51
|
De Biasi S, Vitellaro-Zuccarello L, Brecha NC. Immunoreactivity for the GABA transporter-1 and GABA transporter-3 is restricted to astrocytes in the rat thalamus. A light and electron-microscopic immunolocalization. Neuroscience 1998; 83:815-28. [PMID: 9483565 DOI: 10.1016/s0306-4522(97)00414-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GABA plasma membrane transporters mediate GABA uptake into presynaptic terminals and surrounding glial processes and thus play a key role in shaping the time course and spatial extent of GABA's action. In the present study we have investigated the cellular and subcellular localization of two GABA transporters (1 and 3) in the rat thalamus using affinity-purified polyclonal antibodies. GABA transporter-1 and -3 immunoreactivity, detected with immunoperoxidase and immunofluorescence methods, is present throughout the thalamus in small punctate structures scattered in the neuropil among unlabelled neuronal perikarya. Labelling for GABA transporter-3 is always more intense than that for GABA transporter-1. Astrocytic processes, identified by their immunoreactivity for glial fibrillary acidic protein, express both GABA transporters. Ultrastructural investigations confirm that GABA transporter-1 and -3 labelling is restricted to astrocytes. Labelled astrocytes are adjacent to terminals making either symmetric or asymmetric synaptic contacts, and are close to neuronal profiles that do not form synaptic contacts in the plane of the section. In double-labelled thin sections some GABA transporter-1- or -3-positive astrocytic processes, detected with immunoperoxidase labelling, surround GABA-positive terminals, detected with antibodies to GABA and immunogold labelling. These findings demonstrate that in rat thalamus the GABA uptake system mediated by GABA transporter-1 and -3 is localized exclusively to astrocytes near the synapses and in the neuropil, and absent from GABAergic terminals. Astrocytes play therefore an important role in mediating GABA transmission in the thalamus, compared to cortical regions.
Collapse
Affiliation(s)
- S De Biasi
- Department of General Physiology and Biochemistry, University of Milan, Italy
| | | | | |
Collapse
|
52
|
Euler T, Wässle H. Different contributions of GABAA and GABAC receptors to rod and cone bipolar cells in a rat retinal slice preparation. J Neurophysiol 1998; 79:1384-95. [PMID: 9497419 DOI: 10.1152/jn.1998.79.3.1384] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whole cell currents were recorded from rod and cone bipolar cells in a slice preparation of the rat retina. Use of the gramicidin D perforated-patch technique prevented loss of intracellular compounds. The recorded cells were identified morphologically by injection with Lucifer yellow. During the recordings, the cells were isolated synaptically by extracellular cobalt. To distinguish the gamma-aminobutyric acid (GABA) receptors pharmacologically, the GABAA receptor antagonist, bicuculline, and the GABAC receptor antagonist, 3-aminopropyl(methyl)phosphinic acid, were used. In all bipolar cells tested, application of GABA induced postsynaptic chloride currents that hyperpolarized the cells from their resting potential of about -40 mV. GABA was applied at different concentrations to allow for the different affinity of GABA at GABAA and GABAC receptors. At a GABA concentration of 25 microM, in the case of rod bipolar cells, approximately 70% of the current was found to be mediated by GABAC receptors. In the case of cone bipolar cells, only approximately 20% of the current was mediated by GABAC receptors. Furthermore, this GABAC-mediated fraction varied among the different morphological types of cone bipolar cells, supporting the hypothesis of distinct functional roles for the different types of cone bipolar cells. There is evidence that the efficacy of GABAC receptors is modulated by glutamate through metabotropic glutamate receptors. We tested this hypothesis by applying agonists of metabotropic glutamate receptors (mGluR)1/5 to rod bipolar cells. The specific agonist (+/-)-trans-azetidine-2, 4-dicarboxylic acid and the potent mGluR agonist quisqualic acid reduced the amplitude of the GABAC responses by 10-30%. This suggests a functional role for the modulation of GABAC receptors by the metabotropic glutamate receptors mGluR1/5.
