51
|
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development 2012; 139:2655-62. [DOI: 10.1242/dev.078204] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution.
Collapse
Affiliation(s)
- Maarten Hilbrant
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Wim G. M. Damen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
52
|
Expression of pair rule gene orthologs in the blastoderm of a myriapod: evidence for pair rule-like mechanisms? BMC DEVELOPMENTAL BIOLOGY 2012; 12:15. [PMID: 22595029 PMCID: PMC3477074 DOI: 10.1186/1471-213x-12-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/11/2012] [Indexed: 01/14/2023]
Abstract
Background A hallmark of Drosophila segmentation is the stepwise subdivision of the body into smaller and smaller units, and finally into the segments. This is achieved by the function of the well-understood segmentation gene cascade. The first molecular sign of a segmented body appears with the action of the pair rule genes, which are expressed as transversal stripes in alternating segments. Drosophila development, however, is derived, and in most other arthropods only the anterior body is patterned (almost) simultaneously from a pre-existing field of cells; posterior segments are added sequentially from a posterior segment addition zone. A long-standing question is to what extent segmentation mechanisms known from Drosophila may be conserved in short-germ arthropods. Despite the derived developmental modes, it appears more likely that conserved mechanisms can be found in anterior patterning. Results Expression analysis of pair rule gene orthologs in the blastoderm of the pill millipede Glomeris marginata (Myriapoda: Diplopoda) suggests that these genes are generally involved in segmenting the anterior embryo. We find that the Glomeris pairberry-1 ( pby-1) gene is expressed in a pair rule pattern that is also found in insects and a chelicerate, the mite Tetraynchus urticae. Other Glomeris pair rule gene orthologs are expressed in double segment wide domains in the blastoderm, which at subsequent stages split into two stripes in adjacent segments. Conclusions The expression patterns of the millipede pair rule gene orthologs resemble pair rule patterning in Drosophila and other insects, and thus represent evidence for the presence of an ancestral pair rule-like mechanism in myriapods. We discuss the possibilities that blastoderm patterning may be conserved in long-germ and short-germ arthropods, and that a posterior double segmental mechanism may be present in short-germ arthropods.
Collapse
|
53
|
Seaver EC, Yamaguchi E, Richards GS, Meyer NP. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 2012; 3:8. [PMID: 22510249 PMCID: PMC3359188 DOI: 10.1186/2041-9139-3-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/18/2012] [Indexed: 02/07/2023] Open
Abstract
Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.
Collapse
Affiliation(s)
- Elaine C Seaver
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI, USA.
| | | | | | | |
Collapse
|
54
|
Andrioli LP. Toward new Drosophila paradigms. Genesis 2012; 50:585-98. [DOI: 10.1002/dvg.22019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/07/2022]
|
55
|
Oates AC, Morelli LG, Ares S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 2012; 139:625-39. [PMID: 22274695 DOI: 10.1242/dev.063735] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rhythmic signal arises, how it achieves precision and how it patterns the embryo remain challenging issues. Recent work has provided evidence of how the period of the segmentation clock is regulated and how this affects the anatomy of the embryo. The ongoing development of real-time clock reporters and mathematical models promise novel insight into the dynamic behavior of the clock.
Collapse
Affiliation(s)
- Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany.
| | | | | |
Collapse
|
56
|
El-Sherif E, Lynch JA, Brown SJ. Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:16-39. [PMID: 23801665 PMCID: PMC5323069 DOI: 10.1002/wdev.3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studying the embryogenesis of diverse insect species is crucial to understanding insect evolution. Here, we review current advances in understanding the development of two emerging model organisms: the wasp Nasonia vitripennis and the beetle Tribolium castaneum in comparison with the well-studied fruit fly Drosophila melanogaster. Although Nasonia represents the most basally branching order of holometabolous insects, it employs a derived long germband mode of embryogenesis, more like that of Drosophila, whereas Tribolium undergoes an intermediate germband mode of embryogenesis, which is more similar to the ancestral mechanism. Comparing the embryonic development and genetic regulation of early patterning events in these three insects has given invaluable insights into insect evolution. The similar mode of embryogenesis of Drosophila and Nasonia is reflected in their reliance on maternal morphogenetic gradients. However, they employ different genes as maternal factors, reflecting the evolutionary distance separating them. Tribolium, on the other hand, relies heavily on self-regulatory mechanisms other than maternal cues, reflecting its sequential nature of segmentation and the need for reiterated patterning.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Program of Genetics, Kansas State University, Manhattan, Kansas
| | - Jeremy A Lynch
- Institute for Developmental Biology, University of Cologne, Cologne, Germany
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
57
|
Morphogenesis of Pseudopallene sp. (Pycnogonida, Callipallenidae) I: embryonic development. Dev Genes Evol 2011; 221:309-28. [DOI: 10.1007/s00427-011-0382-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/08/2011] [Indexed: 12/20/2022]
|
58
|
Dickinson DJ, Weis WI, Nelson WJ. Protein evolution in cell and tissue development: going beyond sequence and transcriptional analysis. Dev Cell 2011; 21:32-4. [PMID: 21763606 DOI: 10.1016/j.devcel.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of animal evolution often focus on sequence and transcriptional analysis, based on an assumption that the evolution of development is driven by changes in gene expression. We argue that biochemical and cell biological approaches are also required, because sequence-conserved proteins can have different biochemical, cellular, and developmental properties.
