51
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
52
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
53
|
Watanabe-Asaka T, Sekiya Y, Wada H, Yasuda T, Okubo I, Oda S, Mitani H. Regular heartbeat rhythm at the heartbeat initiation stage is essential for normal cardiogenesis at low temperature. BMC DEVELOPMENTAL BIOLOGY 2014; 14:12. [PMID: 24564206 PMCID: PMC3936829 DOI: 10.1186/1471-213x-14-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/14/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND The development of blood flow in the heart is crucial for heart function and embryonic survival. Recent studies have revealed the importance of the extracellular matrix and the mechanical stress applied to the valve cushion that controls blood flow to the formation of the cardiac valve during embryogenesis. However, the events that trigger such valve formation and mechanical stress, and their temperature dependence have not been explained completely. Medaka (Oryzias latipes) inhabits a wide range of East Asia and adapts to a wide range of climates. We used medaka embryos from different genomic backgrounds and analyzed heartbeat characteristics including back-and-forth blood flow and bradyarrhythmia in embryos incubated at low temperature. We also used high-speed imaging analysis to examine the heartbeat of these animals after transient exposure to low temperature. RESULTS Embryos of the Hd-rR medaka strain exhibited back-and-forth blood flow in the heart (blood regurgitation) after incubation at 15 °C. This regurgitation was induced by exposure to low temperature around the heartbeat initiation period and was related to abnormalities in the maintenance or pattern of contraction of the atrium or the atrioventricular canal. The Odate strain from the northern Japanese group exhibited normal blood flow after incubation at 15 °C. High-speed time-lapse analysis of the heartbeat revealed that bradyarrhythmia occurred only in Hd-rR embryos incubated at 15 °C. The coefficient of contraction, defined as the quotient of the length of the atrium at systole divided by its length at diastole, was not affected in either strain. The average heart rate after removing the effect of arrhythmia did not differ significantly between the two strains, suggesting that the mechanical stress of individual myocardial contractions and the total mechanical stress could be equivalent, regardless of the presence of arrhythmia or the heart rate. Test-cross experiments suggested that this circulation phenotype was caused by a single major genomic locus. CONCLUSIONS These results suggest that cardiogenesis at low temperature requires a constant heartbeat. Abnormal contraction rhythms at the stage of heartbeat initiation may cause regurgitation at later stages. From the evolutionary viewpoint, strains that exhibit normal cardiogenesis during development at low temperature inhabit northern environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
54
|
Sarvazyan N. Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency. J Cardiovasc Pharmacol Ther 2014; 19:394-401. [PMID: 24500906 DOI: 10.1177/1074248413520343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article considers the use of autologous stem cell-derived cardiomyocytes as a novel means to aid venous return. The approach consists of creating external cuffs of engineered heart tissue around vein segments with incompetent or poorly competent valves. The engineered heart tissue cuff prevents distention of the impaired vein segments and aids unidirectional flow by its rhythmic contractions. There appear to be no fundamental limitations to this approach as feasibility of all of the individual components has already been shown. Here, we underline the clinical need for novel ways to treat chronic deep venous insufficiency, review previous research that enabled this approach, consider potential designs of engineered heart tissue cuffs, and outline its advantages and future challenges.