Collapse
Affiliation(s)
- T Euler
- Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt, Germany
| | | |
Collapse
|
53
|
Yang CY, Brecha NC, Tsao E. Immunocytochemical localization of gamma-aminobutyric acid plasma membrane transporters in the tiger salamander retina. J Comp Neurol 1997; 389:117-26. [PMID: 9390763 DOI: 10.1002/(sici)1096-9861(19971208)389:1<117::aid-cne8>3.0.co;2-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) play an important role in regulating GABA neurotransmission in the nervous system. The distribution of two GATs, GAT 1 and GAT 3, in salamander retina was investigated by using affinity-purified polyclonal antisera directed to the predicted C-terminals of rat GAT 1 and rat GAT 3. GAT 1-immunoreactivity (-IR) was found in type IB and IIB orthotopic bipolar cells (BCs) located in the distal and middle of the inner nuclear layer (INL), respectively; in type IIA and IA amacrine cells (ACs) located in the middle and proximal INL, respectively; and in interplexiform cells and cells in the ganglion cell layer (GCL). No detectable staining was found in horizontal cells (HCs) or in structures resembling Müller cells. GAT 1-immunoreactive fibers were present in the outer plexiform layer (OPL) and inner plexiform layer (IPL) in three bands corresponding to the three bands previously reported to be GABA-IR. GAT 3 antibodies labeled fewer cells and cell types than GAT 1 antibodies. GAT 3-IR was localized to type IIA and IA ACs and cells in the GCL, but not to BCs, HCs, or Müller cell-like structures. There was weak labeling of the OPL and stronger labeling of the IPL, with three distinct bands at the same depth as observed with GAT 1-IR. Double-labeling showed that the majority of GAT 1-IR BCs (88%), ACs (88%), and cells in the GCL (78%) colocalized with GABA-IR. The present study provides the first direct evidence of the expression of two GAT subtypes in neurons of nonmammalian retinas. These transporters could regulate GABA neurotransmission by reuptake and termination of GABA's action and, perhaps, by GABA release mechanisms. The presence of GAT 1-IR/GABA-IR bipolar cells further supports our earlier observations that a subgroup of orthotopic bipolar cells are likely to be GABAergic.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA.
| | | | | |
Collapse
|
54
|
Zeevalk GD, Nicklas WJ. Activity at the GABA transporter contributes to acute cellular swelling produced by metabolic impairment in retina. Vision Res 1997; 37:3463-70. [PMID: 9425523 DOI: 10.1016/s0042-6989(97)00184-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of the GABA transporter in acute toxicity in chick retina due to metabolic inhibition was investigated by the use of several substrate (nipecotic acid, THPO) and nonsubstrate (SKF 89976A, NO711) GABA transport inhibitors. Metabolic stress-induced acute toxicity in the retina is characterized by swelling of distinct populations of retinal neurons and selective release of GABA into the medium. Inhibitor concentrations were based on that needed to attenuate 14C-GABA uptake at its approximate KM concentration by > or = 70%. Under basal conditions, substrate, but not nonsubstrate, inhibitors increased extracellular GABA, but did not cause histological swelling per se. Under conditions of glycolytic inhibition, nonsubstrate, but not substrate, inhibitors significantly attenuated acute toxicity. Metabolic stress-induced acute toxicity was not altered by the GABA agonist muscimol, nor did muscimol reverse the protective effects of nonsubstrate transport inhibitors, suggesting that an increase in extracellular GABA during metabolic stress was not a component of the acute phase of toxicity. The results indicate that during metabolic inhibition, activity at the GABA transporter contributes to acute cellular swelling.
Collapse
Affiliation(s)
- G D Zeevalk
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neurology, Piscataway 08854, USA
| | | |
Collapse
|
55
|
Yazulla S, Studholme KM, Pinto LH. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. Vision Res 1997; 37:3471-82. [PMID: 9425524 DOI: 10.1016/s0042-6989(96)00223-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunocytochemical methods were used to compare the GABA system in control mice and two mutant strains: spastic which has reduced glycine receptors and retinal degeneration mutant in which the photoreceptors degenerate and reportedly have increased GABA and GAD levels. We found that the spastic mutant retina had reduced GABA-immunoreactivity (IR) in the proximal retina, reduced staining for GAD-1440 in the OPL, and reduced GABAA receptor staining in the OPL, compared to control. The retinal degeneration mutant retinas had enhanced GABA-IR throughout the retina, particularly in Müller cells, bipolar cells and IPL, and enhancement of GABAA receptor staining in the OPL, compared to control. The distributions of GABA-IR, GAD-1440-IR and GABAA receptor-IR in retinas of spastic mutant mice that also expressed the retinal degeneration phenotype resembled those found in retinas of mice that expressed only the retinal degeneration phenotype rather than those that expressed only the spastic mutation. No differences were observed among the conditions for GAD-65, GAD-67 or GABA-T. Our results with the spastic and retinal degeneration mutant mice demonstrate that attenuation in the glycinergic system and photoreceptor degeneration, respectively, is accompanied by alterations in different aspects of the GABA system, giving impetus for caution in the interpretation of experiments involving genetic manipulation of complex phenotypes.