Collapse
|
59
|
Janssen R, Budd GE, Damen WG. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 2011; 357:64-72. [DOI: 10.1016/j.ydbio.2011.05.670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/31/2023]
|
60
|
Mito T, Shinmyo Y, Kurita K, Nakamura T, Ohuchi H, Noji S. Ancestral functions of Delta/Notch signaling in the formation of body and leg segments in the cricket Gryllus bimaculatus. Development 2011; 138:3823-33. [DOI: 10.1242/dev.060681] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Delta/Notch signaling controls a wide spectrum of developmental processes, including body and leg segmentation in arthropods. The various functions of Delta/Notch signaling vary among species. For instance, in Cupiennius spiders, Delta/Notch signaling is essential for body and leg segmentation, whereas in Drosophila fruit flies it is involved in leg segmentation but not body segmentation. Therefore, to gain further insight into the functional evolution of Delta/Notch signaling in arthropod body and leg segmentation, we analyzed the function of the Delta (Gb′Delta) and Notch (Gb′Notch) genes in the hemimetabolous, intermediate-germ cricket Gryllus bimaculatus. We found that Gb′Delta and Gb′Notch were expressed in developing legs, and that RNAi silencing of Gb′Notch resulted in a marked reduction in leg length with a loss of joints. Our results suggest that the role of Notch signaling in leg segmentation is conserved in hemimetabolous insects. Furthermore, we found that Gb′Delta was expressed transiently in the posterior growth zone of the germband and in segmental stripes earlier than the appearance of wingless segmental stripes, whereas Gb′Notch was uniformly expressed in early germbands. RNAi knockdown of Gb′Delta or Gb′Notch expression resulted in malformation in body segments and a loss of posterior segments, the latter probably due to a defect in posterior growth. Therefore, in the cricket, Delta/Notch signaling might be required for proper morphogenesis of body segments and posterior elongation, but not for specification of segment boundaries.
Collapse
Affiliation(s)
- Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Yohei Shinmyo
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Kazuki Kurita
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Taro Nakamura
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Hideyo Ohuchi
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City, 770-8506 Japan
| |
Collapse
|
61
|
McGregor AP, Pechmann M, Schwager EE, Damen WG. An ancestral regulatory network for posterior development in arthropods. Commun Integr Biol 2011; 2:174-6. [PMID: 19513274 DOI: 10.4161/cib.7710] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 02/06/2023] Open
Abstract
A number of recent studies have investigated posterior development in several different arthropods. As previously found in spiders, it has been discovered that Delta-Notch signaling is required for the development of posterior segments in an insect, the cockroach Periplaneta americana. Furthermore analysis of Wnt8 function in the spider Achaearanea tepidariorum and the beetle Tribolium castaneum demonstrates that this Wnt ligand is required for the establishment of the growth zone and development of posterior segments in both these arthropods. Taken together these studies provide an interesting insight into the architecture of the genetic network that regulated posterior development in the common ancestor of the arthropods.
Collapse
Affiliation(s)
- Alistair P McGregor
- Institut für Populationsgenetik; Veterinärmedizinische Universität Wien; Wien, Austria
| | | | | | | |
Collapse
|
62
|
Wolff C, Hilbrant M. The embryonic development of the central American wandering spider Cupiennius salei. Front Zool 2011; 8:15. [PMID: 21672209 PMCID: PMC3141654 DOI: 10.1186/1742-9994-8-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 06/14/2011] [Indexed: 12/04/2022] Open
Abstract
Background The spider Cupiennius salei (Keyserling 1877) has become an important study organism in evolutionary and developmental biology. However, the available staging system for its embryonic development is difficult to apply to modern studies, with strong bias towards the earliest developmental stages. Furthermore, important embryonic events are poorly understood. We address these problems, providing a new description of the embryonic development of C. salei. The paper also discusses various observations that will improve our understanding of spider development. Results Conspicuous developmental events were used to define numbered stages 1 to 21. Stages 1 to 9 follow the existing staging system for the spider Achaearanea tepidariorum, and stages 10 to 21 provide a high-resolution description of later development. Live-embryo imaging shows cell movements during the earliest formation of embryonic tissue in C. salei. The imaging procedure also elucidates the encircling border between the cell-dense embryo hemisphere and the hemisphere with much lower cell density (a structure termed 'equator' in earlier studies). This border results from subsurface migration of primordial mesendodermal cells from their invagination site at the blastopore. Furthermore, our detailed successive sequence shows: 1) early differentiation of the precheliceral neuroectoderm; 2) the morphogenetic process of inversion and 3) initial invaginations of the opisthosomal epithelium for the respiratory system. Conclusions Our improved staging system of development in C. salei development should be of considerable value to future comparative studies of animal development. A dense germ disc is not evident during development in C. salei, but we show that the gastrulation process is similar to that in spider species that do have a dense germ disc. In the opisthosoma, the order of appearance of precursor epithelial invaginations provides evidence for the non-homology of the tracheal and book lung respiratory systems.
