51
|
Archambeault DR, Tomaszewski J, Childs AJ, Anderson RA, Yao HHC. Testicular somatic cells, not gonocytes, are the major source of functional activin A during testis morphogenesis. Endocrinology 2011; 152:4358-67. [PMID: 21952240 PMCID: PMC3199008 DOI: 10.1210/en.2011-1288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proper development of the seminiferous tubules (or testis cords in embryos) is critical for male fertility. Sertoli cells, somatic components of the seminiferous tubules, serve as nurse cells to the male germline, and thus their numbers decide the quantity of sperm output in adulthood. We previously identified activin A, the protein product of the activin βA (Inhba) gene, as a key regulator of murine Sertoli cell proliferation and testis cord expansion during embryogenesis. Although our genetic studies implicated fetal Leydig cells as the primary producers of testicular activin A, gonocytes are another potential source. To investigate the relative contribution of gonocyte-derived activin A to testis morphogenesis, we compared testis development in the Inhba global knockout mouse, which lacks activin A production in all cells (including the gonocytes), and a steroidogenic factor 1 (Sf1)-specific conditional knockout model in which activin A expression in testicular somatic cells is disrupted but gonocyte expression of activin A remains intact. Surprisingly, testis development was comparable in these two models of activin A insufficiency, with similar reductions in Sertoli cell proliferation and minor differences in testis histology. Thus, our findings suggest activin A from male gonocytes is insufficient to promote Sertoli cell proliferation and testis cord expansion in the absence of somatic cell-derived activin A. Evaluation of adult male mice with fetal disruption of activin A revealed reduced testis size, lowered sperm production, altered testicular histology, and elevated plasma FSH levels, defects reminiscent of human cases of androgen-sufficient idiopathic oligozoospermia.
Collapse
Affiliation(s)
- Denise R Archambeault
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
52
|
Shioi G, Kiyonari H, Abe T, Nakao K, Fujimori T, Jang CW, Huang CC, Akiyama H, Behringer RR, Aizawa S. A mouse reporter line to conditionally mark nuclei and cell membranes for in vivo live-imaging. Genesis 2011; 49:570-8. [PMID: 21504045 DOI: 10.1002/dvg.20758] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 03/15/2011] [Accepted: 04/11/2011] [Indexed: 11/12/2022]
Abstract
Live-imaging is an essential tool to visualize live cells and monitor their behaviors during development. This technology demands a variety of mouse reporter lines, each uniquely expressing a fluorescent protein. Here, we developed an R26R-RG reporter mouse line that conditionally and simultaneously expresses mCherry and EGFP in nuclei and plasma membranes, respectively, from the Rosa26 locus. The intensity and resolution of mCherry nuclear localization and EGFP membrane localization were demonstrated to be sufficient for live-imaging with embryos that express RG (mCherry and EGFP) ubiquitously and specifically in fetal Sertoli cells. The conditional R26R-RG reporter mouse line should be a useful tool for labeling nuclei and membranes simultaneously in distinct cell populations.
Collapse
Affiliation(s)
- Go Shioi
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev Biol 2011; 353:229-41. [PMID: 21385577 DOI: 10.1016/j.ydbio.2011.02.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 12/19/2022]
Abstract
Assembly of functioning testis and ovary requires a GATA4-FOG2 transcriptional complex. To define the separate roles for GATA4 and FOG2 proteins in sexual development of the testis we have ablated the corresponding genes in somatic gonadal cells. We have established that GATA4 is required for testis differentiation, for the expression of Dmrt1 gene, and for testis cord morphogenesis. While Sf1Cre-mediated excision of Gata4 permitted normal expression of most genes associated with embryonic testis development, gonadal loss of Fog2 resulted in an early partial block in male pathway and sex reversal. We have also determined that testis sexual differentiation is sensitive to the timing of GATA4 loss during embryogenesis. Our results now demonstrate that these two genes also have non-overlapping essential functions in testis development.