Collapse
Affiliation(s)
- S Yazulla
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230, USA.
| | | | | |
Collapse
|
56
|
Crook DK, Pow DV. Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: a comparison with the ontogeny of a functional GABA transport system in retinal neurons. Vis Neurosci 1997; 14:751-63. [PMID: 9279003 DOI: 10.1017/s0952523800012700] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objectives of this study were to (1) determine whether the glycinergic and GABAergic amacrine cells in the developing rabbit retina were neurochemically distinct at birth, (2) determine if the ratio of GABAergic to glycinergic amacrine cells was constant during development, (3) determine whether the capacity to take up a GABA analogue was restricted to GABAergic neurons, and (4) whether initiation of GABA transport into GABAergic neurons preceded the presence of a content of GABA in these neurons. We have used a novel strategy to immunolocalize a non-endogenous GABA analogue, gamma-vinyl GABA, which is taken up into neurons by a GABA transporter. Examination of serial semithin resin-embedded sections of neonatal rabbit retinae that had been immunolabelled for glycine, GABA or gamma-vinyl GABA revealed that at 1 day postnatum, 60% of amacrine cells contain glycine but not GABA and did not accumulate gamma-vinyl GABA, which is similar to the percentage of glycinergic amacrine cells in the adult retina. The vast majority of the remaining amacrine cells contained GABA and many also transported gamma-vinyl GABA; however, a significant number of GABA-containing cells failed to accumulate gamma-vinyl GABA suggesting that possession of a content of GABA did not have to be preceded by, or be concomitant with, the presence of a GABA transport system. By 10 days postnatum, over 99% of GABA-containing amacrine cells also transported gamma-vinyl GABA indicating their functional maturity. Analysis of the horizontal cells revealed no evidence for uptake of gamma-vinyl GABA, but another GABA analogue, diaminobutyric acid, which is a substrate both for the neuron-associated GABA transporter and the glial GABA transporter, was accumulated into some horizontal cells at 21 days postnatum, a time point when these cells also contain endogenous GABA. We conclude that amacrine cells are committed to being GABAergic or glycinergic at, or prior to birth, and that in some amacrine cells, expression of a content of GABA may occur prior to the capacity to transport GABA. Conversely, in some ganglion cells transport of gamma-vinyl GABA may precede a content of GABA.
Collapse
Affiliation(s)
- D K Crook
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
57
|
Nirenberg S, Meister M. The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 1997; 18:637-50. [PMID: 9136772 DOI: 10.1016/s0896-6273(00)80304-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate retina contains ganglion cells that appear to be specialized for detecting temporal changes. The characteristic response of these cells is a transient burst of action potentials when a stationary image is presented or removed, and often a strong discharge to moving images. These transient and motion-sensitive responses are thought to result from processing in the inner retina that involves amacrine cells, but the critical interactions have been difficult to reveal. Here, we used a cell-ablation technique to remove a subpopulation of amacrine cells from the mouse retina. Their ablation changed transient ganglion cell responses into prolonged discharges. This suggests that transient responses are generated, at least in part, by a truncation of sustained excitatory input to the ganglion cells and that the ablated amacrine cells are critical for this process.