Collapse
Affiliation(s)
- Carsten Wolff
- Humboldt-Universität zu Berlin Institut für Biologie/Vergleichende Zoologie Philippstraße 13, 10115 Berlin, Germany
| | - Maarten Hilbrant
- Universität zu Köln Institut für Genetik, Zülpicher Straße 47a, 50674 Köln, Germany.,Oxford Brookes University Headington Campus Gipsy Lane, Oxford OX3 0BP, UK
| |
Collapse
|
63
|
Newman SA. Animal egg as evolutionary innovation: a solution to the “embryonic hourglass” puzzle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:467-83. [DOI: 10.1002/jez.b.21417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022]
|
64
|
Bortolin F, Benna C, Fusco G. Gene expression during postembryonic segmentation in the centipede Lithobius peregrinus (Chilopoda, Lithobiomorpha). Dev Genes Evol 2011; 221:105-11. [PMID: 21479655 DOI: 10.1007/s00427-011-0359-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 11/28/2022]
Abstract
Postembryonic segmentation (anamorphosis) is widespread among arthropods, but only partially known as for its developmental mechanics and control. Studies on developmental genetics of segmentation in anamorphic arthropods are mostly limited to the germ band stage, during early phases of embryonic development. This work presents the first data on the postembryonic expression of a segmentation gene in a myriapod. Using real-time PCR, we analyzed engrailed expression patterns during the anamorphic stages of the centipede Lithobius peregrinus. A variation pattern in en RNA level during anamorphosis suggests that gene expression is precisely modulated during this period of development and that engrailed is mainly expressed in the posterior part of the body, in the newly differentiating segments of each stage. As anamorphosis is possibly the primitive segmentation mode in arthropods, the postembryonic en expression pattern documented here provides evidence for a conservation of en role in ontogeny, across the embryonic/postembryonic boundary, as well as in phylogeny, across the same boundary, but in the opposite direction, from primitive postembryonic expression to the more derived expression in clades with exclusively embryonic segmentation.
Collapse
|
65
|
Chisholm RH, Hughes BD, Landman KA, Mayer G, Whitington PM. When are cellular oscillators sufficient for sequential segmentation? J Theor Biol 2011; 279:150-60. [PMID: 21382379 DOI: 10.1016/j.jtbi.2011.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 01/09/2023]
Abstract
Sequential segmentation during embryogenesis involves the generation of a repeated pattern along the embryo, which is concurrently undergoing axial elongation by cell division. Most mathematical models of sequential segmentation involve inherent cellular oscillators, acting as a segmentation clock. The cellular oscillation is assumed to be governed by the cell's physiological age or by its interaction with an external morphogen gradient. Here, we address the issue of when cellular oscillators alone are sufficient for predicting segmentation, and when a morphogen gradient is required. The key to resolving this issue lies in how cells determine positional information in the model--this is directly related to the distribution of cell divisions responsible for axial elongation. Mathematical models demonstrate that if axial elongation occurs through cell divisions restricted to the posterior end of the unsegmented region, a cell can obtain its positional information from its physiological age, and therefore cellular oscillators will suffice. Alternatively, if axial elongation occurs through cell divisions distributed throughout the unsegmented region, then positional information can be obtained through another mechanism, such as a morphogen gradient. Two alternative ways to establish a morphogen gradient in tissue with distributed cell divisions are presented--one with diffusion and the other without diffusion. Our model produces segment polarity and a distribution of segment size from the anterior-to-posterior ends, as observed in some systems. Furthermore, the model predicts segment deletions when there is an interruption in cell division, just as seen in heat shock experiments, as well as the growth and final shrinkage of the presomitic mesoderm during somitogenesis.
Collapse
Affiliation(s)
- Rebecca H Chisholm
- Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
66
|
Janssen R, Budd GE, Prpic NM, Damen WG. Expression of myriapod pair rule gene orthologs. EvoDevo 2011; 2:5. [PMID: 21352542 PMCID: PMC3058060 DOI: 10.1186/2041-9139-2-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-752 36 Uppsala, Sweden.