Collapse
|
54
|
Amano K, Hata K, Muramatsu S, Wakabayashi M, Takigawa Y, Ono K, Nakanishi M, Takashima R, Kogo M, Matsuda A, Nishimura R, Yoneda T. Arid5a cooperates with Sox9 to stimulate chondrocyte-specific transcription. Mol Biol Cell 2011; 22:1300-11. [PMID: 21346191 PMCID: PMC3078073 DOI: 10.1091/mbc.e10-07-0566] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SRY-box-containing gene 9 (Sox9) is an essential transcription factor in chondrocyte lineage determination and differentiation. Recent studies demonstrated that Sox9 controls the transcription of chondrocyte-specific genes in association with several other transcriptional regulators. To further understand the molecular mechanisms by which Sox9 influences transcriptional events during chondrocyte differentiation, we attempted to identify transcriptional partners of Sox9 and to examine their roles in chondrocyte differentiation. We isolated AT-rich interactive domain-containing protein 5a (Arid5a; also known as Mrf1) as an activator of the Col2a1 gene promoter from an ATDC5 cDNA library. Arid5a was highly expressed in cartilage and induced during chondrocyte differentiation. Furthermore, Arid5a physically interacted with Sox9 in nuclei and up-regulated the chondrocyte-specific action of Sox9. Overexpression of Arid5a stimulated chondrocyte differentiation in vitro and in an organ culture system. In contrast, Arid5a knockdown inhibited Col2a1 expression in chondrocytes. In addition, Arid5a binds directly to the promoter region of the Col2a1 gene and stimulates acetylation of histone 3 in the region. Our results suggest that Arid5a may directly interact with Sox9 and thereby enhance its chondrocyte-specific action.
Collapse
Affiliation(s)
- Katsuhiko Amano
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2010; 43:34-41. [PMID: 21113154 DOI: 10.1038/ng.722] [Citation(s) in RCA: 641] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/03/2010] [Indexed: 02/06/2023]
Abstract
The liver and exocrine pancreas share a common structure, with functioning units (hepatic plates and pancreatic acini) connected to the ductal tree. Here we show that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone. Cre-based lineage tracing showed that adult intestinal cells, hepatocytes and pancreatic acinar cells are supplied physiologically from Sox9-expressing progenitors. Combination of lineage analysis and hepatic injury experiments showed involvement of Sox9-positive precursors in liver regeneration. Embryonic pancreatic Sox9-expressing cells differentiate into all types of mature cells, but their capacity for endocrine differentiation diminishes shortly after birth, when endocrine cells detach from the epithelial lining of the ducts and form the islets of Langerhans. We observed a developmental switch in the hepatic progenitor cell type from Sox9-negative to Sox9-positive progenitors as the biliary tree develops. These results suggest interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.
Collapse
Affiliation(s)
- Kenichiro Furuyama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kumar TR. The "Glow"rious Sertoli and germ cells: mouse testis development visualized in multi-colors. Biol Reprod 2010; 84:201-4. [PMID: 20962250 DOI: 10.1095/biolreprod.110.088856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
57
|
Gregoire EP, Lavery R, Chassot AA, Akiyama H, Treier M, Behringer RR, Chaboissier MC. Transient development of ovotestes in XX Sox9 transgenic mice. Dev Biol 2010; 349:65-77. [PMID: 20965161 DOI: 10.1016/j.ydbio.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/16/2010] [Accepted: 10/05/2010] [Indexed: 12/20/2022]
Abstract
The sex of an individual results from the paternal transmission of the SRY gene located on the Y chromosome. In turn, SRY initiates Sox9 expression, a transcription factor required for testicular differentiation. Ectopic activation of SOX9 in XX Wt1:Sox9 transgenic mice induces female-to-male sex reversal in adult mice. Here we show that complete sex reversal is preceded by a transient phase of ovotestis differentiation with XX Wt1:Sox9 transgenic gonads containing a testicular central region and one or both ovarian poles indicating that Wt1:Sox9 is not as efficient as Sry to induce male development. In XX Wt1:Sox9(Tg/+) gonads, transgenic Sox9 is expressed earlier than Sox9 in XY gonads and is able to induce the expression of EGFP, knocked into the 3' UTR of Sox9 indicating that SOX9 is involved in the initiation and maintenance of its own expression. However, the delayed onset of expression of endogenous Sox9-EGFP suggests that this activation requires other factors, whose expression depends on SOX9. In the testicular regions of the XX Wt1:Sox9 ovotestes, proliferation of the XX fetal germ cells is hampered and they differentiate as pro-spermatogonia. This indicates that XX germ cells are not competent to respond to proliferative signals released from a testicular environment. In the ovarian regions, despite the continuous mRNA expression of the WT1:Sox9 transgene, the SOX9 protein does not accumulate suggesting that regulation of this gene in ovarian cells involves post-transcriptional mechanisms. Finally, ovarian cells of the XX Wt1:Sox9 ovotestis undergo apoptosis during late embryogenesis leading to complete female-to-male sex reversal of the transgenic mice at birth.