Collapse
Affiliation(s)
- S Nirenberg
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
58
|
Evans JE, Frostholm A, Rotter A. Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges. J Comp Neurol 1996; 376:431-46. [PMID: 8956109 DOI: 10.1002/(sici)1096-9861(19961216)376:3<431::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of gamma-aminobutyric acid (GABA) transporter mRNAs (mGATs) was studied in mouse brain during embryonic and postnatal development using in situ hybridization with radiolabeled oligonucleotide probes. Mouse GATs 1 and 4 were present in the ventricular and subventricular zones of the lateral ventricle from gestational day 13. During postnatal development, mGAT1 mRNA was distributed diffusely throughout the brain and spinal cord, with the highest expression present in the olfactory bulbs, hippocampus, and cerebellar cortex. The mGAT4 message was densely distributed throughout the central nervous system during postnatal week 1; however, the hybridization signal in the cerebral cortex and hippocampus decreased during postnatal weeks 2 and 3, and in adults, mGAT4 labeling was restricted largely to the olfactory bulbs, midbrain, deep cerebellar nuclei, medulla, and spinal cord. Mouse GAT2 mRNA was expressed only in proliferating and migrating cerebellar granule cells, whereas mGAT3 mRNA was absent from the brain and spinal cord throughout development. Each of the four mGATs was present to some degree in the leptomeninges. The expression of mGATs 2 and 3 was almost entirely restricted to the pia-arachnoid, whereas mGATs 1 and 4 were present only in specific regions of the membrane. Although mGATs 1 and 4 may subserve the classical purpose of terminating inhibitory GABAergic transmission through neuronal and glial uptake mechanisms, GABA transporters in the pia-arachnoid may help to regulate the amount of GABA available to proliferating and migrating neurons at the sub-pial surface during perinatal development.
Collapse
Affiliation(s)
- J E Evans
- Department of Pharmacology, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
59
|
Johnson J, Chen TK, Rickman DW, Evans C, Brecha NC. Multiple gamma-Aminobutyric acid plasma membrane transporters (GAT-1, GAT-2, GAT-3) in the rat retina. J Comp Neurol 1996; 375:212-24. [PMID: 8915826 PMCID: PMC4532437 DOI: 10.1002/(sici)1096-9861(19961111)375:2<212::aid-cne3>3.0.co;2-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
gamma-Aminobutyric acid (GABA) plasma membrane transporters (GATs) influence synaptic neurotransmission by high-affinity uptake and release of GABA. The distribution and cellular localization of GAT-1, GAT-2, and GAT-3 in the rat retina have been evaluated by using affinity-purified polyclonal antibodies directed to the C terminus of each of these GAT subtypes. Small GAT-1-immunoreactive cell bodies were located in the proximal inner nuclear layer (INL) and ganglion cell layer (GCL), and processes were distributed to all laminae of the interplexiform layer (IPL). Varicose processes were in the optic fiber layer (OFL) and the outer plexiform layer (OPL). Weak GAT-1 immunostaining surrounded cells in the INL and GCL, and it was found in the OFL and OPL and in numerous processes in the outer nuclear layer (ONL) that ended at the outer limiting membrane. GAT-1 is therefore strongly expressed by amacrine, displaced amacrine, and interplexiform cells and weakly expressed by Müller cells. GAT-2 immunostaining was observed in the retina pigment epithelium and the nonpigmented ciliary epithelium. GAT-3 immunoreactivity was distributed to the OFL, to all laminae of the IPL, GCL and INL, and to processes in the ONL that ended at the outer limiting membrane. Small GAT-3-immunoreactive cell bodies were in the proximal INL and GCL. GAT-3 is therefore strongly expressed by Müller cells, and by some amacrine and displaced amacrine cells. Together, these observations demonstrate a heterologous distribution of GATs in the retina. These transporters are likely to take up GABA from, and perhaps release GABA into, the synaptic cleft and extracellular space. This suggests that GATs regulate GABA levels in these areas and thus influence synaptic neurotransmission.
Collapse
Affiliation(s)
- J Johnson
- Department of Neurobiology, UCLA School of Medicine 90095, USA.
| | | | | | | | | |
Collapse
|
60
|
Ribak CE, Tong WM, Brecha NC. Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells. ANATOMY AND EMBRYOLOGY 1996; 194:379-90. [PMID: 8896702 DOI: 10.1007/bf00198540] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of the present study was to evaluate the expression of two high affinity GABA transporters (GAT-1 and GAT-3) in the rat cerebellum using immunocytochemistry and affinity purified antibodies. GAT-1 immunoreactivity was prominent in punctate structures and axons in all layers of the cerebellar cortex, and was especially prominent around the somata of Purkinje cells. In contrast, the deep cerebellar nuclei showed few if any GAT-1 immunoreactive puncta. Weak GAT-3 immunoreactive processes were present in the cerebellar cortex, whereas GAT-3 immunostaining was prominent around the somata of neurons in the deep cerebellar nuclei. Electron microscopic preparations of the cerebellar cortex demonstrated that GAT-1 immunoreactive axon terminals formed symmetric synapses with somata, axon initial segments and dendrites of Purkinje cells and the dendrites of granule cells. Astrocytic processes in the cerebellar cortex were also immunolabeled for GAT-1. However, Purkinje cell axon terminals that formed symmetric synapses with neurons in the deep cerebellar nuclei lacked GAT-1 immunoreactivity. Instead, weak GAT-1 and strong GAT-3 immunoreactivities were expressed by astrocytic processes that enveloped the Purkinje cell axon terminals. In addition, GAT-3-immunoreactivity appeared in astrocytic processes in the cerebellar cortex. These observations demonstrate that GAT-1 is localized to axon terminals of three of the four neuronal types that were previously established as being GABAergic, i.e. basket, stellate and Golgi cells. GAT-1 and GAT-3 are expressed by astrocytes. The failure to identify a GABA transporter in Purkinje cells is consistent with previous data that indicated that Purkinje cells lacked terminal uptake mechanisms for GABA. The individual glial envelopment of Purkinje cell axon terminals in the deep cerebellar nuclei and the dense immunostaining of GAT-3, and to a lesser extent GAT-1, expressed by astrocytic processes provide a compensatory mechanism for the removal of GABA from the synaptic cleft of synapses formed by Purkinje cell axon terminals.