| | | | | | | |
Collapse
|
67
|
Abstract
Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
68
|
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic NM, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 2010; 10:374. [PMID: 21122121 PMCID: PMC3003278 DOI: 10.1186/1471-2148-10-374] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
Background The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated expression of these genes in the beetle Tribolium castaneum. Results We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated patterns and in the segment addition zone, and while these patterns can be relatively conserved among arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in annelids and arthropods respectively. Conclusions Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches, most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues rather than functional redundancy. The activity of such Wnt 'landscapes' as opposed to the function of individual ligands could explain the patterns of conservation and redeployment of these genes in important developmental processes across metazoans. This requires further analysis of the expression and function of these genes in a wider range of taxa.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Murat S, Hopfen C, McGregor AP. The function and evolution of Wnt genes in arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:446-452. [PMID: 20685345 DOI: 10.1016/j.asd.2010.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 05/29/2023]
Abstract
Wnt signalling is required for a wide range of developmental processes, from cleavage to patterning and cell migration. There are 13 subfamilies of Wnt ligand genes and this diverse repertoire appeared very early in metazoan evolution. In this review, we first summarise the known Wnt gene repertoire in various arthropods. Insects appear to have lost several Wnt subfamilies, either generally, such as Wnt3, or in lineage specific patterns, for example, the loss of Wnt7 in Anopheles. In Drosophila and Acyrthosiphon, only seven and six Wnt subfamilies are represented, respectively; however, the finding of nine Wnt genes in Tribolium suggests that arthropods had a larger repertoire ancestrally. We then discuss what is currently known about the expression and developmental function of Wnt ligands in Drosophila and other insects in comparison to other arthropods, such as the spiders Achaearanea and Cupiennius. We conclude that studies of Wnt genes have given us much insight into the developmental roles of some of these ligands. However, given the frequent loss of Wnt genes in insects and the derived development of Drosophila, further studies of these important genes are required in a broader range of arthropods to fully understand their developmental function and evolution.
Collapse
Affiliation(s)
- Sophie Murat
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, Austria
| | | | | |
Collapse
|
70
|
Saenko SV, Brakefield PM, Beldade P. Single locus affects embryonic segment polarity and multiple aspects of an adult evolutionary novelty. BMC Biol 2010; 8:111. [PMID: 20796293 PMCID: PMC2940778 DOI: 10.1186/1741-7007-8-111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022] Open
Abstract
Background The characterization of the molecular changes that underlie the origin and diversification of morphological novelties is a key challenge in evolutionary developmental biology. The evolution of such traits is thought to rely largely on co-option of a toolkit of conserved developmental genes that typically perform multiple functions. Mutations that affect both a universal developmental process and the formation of a novelty might shed light onto the genetics of traits not represented in model systems. Here we describe three pleiotropic mutations with large effects on a novel trait, butterfly eyespots, and on a conserved stage of embryogenesis, segment polarity. Results We show that three mutations affecting eyespot size and/or colour composition in Bicyclus anynana butterflies occurred in the same locus, and that two of them are embryonic recessive lethal. Using surgical manipulations and analysis of gene expression patterns in developing wings, we demonstrate that the effects on eyespot morphology are due to changes in the epidermal response component of eyespot induction. Our analysis of morphology and of gene expression in mutant embryos shows that they have a typical segment polarity phenotype, consistent with the mutant locus encoding a negative regulator of Wingless signalling. Conclusions This study characterizes the segregation and developmental effects of alleles at a single locus that controls the morphology of a lineage-specific trait (butterfly eyespots) and a conserved process (embryonic segment polarity and, specifically, the regulation of Wingless signalling). Because no gene with such function was found in the orthologous, highly syntenic genomic regions of two other lepidopterans, we hypothesize that our locus is a yet undescribed, possibly lineage-specific, negative regulator of the conserved Wnt/Wg pathway. Moreover, the fact that this locus interferes with multiple aspects of eyespot morphology and maps to a genomic region containing key wing pattern loci in different other butterfly species suggests it might correspond to a 'hotspot' locus in the diversification of this novel trait.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | |
Collapse
|
71
|
Abstract
With its recently sequenced genome, the red flour beetle Tribolium castaneum became one of the few model organisms with all the main genetic tools. As a coleoptera, it belongs to the most species-rich order of animals. Tribolium is also a worldwide pest for stored dried foods. Regarding developmental biology, Tribolium offers a complementary model to the highly derived Drosophila. For example, the function of many gap and pair-rule segmentation genes is different in both species. These differences reveal the evolutionary plasticity between two modes of development, with a long germ band in fly and a short one in Tribolium. This beetle allowed the identification of a new type of ecdysone receptor for holometabolous insects. Finally, in the search for the juvenile hormone receptor, a crucial result was obtained with experiments that could be performed only with Tribolium, and not with Drosophila. Tribolium, in association with Drosophila, should help to understand the general rules of development in insects.
Collapse
Affiliation(s)
- François Bonneton
- Université de Lyon, Université Lyon 1, ENS de Lyon, IGFL, CNRS UMR 5242, INRA UMR1237, 46, allée d'Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
72
|
The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). Dev Genes Evol 2010; 220:11-24. [DOI: 10.1007/s00427-010-0324-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/23/2010] [Indexed: 01/22/2023]
|
73
|
Salazar-Ciudad I. Morphological evolution and embryonic developmental diversity in metazoa. Development 2010; 137:531-9. [PMID: 20110318 DOI: 10.1242/dev.045229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most studies of pattern formation and morphogenesis in metazoans focus on a small number of model species, despite the fact that information about a wide range of species and developmental stages has accumulated in recent years. By contrast, this article attempts to use this broad knowledge base to arrive at a classification of developmental types through which metazoan body plans are generated. This classification scheme pays particular attention to the diverse ways by which cell signalling and morphogenetic movements depend on each other, and leads to several testable hypotheses regarding morphological variation within and between species, as well as metazoan evolution.
