optic nerve of isolated eye cups from the day of birth to postnatal day (P) 63 when the area centralis is beginning to form (Dunlop and Beazley, Dev. Brain Res. 23:81-90, 1985). Youngest cells lacked dendrites and had an elongate soma in the cytoblastic layer with an endfoot contacting the ventricular surface. Once in the ganglion cell layer, the soma was rounded and dendrites appeared as short, unbranched processes. Most cells were asymmetric or "polarised" with the axon arising from the side nearest the optic disk and dendrites from the opposite side. Polarity was maintained in cells with longer, branched dendrites. A small proportion of cells exhibited a reversed polarity in which the axon arose from the side nearest the retinal edge and dendrites towards the disk. Cells appeared to acquire an approximately symmetric, adult-like tree by the addition of new primary dendrites between the existing ones and the axon hillock. Wide-, large-, medium-, and small-field cells were evident from P6, P25, P31, and P40, respectively. Spines were observed on dendrites and axons during development but were rare in the adult. Some dendro-axons were seen at all ages examined. The existence of an initial axodendritic polarity in retinal ganglion cells supports the hypothesis that the axon hillock is the determinant of dendritic geometry (Maffei and Perry, Dev. Brain Res. 41:185-194, 1988). Polarity may also contribute to the establishment of "radial orientation" in which the long axis of the elliptical dendritic tree of cells outside the area centralis points towards central retina and the weighted centre is displaced towards the retinal periphery (Leventhal and Schall, J. Comp. Neurol. 220:465-475, 1983).
Collapse
Affiliation(s)
- S A Dunlop
- Department of Psychology, University of Western Australia, Nedlands, Perth
| |
Collapse
|
96
|
Chan SO, Chow KL, Jen LS. Postnatal development of the ipsilaterally projecting retinal ganglion cells in normal rats and rats with neonatal lesions. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1989; 49:265-74. [PMID: 2478316 DOI: 10.1016/0165-3806(89)90027-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The postnatal development of normal and anomalous uncrossed retinofugal projections in albino rats was studied using horseradish peroxidase and lectin-conjugated horseradish peroxidase as retrograde neuronal tracers. In normal rats, the number of ipsilaterally projecting retinal ganglion cells (IPRGCs) decreased continuously from more than 3000 cells on the day of birth (day 0) to slightly more than 1000 on postnatal day 5. In contrast, the number of IPRGCs in rats which received either unilateral eye enucleation or thalamectomy at birth increased abruptly to more than 4000 after 24 h on postnatal day 1, thereafter the number decreased rapidly reaching an adult level of slightly more than 2000 on postnatal day 5. The overall pattern of changes of the number, density and distribution of the IPRGCs was similar in rats which received eye enucleation or thalamectomy, although minor differences regarding the number of cells labelled in the temporal and nasal parts of retinas in rats with different lesions were detected. These findings imply that a neonatal lesion such as monocular enucleation or unilateral thalamectomy may not only result in retention of normally transient IPRGCs but also cause an increased number of IPRGCs by misrouting, rerouting or collateral sprouting of optic axons at the optic chiasma that could significantly affect the developing optic pathway. Furthermore, the differential effects of the two types of neonatal lesions upon the IPRGCs provide further evidence to previous findings that different mechanisms might be involved in generating the anomalously enlarged uncrossed retinofugal projections in rodents.
Collapse
Affiliation(s)
- S O Chan
- Department of Anatomy, Chinese University of Hong Kong, Shatin
| | | | | |
Collapse
|
97
|
Wong RO, Collin SP. Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. J Comp Neurol 1989; 287:164-78. [PMID: 2477402 DOI: 10.1002/cne.902870203] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dendritic trees of Cb, cholinergic, amacrine cells in the ganglion cell layer of the developing rabbit retina are revealed by intracellular injection with Lucifer yellow to have the adult dendritic branching pattern at birth. It is demonstrated that these cells maintain a constant number of dendritic branches throughout postnatal development and that their dendritic trees increase in size by the growth and subsequent elongation of all branches. Proximal and distal dendrites increase in length by almost the same proportions between birth and adulthood. Although the adult pattern of dendritic branching of Cb amacrine cells is established by birth, dendrites in the young possess numerous short appendages (1-5 microns in length) resembling the "dendritic spines" of immature cat retinal ganglion cells. Some of these structures remain on the dendrites of adult cells but the majority are lost at the end of the third postnatal week. As dendritic spines disappear, the dendrites of Cb amacrine cells, especially the distal portion of the tree, acquire numerous varicosities. At each stage after P10, the gain in the number of varicosities greatly exceeds the loss in spines; this is not consistent with the hypothesis that all varicosities are retracted dendritic spines. The rapid increase in the number of varicosities on distal dendrites of Cb amacrine cells during the first 3 postnatal weeks coincides with the maturation of amacrine cell physiological responses. There is no distinct centroperipheral gradient in the postnatal dendritic maturation (acquisition of varicosities, loss of spines, attainment of the adult number of branches) of Cb amacrine cells from the visual streak to the peripheral retina. However, the area of their dendritic tree increases relatively more in the retinal periphery compared to that in the visual streak.