Collapse
|
58
|
Nel-Themaat L, Jang CW, Stewart MD, Akiyama H, Viger RS, Behringer RR. Sertoli cell behaviors in developing testis cords and postnatal seminiferous tubules of the mouse. Biol Reprod 2010; 84:342-50. [PMID: 20944081 DOI: 10.1095/biolreprod.110.086900] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.
Collapse
Affiliation(s)
- Liesl Nel-Themaat
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77005, USA
| | | | | | | | | | | |
Collapse
|
59
|
Activin A, a product of fetal Leydig cells, is a unique paracrine regulator of Sertoli cell proliferation and fetal testis cord expansion. Proc Natl Acad Sci U S A 2010; 107:10526-31. [PMID: 20498064 DOI: 10.1073/pnas.1000318107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Formation of tubular structures relies upon complex interactions between adjacent epithelium and mesenchyme. In the embryonic testes, dramatic compartmentalization leads to the formation of testis cords (epithelium) and the surrounding interstitium (mesenchyme). Sertoli cells, the epithelial cell type within testis cords, produce signaling molecules to orchestrate testis cord formation. The interstitial fetal Leydig cells, however, are thought only to masculinize the embryo and are not known to be involved in testis cord morphogenesis. Contrary to this notion, we have identified activin A, a member of the TGF-beta protein superfamily, as a product of the murine fetal Leydig cells that acts directly upon Sertoli cells to promote their proliferation during late embryogenesis. Genetic disruption of activin betaA, the gene encoding activin A, specifically in fetal Leydig cells resulted in a failure of fetal testis cord elongation and expansion due to decreased Sertoli cell proliferation. Conditional inactivation of Smad4, the central component of TGF-beta signaling, in Sertoli cells led to testis cord dysgenesis and proliferative defects similar to those of Leydig cell-specific activin betaA knockout testes. These results indicate that activin A is the major TGF-beta protein that acts directly on Sertoli cells. Testicular dysgenesis in activin betaA and Smad4 conditional knockout embryos persists into adulthood, leading to low sperm production and abnormal testicular histology. Our findings challenge the paradigm that fetal testis development is solely under the control of Sertoli cells, by uncovering an active and essential role of fetal Leydig cells during testis cord morphogenesis.
Collapse
|
60
|
Abstract
For the past three decades, methods for culturing mouse embryos ex vivo have been optimized in order to improve embryo viability and physiology throughout critical stages of embryogenesis. Combining advances made in the production of transgenic animals and in the development of different varieties of fluorescent proteins (FPs), time-lapse imaging is becoming more and more popular in the analysis of dynamic events during mouse development. Targeting FPs to specific cell types or subcellular compartments has enabled researchers to study cell proliferation, apoptosis, migration, and changes in cell morphology in living mouse embryos in real time. Here we provide a guide for time-lapse imaging of early stages of mouse embryo development.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
61
|
Nalam RL, Andreu-Vieyra C, Braun RE, Akiyama H, Matzuk MM. Retinoblastoma protein plays multiple essential roles in the terminal differentiation of Sertoli cells. Mol Endocrinol 2009; 23:1900-13. [PMID: 19819985 DOI: 10.1210/me.2009-0184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma protein (RB) plays crucial roles in cell cycle control and cellular differentiation. Specifically, RB impairs the G(1) to S phase transition by acting as a repressor of the E2F family of transcriptional activators while also contributing towards terminal differentiation by modulating the activity of tissue-specific transcription factors. To examine the role of RB in Sertoli cells, the androgen-dependent somatic support cell of the testis, we created a Sertoli cell-specific conditional knockout of Rb. Initially, loss of RB has no gross effect on Sertoli cell function because the mice are fertile with normal testis weights at 6 wk of age. However, by 10-14 wk of age, mutant mice demonstrate severe Sertoli cell dysfunction and infertility. We show that mutant mature Sertoli cells continue cycling with defective regulation of multiple E2F1- and androgen-regulated genes and concurrent activation of apoptotic and p53-regulated genes. The most striking defects in mature Sertoli cell function are increased permeability of the blood-testis barrier, impaired tissue remodeling, and defective germ cell-Sertoli cell interactions. Our results demonstrate that RB is essential for proper terminal differentiation of Sertoli cells.
Collapse
Affiliation(s)
- Roopa L Nalam
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|