Collapse
Affiliation(s)
- Isaac Salazar-Ciudad
- Grup de Genòmica, Bioinformàtica i Evolució, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain.
| |
Collapse
|
74
|
Goering LM, Hunt PK, Heighington C, Busick C, Pennings PS, Hermisson J, Kumar S, Gibson G. Association of orthodenticle with natural variation for early embryonic patterning in Drosophila melanogaster. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:841-54. [PMID: 19488993 DOI: 10.1002/jez.b.21299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although it is well established that cis-acting regulatory variation contributes to morphological evolution between species, few concrete examples of polymorphism affecting developmental patterning within species have been demonstrated. Early embryogenesis in Drosophila is initiated by a gradient of Bicoid morphogen activity that results in differential expression of multiple target genes. In a screen for genetic variation affecting this process, we surveyed 96 wild-type lines of Drosophila melanogaster for polymorphisms in binding sites within 16 Bicoid cis-regulatory response elements. One common polymorphism in the orthodenticle (otd) early head enhancer is associated with a complex series of indels/substitutions that define two distinct haplotypes. The middle region of this enhancer exhibits an unusual pattern of nucleotide diversity that does not easily fit into standard models of selection and demography. Population Gene Expression Maps, generated by extracting binary expression profiles from normalized embryo images, revealed a ventral reduction of otd transcript abundance in one of the haplotypes that was recapitulated in expression of transgenic constructs containing the two alleles. We thus demonstrate that even a process as robust as early developmental patterning is affected by standing genetic variation, intriguingly involving otd, whose morphogenetic function bicoid is thought to have displaced during dipteran evolution.
Collapse
Affiliation(s)
- Lisa M Goering
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Fischer AHL, Arboleda E, Egger B, Hilbrant M, McGregor AP, Cole AG, Daley AC. ZOONET: perspectives on the evolution of animal form. Meeting report. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:679-85. [PMID: 19405098 DOI: 10.1002/jez.b.21294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
What drives evolution? This was one of the main questions raised at the final ZOONET meeting in Budapest, Hungary, in November 2008. The meeting marked the conclusion of ZOONET, an EU-funded Marie-Curie Research Training Network comprising nine research groups from all over Europe (Max Telford, University College London; Michael Akam, University of Cambridge; Detlev Arendt, EMBL Heidelberg; Maria Ina Arnone, Stazione Zoologica Anton Dohrn Napoli; Michalis Averof, IMBB Heraklion; Graham Budd, Uppsala University; Richard Copley, University of Oxford; Wim Damen, University of Cologne; Ernst Wimmer, University of Göttingen). ZOONET meetings and practical courses held during the past four years provided researchers from diverse backgrounds--bioinformatics, phylogenetics, embryology, palaeontology, and developmental and molecular biology--the opportunity to discuss their work under a common umbrella of evolutionary developmental biology (Evo Devo). The Budapest meeting emphasized in-depth discussions of the key concepts defining Evo Devo, and bringing together ZOONET researchers with external speakers who were invited to present their views on the evolution of animal form. The discussion sessions addressed four main topics: the driving forces of evolution, segmentation, fossils and phylogeny, and the future of Evo Devo.
Collapse
Affiliation(s)
- Antje H L Fischer
- European Molecular Biology Laboratory, Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
77
|
Eivers E, Demagny H, De Robertis EM. Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila Mad. Cytokine Growth Factor Rev 2009; 20:357-65. [PMID: 19896409 PMCID: PMC2810204 DOI: 10.1016/j.cytogfr.2009.10.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BMPs pattern the dorsal-ventral axis of vertebrate embryos. Smad1/5/8 transduces the BMP signal, and receives phosphorylation inputs from both MAPK and GSK3. Phosphorylation of Smad1 by MAPK and GSK3 result in its polyubiquitination and transport to the centrosome where it is degraded by the proteasome. These linker phosphorylations inhibit BMP/Smad1signaling by shortening its duration. Wnt, which negatively regulates GSK3 activity, prolongs the BMP/Smad1 signal. Remarkably, linker-phosphorylated Smad1 has been shown to be inherited asymmetrically during cell division. Drosophila contains a single Smad1/5/8 homologue, Mad, and is stabilized by phosphorylation-resistant mutations at GSK3 sites, causing Wingless-like effects. We summarize here the significance of linker-phosphorylated Smad1/Mad in relation to signal intensity and duration, and how this integrates the Wnt and BMP pathways during cell differentiation.
Collapse
Affiliation(s)
- Edward Eivers
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, United States.
| | | | | |
Collapse
|
78
|
Mayer G, Whitington PM. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 2009; 335:263-75. [PMID: 19683520 DOI: 10.1016/j.ydbio.2009.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/02/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran "ventral organs," previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda+Onychophora+Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.