Collapse
Affiliation(s)
- R O Wong
- National Vision Research Institute of Australia, Carlton, Victoria
| | | |
Collapse
|
98
|
Abstract
In the rat retina a distinctive class of large ganglion cell was demonstrated by intracellular staining with Lucifer Yellow and with reduced silver staining. They are referred to as alpha cells because they resemble the alpha cells of other mammalian retinae. A second class, called delta cells, is also described. Both classes belong to the type I group defined by Perry (Proc. R. Soc. Lond. [Biol.] 204:363-375, '79). The dendritic trees of both classes stratify in either an inner or outer lamina of the inner plexiform layer which presumably corresponds to an on/off dichotomy in the response to light. Rat alpha cells constitute 2-4% of all ganglion cells, and their density, size, and detailed morphological appearance change with retinal location. Inner and outer stratifying alpha cells of the rat show significant differences compared to those of other mammals. In central retina (at the large cell density maximum) the densities and dendritic field sizes of inner and outer alpha cells are approximately equal. However, in peripheral retina outer alpha cells are up to three times more numerous and have dendritic field areas only one-third the size of those of the inner alpha cells. The maximal density is about 110 alpha cells/mm2; peripheral densities are about 30/mm2. The smallest central dendritic field diameters are 220 microns. Peripheral dendritic field diameters are 350-550 microns for outer and 570-790 microns for inner alpha cells. Each subpopulation is distributed in a regular mosaic, and the territorial arrangement of the dendritic fields provides a homogeneous coverage of the retina. The dendritic coverage is three- to 3.6-fold for each subpopulation, irrespective of their other quantitative differences. Eccentricity-dependent receptive field sizes of the alpha cells are predicted from the morphological data.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, Frankfurt, Federal Republic of Germany
| |
Collapse
|
99
|
Wong RO. Morphology and distribution of neurons in the retina of the American garter snake Thamnophis sirtalis. J Comp Neurol 1989; 283:587-601. [PMID: 2745756 DOI: 10.1002/cne.902830412] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is confirmed that cone photoreceptors observed in flatmounts of the American garter snake Thamnophis sirtalis, retina correspond to the retinal mosaic viewed in the living eye (Land and Snyder, Vision Res. 11:105-114, '85). The garter snake has three major morphological types of cones; large single cones, small single cones, and double cones. The brightly reflecting components seen in the living eye are large single cones and principle cones of double cones, whereas irregularly spaced dark regions within this mosaiac mark the positions of small single cones. The "sparkle" of the retinal mosaic originates from the ellipsoid region of the cones where microdroplets of high refractive index are densely packed. Unlike conventional oil droplets, these microdroplets reside adjacent to mitochondrial cristae within the ellipsoid. However, the microdroplets may function collectively as a single large oil droplet to increase the angular sensitivity of the inner segments, thus reducing a potentially large Stiles-Crawford effect predicted for this geometrically small eye. The ganglion cell layer of the garter snake comprises two morphologically distinct populations of presumed neurons; classical neurons and microneurons. Density distribution maps for neurons in the ganglion cell layer and the photoreceptor layer reveal the presence of a putative area centralis and a horizontal visual streak. The topography of large cones parallels that of classical neurons. Small single cones have a more circular distribution, but also peak in density at the area centralis. The convergence of cones to classical neurons is lowest at the area centralis, 2.5:1, and highest, 4:1, at the retinal edge. With its interesting structural features, the garter snake retina provides helpful insight into different strategies in eye design.
Collapse
Affiliation(s)
- R O Wong
- Visual Neurosciences Unit, John Curtin School of Medical Research, Australian National University
| |
Collapse
|
100
|
Robinson SR, Dreher B, McCall MJ. Nonuniform retinal expansion during the formation of the rabbit's visual streak: implications for the ontogeny of mammalian retinal topography. Vis Neurosci 1989; 2:201-19. [PMID: 2487649 DOI: 10.1017/s0952523800001139] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have studied the distribution of retinal ganglion cells (RGCs) which have been retrogradely labeled from massive bilateral injections of the enzyme horseradish peroxidase into the retino-recipient nuclei of foetal and postnatal albino rabbits aged from the 24th postconceptional day (24PCD) to adulthood. The number of labeled RGCs increases from about 447,000 on the 24PCD to a peak of about 525,000 on the 27PCD. From the 29PCD to birth (31/32PCD), the number of RGCs rapidly declines to about 375,000. During the next 20 d, the number of RGCs stabilizes at about 335,000. After the 51PCD, the number of RGCs gradually declines to the adult value of about 280,000. Retinal area steadily increases from about 40 mm2 on the 24PCD to about 500 mm2 in the adult, while RGC density decreases. However, the reduction in RGC density is nonuniform: RGC density in the visual streak drops from 18,600 RGCs mm2 on the 24PCD to 4700 RGCs/mm2 in the adult, whereas RGC densities at the superior and inferior edges of the retina decreases proportionally much more (from 9300 to 105 RGCs/mm2 and from 12,000 to 170 RGCs/mm2, respectively). As a result of this differential reduction in RGC density, the streak/inferior edge ratio changes from 1.6:1 to about 28:1. In the periods from the 24PCD to the 29PCD and from the 32PCD to adulthood, the proportional increases in the streak/superior edge and streak/inferior edge RGC density ratios are linearly related to the proportional increases in retinal area. However, between the 29PCD and 32PCD, the RGC density ratios increase at a greater rate than retinal area. We conclude that (1) the centro-peripheral difference in RGC density that is already present on the 24PCD might be attributable to differential RGC generation; (2) the redistribution of RGCs between the 24PCD and adulthood is mainly due to nonuniform expansion of the retina, with minimal expansion of the visual streak and maximal expansion at the superior and inferior retinal edges; and (3) a small component of the increase in the centro-peripheral RGC density ratio, which becomes apparent between the 29PCD and 32PCD, is probably due to differential RGC loss. We discuss the pattern of retinal expansion in the rabbit and the factors which might contribute to it.
Collapse
|