51
|
Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, Jana NR, Ganesh S. Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis 2018; 9:201. [PMID: 29422655 PMCID: PMC5833817 DOI: 10.1038/s41419-017-0190-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Healthy neurons do not store glycogen while they do possess the machinery for the glycogen synthesis albeit at an inactive state. Neurons in the degenerating brain, however, are known to accumulate glycogen, although its significance was not well understood. Emerging reports present contrasting views on neuronal glycogen synthesis; a few reports demonstrate a neurotoxic effect of glycogen while a few others suggest glycogen to be neuroprotective. Thus, the specific role of glycogen and glycogen synthase in neuronal physiology is largely unexplored. Using cellular and animal models of Huntington's disease, we show here that the overexpression of cytotoxic mutant huntingtin protein induces glycogen synthesis in the neurons by activating glycogen synthase and the overexpressed glycogen synthase protected neurons from the cytotoxicity of the mutant huntingtin. Exposure of neuronal cells to proteasomal blockade and oxidative stress also activate glycogen synthase to induce glycogen synthesis and to protect against stress-induced neuronal death. We show that the glycogen synthase plays an essential and inductive role in the neuronal autophagic flux, and helps in clearing the cytotoxic huntingtin aggregate. We also show that the increased neuronal glycogen inhibits the aggregation of mutant huntingtin, and thus could directly contribute to its clearance. Finally, we demonstrate that excessive autophagy flux is the molecular basis of cell death caused by the activation of glycogen synthase in unstressed neurons. Taken together, our results thus provide a novel function for glycogen synthase in proteolytic processes and offer insight into the role of glycogen synthase and glycogen in both survival and death of the neurons.
Collapse
Affiliation(s)
- Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Pankaj Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
- Institut de Génétique et de Biologie Moléculaire et Cellulare (IGBMC), Illkirch, France
| | - Virender Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | | | - Rohit Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | - Susarla Krishna Shankar
- Department of Neuropathology, National Institute of Mental Health and Neuroscience, Bengaluru, 560029, India
| | | | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
| |
Collapse
|
52
|
Du D, Hu L, Wu J, Wu Q, Cheng W, Guo Y, Guan R, Wang Y, Chen X, Yan X, Zhu D, Wang J, Zhang S, Guo Y, Xia C. Neuroinflammation contributes to autophagy flux blockage in the neurons of rostral ventrolateral medulla in stress-induced hypertension rats. J Neuroinflammation 2017; 14:169. [PMID: 28835252 PMCID: PMC5569471 DOI: 10.1186/s12974-017-0942-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neuroinflammation plays hypertensive roles in the uninjured autonomic nuclei of the central nervous system, while its mechanisms remain unclear. The present study is to investigate the effect of neuroinflammation on autophagy in the neurons of the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside. METHODS Stress-induced hypertension (SIH) was induced by electric foot-shock stressors with noise interventions in rats. Systolic blood pressure (SBP) and the power density of the low frequency (LF) component of the SAP spectrum were measured to reflect sympathetic vasomotor activity. Microglia activation and pro-inflammatory cytokines (PICs (IL-1β, TNF-α)) expression in the RVLM were measured by immunoblotting and immunostaining. Autophagy and autophagic vacuoles (AVs) were examined by autophagic marker (LC3 and p62) expression and transmission electron microscopy (TEM) image, respectively. Autophagy flux was evaluated by RFP-GFP-tandem fluorescent LC3 (tf-LC3) vectors transfected into the RVLM. Tissue levels of glutamate, gamma aminobutyric acid (GABA), and plasma levels of norepinephrine (NE) were measured by using high-performance liquid chromatography (HPLC) with electrochemical detection. The effects of the cisterna magna infused minocycline, a microglia activation inhibitor, on the abovementioned parameters were analyzed. RESULTS SIH rats showed increased SBP, plasma NE accompanied by an increase in LF component of the SBP spectrum. Microglia activation and PICs expression was increased in SIH rats. TEM demonstrated that stress led to the accumulation of AVs in the RVLM of SIH rats. In addition to the Tf-LC3 assay, the concurrent increased level of LC3-II and p62 suggested the impairment of autophagic flux in SIH rats. To the contrary, minocycline facilitated autophagic flux and induced a hypotensive effect with attenuated microglia activation and decreased PICs in the RVLM of SIH rats. Furthermore, SIH rats showed higher levels of glutamate and lower level of GABA in the RVLM, while minocycline attenuated the decrease in GABA and the increase in glutamate of SIH rats. CONCLUSIONS Collectively, we concluded that the neuroinflammation might impair autophagic flux and induced neural excitotoxicity in the RVLM neurons following SIH, which is involved in the development of SIH.