Collapse
Affiliation(s)
- Narine Sarvazyan
- Pharmacology and Physiology Department, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
55
|
Wu TS, Yang JJ, Yu FY, Liu BH. Cardiotoxicity of mycotoxin citrinin and involvement of microRNA-138 in zebrafish embryos. Toxicol Sci 2013; 136:402-12. [PMID: 24052562 DOI: 10.1093/toxsci/kft206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Citrinin (CTN) is a fungal secondary metabolite that contaminates various foodstuffs and animal feeds; it also exhibits organotoxicity in several animal models. In this study, the zebrafish was used to elucidate the mechanism of CTN cardiotoxicity in developing embryos. Following CTN administration, the gross morphology of the embryonic heart was apparently altered, including heart malformation, pericardial edema, and red blood accumulation. Whole-mount immunostaining and histological analysis of ventricle and atrium indicated incorrect heart looping and reduced size of heart chambers. From the perspective of cardiac function, the heartbeat and blood flow rate of embryos were significantly decreased in the presence of CTN. CTN also modulated the expression of tbx2a and jun B genes, but not that of bmp4 and nkx2.5. Furthermore, the heart areas of CTN-exposed embryos demonstrated an elevated levels of aldh1a2 and cspg2 messenger RNA; these 2 cardiac-related genes are known to be involved in retinoic acid (RA) pathway as well as downstream targets of microRNA-138 (miR-138) in zebrafish. CTN treatment also downregulated the expression of miR-138. Moreover, overexpression of miR-138 was able to rescue the heart defects generated by CTN. These results support the notion that CTN exposure has a severe impact on heart development, affecting heart morphogenesis through the dysregulation of miR-138, RA signaling, and tbx2a.
Collapse
|
56
|
Ramasubramanian A, Chu-Lagraff QB, Buma T, Chico KT, Carnes ME, Burnett KR, Bradner SA, Gordon SS. On the role of intrinsic and extrinsic forces in early cardiac S-looping. Dev Dyn 2013; 242:801-16. [PMID: 23553909 DOI: 10.1002/dvdy.23968] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Looping is a crucial phase during heart development when the initially straight heart tube is transformed into a shape that more closely resembles the mature heart. Although the genetic and biochemical pathways of cardiac looping have been well studied, the biophysical mechanisms that actually effect the looping process remain poorly understood. Using a combined experimental (chick embryo) and computational (finite element modeling) approach, we study the forces driving early s-looping when the primitive ventricle moves to its definitive position inferior to the common atrium. RESULTS New results from our study indicate that the primitive heart has no intrinsic ability to form an s-loop and that extrinsic forces are necessary to effect early s-looping. They support previous studies that established an important role for cervical flexure in causing early cardiac s-looping. Our results also show that forces applied by the splanchnopleure cannot be ignored during early s-looping and shed light on the role of cardiac jelly. Using available experimental data and computer modeling, we successfully developed and tested a hypothesis for the force mechanisms driving s-loop formation. CONCLUSIONS Forces external to the primitive heart tube are necessary in the later stages of cardiac looping. Experimental and model results support our proposed hypothesis for forces driving early s-looping.
Collapse
Affiliation(s)
- Ashok Ramasubramanian
- Department of Mechanical Engineering, Union College, Schenectady, New York 12309, USA.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Männer J. On the form problem of embryonic heart loops, its geometrical solutions, and a new biophysical concept of cardiac looping. Ann Anat 2013; 195:312-323. [PMID: 23602789 DOI: 10.1016/j.aanat.2013.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cardiac looping is an essential process in the morphogenesis of embryonic hearts. Unfortunately, relatively little is known about the form and biophysics of embryonic heart loops. Thompson regarded the form of an object as "a 'diagram of forces' … from it we can … deduce the forces that are acting or have acted upon it." Therefore, the present study was conducted to uncover the best geometrical solution of the form problem of embryonic heart loops. This approach may help to identify the biophysics of cardiac looping. RESULTS Analysis of the tendrils of climbing plants disclosed striking resemblance between the configurations of embryonic heart loops and a form motif named helical perversion. Helical perversion occurs in helically wound objects where they connect two helical segments of opposite handedness (two-handed helix). Helical perversion evolves in living and non-living filamentary objects such as the tendrils of climbing plants and helical telephone cords. CONCLUSIONS Helical perversion may be the best geometrical solution of the form problem of embryonic heart loops. The dynamics and mechanics of the emergence of helical perversions are relatively well known. The behavior of looping embryonic hearts may be interpreted in light of this knowledge.