Collapse
Affiliation(s)
- Georg Mayer
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
79
|
Eivers E, Fuentealba LC, Sander V, Clemens JC, Hartnett L, De Robertis EM. Mad is required for wingless signaling in wing development and segment patterning in Drosophila. PLoS One 2009; 4:e6543. [PMID: 19657393 PMCID: PMC2717371 DOI: 10.1371/journal.pone.0006543] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/04/2009] [Indexed: 11/18/2022] Open
Abstract
A key question in developmental biology is how growth factor signals are integrated to generate pattern. In this study we investigated the integration of the Drosophila BMP and Wingless/GSK3 signaling pathways via phosphorylations of the transcription factor Mad. Wingless was found to regulate the phosphorylation of Mad by GSK3 in vivo. In epistatic experiments, the effects of Wingless on wing disc molecular markers (senseless, distalless and vestigial) were suppressed by depletion of Mad with RNAi. Wingless overexpression phenotypes, such as formation of ectopic wing margins, were induced by Mad GSK3 phosphorylation-resistant mutant protein. Unexpectedly, we found that Mad phosphorylation by GSK3 and MAPK occurred in segmental patterns. Mad depletion or overexpression produced Wingless-like embryonic segmentation phenotypes. In Xenopus embryos, segmental border formation was disrupted by Smad8 depletion. The results show that Mad is required for Wingless signaling and for the integration of gradients of positional information.
Collapse
Affiliation(s)
- Edward Eivers
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Luis C. Fuentealba
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Veronika Sander
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - James C. Clemens
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lori Hartnett
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - E. M. De Robertis
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
80
|
Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WG. hunchback Functions as a Segmentation Gene in the Spider Achaearanea tepidariorum. Curr Biol 2009; 19:1333-40. [DOI: 10.1016/j.cub.2009.06.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/18/2009] [Accepted: 06/19/2009] [Indexed: 11/30/2022]
|
81
|
Schulze J, Schierenberg E. Embryogenesis of Romanomermis culicivorax: an alternative way to construct a nematode. Dev Biol 2009; 334:10-21. [PMID: 19523940 DOI: 10.1016/j.ydbio.2009.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 11/17/2022]
Abstract
The current picture of embryonic development in nematodes is essentially shaped by Caenorhabditis elegans and its close relatives. As their pattern of embryogenesis is rather similar, it is often considered to be representative for the taxon Nematoda as a whole. Here we give for the first time a comprehensive description of embryonic development in an ancestrally diverged nematode. Romanomermis culicivorax differs strikingly from C. elegans with respect to cell division pattern, spatial arrangement of blastomeres and tissue formation. Our study reveals a number of unexpected phenomena. These include (i) unique polar interphase microtubule caps forming in early blastomeres destined to undergo asymmetric cleavages, suggesting the presence of a so far undescribed MTOC; (ii) embryonic cell lineages of reduced complexity with predominantly monoclonal sublineages, generating just a single tissue type; (iii) construction of major parts of the body from duplicating building blocks consisting of rings of cells, a pattern showing some resemblance to segmentation; (iv) prominent differences in cell fate assignment which can be best explained with a global shift affecting all somatic founder cells. In summary, our data indicate that during nematode evolution massive alterations in the developmental program took place of how to generate a juvenile.
Collapse
Affiliation(s)
- Jens Schulze
- Zoological Institute, University of Cologne, 50923 Köln, Germany
| | | |
Collapse
|
82
|
Affiliation(s)
- Giuseppe Fusco
- Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
83
|
Choe CP, Brown SJ. Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 2009; 325:482-91. [DOI: 10.1016/j.ydbio.2008.10.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/18/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
|
84
|
Morelli LG, Ares S, Herrgen L, Schröter C, Jülicher F, Oates AC. Delayed coupling theory of vertebrate segmentation. HFSP JOURNAL 2008; 3:55-66. [PMID: 19492022 DOI: 10.2976/1.3027088] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Indexed: 11/19/2022]
Abstract
Rhythmic and sequential subdivision of the elongating vertebrate embryonic body axis into morphological somites is controlled by an oscillating multicellular genetic network termed the segmentation clock. This clock operates in the presomitic mesoderm (PSM), generating dynamic stripe patterns of oscillatory gene-expression across the field of PSM cells. How these spatial patterns, the clock's collective period, and the underlying cellular-level interactions are related is not understood. A theory encompassing temporal and spatial domains of local and collective aspects of the system is essential to tackle these questions. Our delayed coupling theory achieves this by representing the PSM as an array of phase oscillators, combining four key elements: a frequency profile of oscillators slowing across the PSM; coupling between neighboring oscillators; delay in coupling; and a moving boundary describing embryonic axis elongation. This theory predicts that the segmentation clock's collective period depends on delayed coupling. We derive an expression for pattern wavelength across the PSM and show how this can be used to fit dynamic wildtype gene-expression patterns, revealing the quantitative values of parameters controlling spatial and temporal organization of the oscillators in the system. Our theory can be used to analyze experimental perturbations, thereby identifying roles of genes involved in segmentation.