Collapse
Affiliation(s)
- C E Ribak
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA.
| | | | | |
Collapse
|
61
|
Abstract
Processing of visual information within the retina depends in large measure upon a complement of chemical neurotransmitters which are released at synaptic contacts between individual neurons. Numerous investigators have participated in the identification of many of these transmitters and their assignment to specific neuronal subpopulations. However, it is now clear that the action of each transmitter depends upon the receptor molecules to which it binds. Multidisciplinary studies are underway to characterize these receptors as well as to investigate transporter molecules which may serve not only to inactivate certain neurotransmitters but may also function in their release.
Collapse
Affiliation(s)
- R G Pourcho
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
62
|
Ribak CE, Tong WM, Brecha NC. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996; 367:595-606. [PMID: 8731228 DOI: 10.1002/(sici)1096-9861(19960415)367:4<595::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study evaluates the distribution of two high affinity gamma-aminobutyric acid (GABA) transporters (GAT-1 and GAT-3) in the rat hippocampus using immunocytochemistry and affinity purified antibodies. GAT-1 immunoreactivity was prominent in punctate structures and axons in all layers of the dentate gyrus. In Ammon's horn, immunoreactive processes were concentrated around the somata of pyramidal cells, particularly at their basal regions. The apical and basal dendritic fields of pyramidal cells also displayed numerous GAT-1 immunoreactive punctate structures and axons. The zone of termination of the mossy fibers that includes both the hilus of the dentate gyrus and stratum lucidum of the CA3 area was the lightest immunolabeled region of the hippocampal complex. Electron microscopic preparations demonstrated that GAT-1 immunoreactive axon terminals form symmetric synapses with somata, axon initial segments, and dendrites of granule and pyramidal cells in the dentate gyrus and Ammon's horn, respectively. Immunoreactivity was localized to the plasma membrane and the cytoplasm of axon terminals. The somata of previously described local circuit neurons in the dentate gyrus and Ammon's horn contained GAT-1 immunoreactivity associated with the Golgi complex. Light, diffuse GAT-3 immunoreactivity was present throughout the hippocampal formation. Thin, astrocytic glial processes displayed GAT-1 and GAT-3 immunoreactivity. This localization of GAT-1 and GAT-3 indicates that they are involved in the uptake of GABA from the extracellular space into GABAergic axon terminals and astrocytes.
Collapse
Affiliation(s)
- C E Ribak
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA.
| | | | | |
Collapse
|
63
|
Honda S, Yamamoto M, Saito N. Immunocytochemical localization of three subtypes of GABA transporter in rat retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:319-25. [PMID: 8750892 DOI: 10.1016/0169-328x(95)00150-q] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellular distributions of three subtypes of GABA transporter (GAT1, GAT2, GAT3) in the eye were examined using polyclonal antisera for each subtype. GAT1 was present in the inner plexiform layer and proximal part of the inner nuclear layer, while GAT3 was distributed throughout the entire sensory retina, being predominant in the distal part of the inner plexiform layer and in the outer plexiform layer. GAT2 immunoreactivity was seen in the retina, including the retinal pigment epithelium layer and nerve fiber layer, also in the ciliary body epithelium. Confocal scanning laser fluorescence microscopy disclosed that the GAT1 immunoreactivity consisted of a number of small deposits in the inner plexiform layer and that GAT1-immunoreactive dots encircle immunonegative neurons in the inner nuclear layer. GAT2 immunoreactivity was present in the fiber bundle of the optic nerve and in the retinal pigment epithelium within the retina. GAT3 immunoreactive cells had long processes running vertically throughout the sensory retina. GAT1 is suggested to be present mainly in the processes of amacrine cells and GAT3 to be distributed in Müller cells. We conclude that GAT1, GAT2 and GAT3 are expressed in different cells, that they are involved in distinct GABAergic transmission in the retina, and that GAT2 may be involved in non-neuronal functions in the eye.