Collapse
Affiliation(s)
- Dongshu Du
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Li Hu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Jiaxiang Wu
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, Shanghai, 200444 People’s Republic of China
| | - Qin Wu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wenjing Cheng
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yuhong Guo
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yahui Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011 People’s Republic of China
| | - Xingxin Chen
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xanxia Yan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Shutian Zhang
- School of Basic Medical Sciences, Fudan University, Shanghai, 200011 People’s Republic of China
| | - Yanfang Guo
- Department of Pediatrics, Pudong Gongli Hospital, Shanghai, 200135 People’s Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
53
|
Yuan GJ, Deng JJ, Cao DD, Shi L, Chen X, Lei JJ, Xu XM. Autophagic cell death induced by reactive oxygen species is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells. World J Gastroenterol 2017; 23:5530-5537. [PMID: 28852312 PMCID: PMC5558116 DOI: 10.3748/wjg.v23.i30.5530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether autophagic cell death is involved in hyperthermic sensitization to ionizing radiation in human hepatocellular carcinoma cells, and to explore the underlying mechanism. METHODS Human hepatocellular carcinoma cells were treated with hyperthermia and ionizing radiation. MTT and clonogenic assays were performed to determine cell survival. Cell autophagy was detected using acridine orange staining and flow cytometric analysis, and the expression of autophagy-associated proteins, LC3 and p62, was determined by Western blot analysis. Intracellular reactive oxygen species (ROS) were quantified using the fluorescent probe DCFH-DA. RESULTS Treatment with hyperthermia and ionizing radiation significantly decreased cell viability and surviving fraction as compared with hyperthermia or ionizing radiation alone. Cell autophagy was significantly increased after ionizing radiation combined with hyperthermia treatment, as evidenced by increased formation of acidic vesicular organelles, increased expression of LC3II and decreased expression of p62. Intracellular ROS were also increased after combined treatment with hyperthermia and ionizing radiation. Pretreatment with N-acetylcysteine, an ROS scavenger, markedly inhibited the cytotoxicity and cell autophagy induced by hyperthermia and ionizing radiation. CONCLUSION Autophagic cell death is involved in hyperthermic sensitization of cancer cells to ionizing radiation, and its induction may be due to the increased intracellular ROS.
Collapse
|
54
|
Chen GQ, Gong RH, Yang DJ, Zhang G, Lu AP, Yan SC, Lin SH, Bian ZX. Halofuginone dually regulates autophagic flux through nutrient-sensing pathways in colorectal cancer. Cell Death Dis 2017; 8:e2789. [PMID: 28492544 PMCID: PMC5520722 DOI: 10.1038/cddis.2017.203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/11/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023]
Abstract
Autophagy has a key role in metabolism and impacts on tumorigenesis. Our previous study found that halofuginone (HF) exerts anticancer activity in colorectal cancer (CRC) by downregulating Akt/mTORC1 (mechanistic target of rapamycin complex 1) signaling pathway. But whether and how HF regulates autophagy and metabolism to inhibit cancer growth remains an open question. Here, we unveil that HF activates ULK1 by downregulation of its phosphorylation site at Ser757 through Akt/mTORC1 signaling pathway, resulting in induction of autophagic flux under nutrient-rich condition. On the other hand, HF inactivates ULK1 by downregulation of its phosphorylation sites at Ser317 and Ser777 through LKB1/AMPK signaling pathway, resulting in autophagic inhibition under nutrient-poor condition. Furthermore, Atg7-dependent autophagosome formation is also induced under nutrient-rich condition or blocked in nutrient-poor environment, respectively, upon HF treatment. More interestingly, we also found that HF inhibits glycolysis under nutrient-rich condition, whereas inhibits gluconeogenesis under nutrient-poor condition in an Atg7-dependent manner, suggesting that autophagy has a pivotal role of glucose metabolism upon HF treatment. Subsequent studies showed that HF treatment retarded tumor growth in xenograft mice fed with either standard chow diet or caloric restriction through dual regulation of autophagy in vivo. Together, HF has a dual role in autophagic modulation depending on nutritional conditions for anti-CRC.