Collapse
|
85
|
|
86
|
|
87
|
Prpic NM. Parasegmental appendage allocation in annelids and arthropods and the homology of parapodia and arthropodia. Front Zool 2008; 5:17. [PMID: 18937853 PMCID: PMC2576247 DOI: 10.1186/1742-9994-5-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 10/20/2008] [Indexed: 11/30/2022] Open
Abstract
The new animal phylogeny disrupts the traditional taxon Articulata (uniting arthropods and annelids) and thus calls into question the homology of the body segments and appendages in the two groups. Recent work in the annelid Platynereis dumerilii has shown that although the set of genes involved in body segmentation is similar in the two groups, the body units of annelids correspond to arthropod parasegments not segments. This challenges traditional ideas about the homology of "segmental" organs in annelids and arthropods, including their appendages. Here I use the expression of engrailed, wingless and Distal-less in the arthropod Artemia franciscana to identify the parasegment boundary and the appendage primordia. I show that the early body organization including the appendage primordia is parasegmental and thus identical to the annelid organization and by deriving the different adult appendages from a common ground plan I suggest that annelid and arthropod appendages are homologous structures despite their different positions in the adult animals. This also has implications for the new animal phylogeny, because it suggests that Urprotostomia was not only parasegmented but also had parasegmental appendages similar to extant annelids, and that limb-less forms in the Protostomia are derived from limb-bearing forms.
Collapse
Affiliation(s)
- Nikola-Michael Prpic
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach Institut für Zoologie und Anthropologie, Abteilung für Entwicklungsbiologie, GZMB Ernst Caspari Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
88
|
Liu W, Yang F, Jia S, Miao X, Huang Y. Cloning and characterization of Bmrunt from the silkworm Bombyx mori during embryonic development. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:47-59. [PMID: 18615617 DOI: 10.1002/arch.20261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pair-rule genes (genes that are expressed only in alternate segments, odd or even) play an important role in translating the broad gradients of upstream genes into dual segment periodicity for body plan patterning in Drosophila. However, homologues of pair-rule genes show a remarkable diversity of expression patterns and functions in other insects. We cloned the homologue of runt in the silkworm Bombyx mori, an intermediate germband-type insect. Whole-mount in situ hybridization revealed three stripes arose one by one before gastrulation at the blastoderm stage. Five additional stripes were then generated sequentially as the growth zone elongated. Eight stripes appeared in a pair-rule manner with two-segment periodicity, each of which was confined to the posterior of an odd-numbered parasegment. The weaker segmental secondary stripes emerged de novo in even-numbered parasegments. The Bmrunt transcript vanished before blastokinesis and was then expressed again in the whole embryo. RNA interference for Bmrunt caused severely truncated, almost completely asegmental defects. This cadual-like phenotype suggests that Bmrunt does not function as a pair-rule gene in silkworm segmentation. Bmrunt is required for formation of most body segments and axis elongation in B. mori.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
89
|
Telford MJ, Bourlat SJ, Economou A, Papillon D, Rota-Stabelli O. The evolution of the Ecdysozoa. Philos Trans R Soc Lond B Biol Sci 2008; 363:1529-37. [PMID: 18192181 DOI: 10.1098/rstb.2007.2243] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum.
Collapse
|
90
|
Saenko SV, French V, Brakefield PM, Beldade P. Conserved developmental processes and the formation of evolutionary novelties: examples from butterfly wings. Philos Trans R Soc Lond B Biol Sci 2008; 363:1549-55. [PMID: 18192179 DOI: 10.1098/rstb.2007.2245] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The origin and diversification of evolutionary novelties-lineage-specific traits of new adaptive value-is one of the key issues in evolutionary developmental biology. However, comparative analysis of the genetic and developmental bases of such traits can be difficult when they have no obvious homologue in model organisms. The finding that the evolution of morphological novelties often involves the recruitment of pre-existing genes and/or gene networks offers the potential to overcome this challenge. Knowledge about shared developmental processes obtained from extensive studies in model organisms can then be used to understand the origin and diversification of lineage-specific structures. Here, we illustrate this approach in relation to eyespots on the wings of Bicyclus anynana butterflies. A number of spontaneous mutations isolated in the laboratory affect eyespots, lepidopteran-specific features, and also processes that are shared by most insects. We discuss how eyespot mutants with disturbed embryonic development may help elucidate the genetic pathways involved in eyespot formation, and how venation mutants with altered eyespot patterns might shed light on mechanisms of eyespot development.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Institute of Biology, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The Netherlands.
| | | | | | | |
Collapse
|
91
|
Abstract
One of the major goals in evolutionary developmental biology is to understand the relationship between gene regulatory networks and the diverse morphologies and their functionalities. Are the diversities solely triggered by random events, or are they inevitable outcomes of an interplay between evolving gene networks and natural selection? Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Moreover, a combination of both is found in intermediate germ-band development. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs) and negative Feed-Back Loops (FBLs) respectively, and those of intermediate germ-band development are determined by the interconnections between FFL and negative FBL. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted. Our results suggest that the emergence of the three modes of body segmentation in arthropods is an inherent property of the evolving networks.