Collapse
Affiliation(s)
- S Honda
- Laboratory of Molecular Pharmacology, Kobe University, Japan
| | | | | |
Collapse
|
64
|
Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL. Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:7-21. [PMID: 8774941 DOI: 10.1016/0169-328x(95)00101-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Localization of the messenger RNAs encoding three gamma-aminobutyric acid (GABA) transporters, termed GAT-1, GAT-2, and GAT-3, has been carried out in rat brain using radiolabeled oligonucleotide probes and in situ hybridization histochemistry. Hybridization signals for GAT-1 mRNA were observed over many regions of the rat brain, including the retina, olfactory bulb, neocortex, ventral pallidum, hippocampus, and cerebellum. At the microscopic level, this signal appeared to be restricted to neuronal profiles, and the overall distribution of GAT-1 mRNA closely paralleled that seen in other studies with antibodies to GABA. Areas containing hybridization signals for GAT-3 mRNA included the retina, olfactory bulb, subfornical organ, hypothalamus, midline thalamus, and brainstem. In some regions, the hybridization signal for GAT-3 seemed to be preferentially distributed over glial cells, although hybridization signals were also observed over neurons, particularly in the retina and olfactory bulb. Notably, hybridization signal for GAT-3 mRNA was absent from the neocortex and cerebellar cortex, and was very weak in the hippocampus. In contrast to the parenchymal localization obtained for GAT-1 and GAT-3 mRNAs, hybridization signals for GAT-2 mRNA were found only over the leptomeninges (pia and arachnoid). The differential distribution of the three GABA transporters described here suggests that while each plays a role in GABA uptake, they do so via distinct cellular populations.
Collapse
Affiliation(s)
- M M Durkin
- Synaptic Pharmaceutical Corporation, Paramus, NJ 07652, USA
| | | | | | | | | | | |
Collapse
|
65
|
Ribak CE, Morin CL. The role of the inferior colliculus in a genetic model of audiogenic seizures. ANATOMY AND EMBRYOLOGY 1995; 191:279-95. [PMID: 7645755 DOI: 10.1007/bf00534681] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have shown the functional importance of the inferior colliculus (IC) for the propagation and initiation of audiogenic seizures in several models of epilepsy in rats. A review of the cell types and cytoarchitecture of the IC, including its three major subdivisions, is presented. Significant increases in GABA levels and the number of GABAergic neurons are found in the central nucleus of the IC (ICCN) of genetically epilepsy-prone rats (GEPR-9s) as compared to Sprague-Dawley rats that do not display audiogenic seizures. Two independent anatomical methods were used to determine the number of GABAergic neurons, immunocytochemistry and in situ hybridization. In both types of preparation, the labeled cells in the ICCN appeared to be of different sizes but the number of small cells with diameters less than 15 microns showed the greatest increase. Nissl-stained sections showed that the total number of neurons in the ICCN was increased in GEPR-9s and indicated that the increase in GABAergic neurons was not due to a change in the phenotype of collicular neurons from non-GABAergic to GABAergic. The number of small neurons in Nissl-stained sections of the ICCN was shown to correlate with seizure severity in the offspring of crosses made between Sprague-Dawley rats and GEPR-9s. Furthermore, the GEPR-3s that display moderate seizures showed a significant increase in the number of small neurons in the ICCN, and the magnitude of this increase was predicted from this correlation. Finally, the use of knife cuts through the midbrain indicated that the ICCN sends an important projection to the external nucleus and that this projection plays a vital role in the propagation of seizure activity from the site of seizure initiation in the ICCN. It remains to be resolved how the increase in small GABAergic neurons in the ICCN is responsible for the known pharmacological defects observed at GABAergic synapses.
Collapse
Affiliation(s)
- C E Ribak
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA
| | | |
Collapse
|