Collapse
Affiliation(s)
- Guo-Qing Chen
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Rui-Hong Gong
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ge Zhang
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ai-Ping Lu
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Siu-Cheong Yan
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shu-Hai Lin
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Zhao-Xiang Bian
- Laboratory of Brain and Gut Research, Center for Clinical Research on Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
55
|
Girault V, Gilard V, Marguet F, Lesueur C, Hauchecorne M, Ramdani Y, Laquerrière A, Marret S, Jégou S, Gonzalez BJ, Brasse-Lagnel C, Bekri S. Prenatal alcohol exposure impairs autophagy in neonatal brain cortical microvessels. Cell Death Dis 2017; 8:e2610. [PMID: 28182007 PMCID: PMC5386476 DOI: 10.1038/cddis.2017.29] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
Brain developmental lesions are a devastating consequence of prenatal alcohol exposure (PAE). We recently showed that PAE affects cortical vascular development with major effects on angiogenesis and endothelial cell survival. The underlying molecular mechanisms of these effects remain poorly understood. This study aimed at characterizing the ethanol exposure impact on the autophagic process in brain microvessels in human fetuses with fetal alcohol syndrome (FAS) and in a PAE mouse model. Our results indicate that PAE induces an increase of autophagic vacuole number in human fetal and neonatal mouse brain cortical microvessels. Subsequently, ex vivo studies using green fluorescent protein (GFP)-LC3 mouse microvessel preparations revealed that ethanol treatment alters autophagy in endothelial cells. Primary cultures of mouse brain microvascular endothelial cells were used to characterize the underlying molecular mechanisms. LC3 and p62 protein levels were significantly increased in endothelial cells treated with 50 mM ethanol. The increase of autophagic vacuole number may be due to excessive autophagosome formation associated with the partial inhibition of the mammalian target of rapamycin pathway upon ethanol exposure. In addition, the progression from autophagosomes to autolysosomes, which was monitored using autophagic flux inhibitors and mRFP-EGFP vector, showed a decrease in the autolysosome number. Besides, a decrease in the Rab7 protein level was observed that may underlie the impairment of autophagosome-lysosome fusion. In addition, our results showed that ethanol-induced cell death is likely to be mediated by decreased mitochondrial integrity and release of apoptosis-inducing factor. Interestingly, incubation of cultured cells with rapamycin prevented ethanol effects on autophagic flux, ethanol-induced cell death and vascular plasticity. Taken together, these results are consistent with autophagy dysregulation in cortical microvessels upon ethanol exposure, which could contribute to the defects in angiogenesis observed in patients with FAS. Moreover, our results suggest that rapamycin represents a potential therapeutic strategy to reduce PAE-related brain developmental disorders.
Collapse
Affiliation(s)
- Virginie Girault
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | - Vianney Gilard
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Neurosurgery, Rouen University Hospital, Rouen, France
| | - Florent Marguet
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Pathology Laboratory, Rouen University Hospital, Rouen, France
| | - Céline Lesueur
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | | | - Yasmina Ramdani
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | - Annie Laquerrière
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Pathology Laboratory, Rouen University Hospital, Rouen, France
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Neonatal Pediatrics and Intensive Care and Neuropediatrics, Rouen University Hospital, Rouen, France
| | - Sylvie Jégou
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
| | | | | | - Soumeya Bekri
- Normandie University, UNIROUEN, INSERM U1245, NeoVasc Team, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| |
Collapse
|