Collapse
Affiliation(s)
- Koichi Fujimoto
- ERATO Complex Systems Biology Project, Japan Science and Technology Agency, Tokyo, Japan.
| | | | | |
Collapse
|
92
|
Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 2008; 218:361-70. [DOI: 10.1007/s00427-008-0231-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
|
93
|
Thamm K, Seaver EC. Notch signaling during larval and juvenile development in the polychaete annelid Capitella sp. I. Dev Biol 2008; 320:304-18. [PMID: 18511030 DOI: 10.1016/j.ydbio.2008.04.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 02/25/2008] [Accepted: 04/06/2008] [Indexed: 02/02/2023]
Abstract
Notch signaling is involved in a large range of developmental processes, and has been functionally implicated in body plan segmentation in two of the three diverse segmented taxa, the vertebrates and arthropods. Here we investigate expression of Notch, Delta, and hes gene homologues during larval and juvenile development in the polychaete annelid Capitella sp. I., a member of the third group of segmented animals. During larval stages, CapI-Notch, CapI-Delta, CapI-hes2, and CapI-hes3 transcripts are initially detected in broad ectodermal domains in future segments as well as in the brain and foregut; later, CapI-Notch, CapI-Delta, and CapI-hes2 transcripts are detected in the presumptive chaetal sacs. In contrast, CapI-hes1 has a segmentally reiterated pattern in a restricted region of the mesoderm in each presumptive segment. CapI-Notch, CapI-Delta, CapI-hes2, and CapI-hes3 and CapI-hes1 are all expressed in the terminal growth zone that generates post-metamorphic segments, however, CapI-hes1 has a non-overlapping complementary expression pattern to that of CapI-Notch and CapI-Delta. CapI-Delta and CapI-Notch transcripts are localized to already formed segments, with posterior boundaries that correlate with the posterior boundary of the nascent segment, while CapI-hes1 lies posterior to CapI-Notch and CapI-Delta. The localization of CapI-Notch, CapI-Delta, and CapI-hes transcripts correlate with areas of rapid cell proliferation in Capitella, which include the brain, foregut, and terminal growth zone.
Collapse
Affiliation(s)
- Katrin Thamm
- Kewalo Marine Lab, PBRC/University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA.
| | | |
Collapse
|
94
|
Newman SA, Bhat R. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys Biol 2008; 5:015008. [PMID: 18403826 DOI: 10.1088/1478-3975/5/1/015008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The shapes and forms of multicellular organisms arise by the generation of new cell states and types and changes in the numbers and rearrangements of the various kinds of cells. While morphogenesis and pattern formation in all animal species are widely recognized to be mediated by the gene products of an evolutionarily conserved 'developmental-genetic toolkit', the link between these molecular players and the physics underlying these processes has been generally ignored. This paper introduces the concept of 'dynamical patterning modules' (DPMs), units consisting of one or more products of the 'toolkit' genes that mobilize physical processes characteristic of chemically and mechanically excitable meso- to macroscopic systems such as cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on lateral inhibition and multistable and oscillatory dynamics. We suggest that ancient toolkit gene products, most predating the emergence of multicellularity, assumed novel morphogenetic functions due to change in the scale and context inherent to multicellularity. We show that DPMs, acting individually and in concert with each other, constitute a 'pattern language' capable of generating all metazoan body plans and organ forms. The physical dimension of developmental causation implies that multicellular forms during the explosive radiation of animal body plans in the middle Cambrian, approximately 530 million years ago, could have explored an extensive morphospace without concomitant genotypic change or selection for adaptation. The morphologically plastic body plans and organ forms generated by DPMs, and their ontogenetic trajectories, would subsequently have been stabilized and consolidated by natural selection and genetic drift. This perspective also solves the apparent 'molecular homology-analogy paradox', whereby widely divergent modern animal types utilize the same molecular toolkit during development by proposing, in contrast to the Neo-Darwinian principle, that phenotypic disparity early in evolution occurred in advance of, rather than closely tracked, genotypic change.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
95
|
Hedgehog signaling pathway function conserved in Tribolium segmentation. Dev Genes Evol 2008; 218:181-92. [PMID: 18392879 PMCID: PMC2292471 DOI: 10.1007/s00427-008-0207-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/22/2008] [Indexed: 01/28/2023]
Abstract
In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect.
Collapse
|
96
|
Abstract
Most animals evolved from a common ancestor, Urbilateria, which already had in place the developmental genetic networks for shaping body plans. Comparative genomics has revealed rather unexpectedly that many of the genes present in bilaterian animal ancestors were lost by individual phyla during evolution. Reconstruction of the archetypal developmental genomic tool-kit present in Urbilateria will help to elucidate the contribution of gene loss and developmental constraints to the evolution of animal body plans.
Collapse
Affiliation(s)
- E M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
97
|
Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol 2008; 317:430-43. [PMID: 18343360 DOI: 10.1016/j.ydbio.2008.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 01/31/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.
Collapse
Affiliation(s)
- Alexandra Saudemont
- Centre de Génétique Moléculaire, CNRS UPR 2167, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
98
|
McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic NM, Damen WG. Cupiennius salei andAchaearanea tepidariorum: Spider models for investigating evolution and development. Bioessays 2008; 30:487-98. [DOI: 10.1002/bies.20744] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|