Collapse
Affiliation(s)
- Jörg Männer
- Department of Anatomy and Embryology, Georg-August-University of Göttingen, Germany.
| |
Collapse
|
58
|
The Transitional Cardiac Pumping Mechanics in the Embryonic Heart. Cardiovasc Eng Technol 2013; 4:246-255. [PMID: 29637499 DOI: 10.1007/s13239-013-0120-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Several studies have linked abnormal blood flow dynamics to the formation of congenital heart defects during the early stages of development. The objective of this study is to document the transition of pumping mechanics from the early tube stage to the late looping stage of the embryonic heart. The optically transparent zebrafish embryonic heart was utilized as the in vivo model and was studied using standard bright field microscopy at three relevant stages within the transitional period: (1) tube stage at 30 hours post-fertilization (hpf); (2) early cardiac looping stage at 36 hpf; and (3) late cardiac looping stage at 48 hpf. High-speed videos were collected at 1000 fps at a spatial resolution of 1.1 μm/pixel at each of these stages and were post-processed to yield blood velocity patterns as well as wall kinematics. Results show that several relevant trends exist. Morphological trends from tube through late looping include: (a) ballooning of the chambers, (b) increasing constriction at the atrioventricular junction (AVJ), and (c) repositioning of the ventricle toward the side of the atrium. Blood flow trends include: (a) higher blood velocities, (b) increased AVJ regurgitation, and (c) larger percentages of blood from the upper atrium expelled backward toward the atrial inlet. Pumping mechanics trends include: (a) increasing contraction wave delay at the AVJ, (b) the AVJ begins acting as a rudimentary valve, (c) decreasing chamber constriction during maximum contraction, and (d) a transition in ventricular kinematics from a pronounced propagating wave to an independent, full-chamber contraction. The above results provide new insight into the transitional pumping mechanics from peristalsis-like pumping to a displacement pumping mechanism.
Collapse
|
59
|
Al Naieb S, Happel CM, Yelbuz TM. A detailed atlas of chick heart development in vivo. Ann Anat 2012; 195:324-341. [PMID: 23623231 DOI: 10.1016/j.aanat.2012.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Various model organisms such as mouse, xenopus, or zebrafish embryos have been studied in the past to gain insight into the complex processes driving normal and abnormal development of the vertebrate heart. Despite the fact that the chicken embryo has been a favored classic model system used by embryologists and cardiovascular scientists for centuries to illustrate the principles of basic vertebrate embryology and cardiovascular development, so far, no one has provided a thorough documentation of heart development in this model from early visual stages to the stage of a completely formed heart with (a) images and (b) video recordings of beating hearts. However, in vivo documentation of heart development stages is indispensable because the initially tubular embryonic heart not only undergoes dramatic morphological changes, but also intriguing functional changes during cardiogenesis, which, only if they follow and remain within the normal developmental pathway, lead to the establishment of the normal four-chambered heart. In this work we present the first reference catalogue of cardiac development in vivo with (1) 25 plates of high resolution colour images in different views from Hamburger-Hamilton (HH)-stage 12 (day 2, relatively straight heart tube, early myocardial contractions) through HH-stage 35 (day 9, four-chambered heart) in end-diastole and end-systole, including a plate with an overview of all these stages; (2) collection of 82 video recordings of beating hearts in different views corresponding to the stages shown in the plates.
Collapse
Affiliation(s)
- Sarah Al Naieb
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Christoph M Happel
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - T Mesud Yelbuz
- Department of Pediatric Cardiology and Intensive Care Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
60
|
Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol 2012; 11:1187-204. [PMID: 22760547 DOI: 10.1007/s10237-012-0414-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high-resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming.
Collapse
Affiliation(s)
- Sevan Goenezen
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
61
|
Lencinas A, Tavares ALP, Barnett JV, Runyan RB. Collagen gel analysis of epithelial-mesenchymal transition in the embryo heart: an in vitro model system for the analysis of tissue interaction, signal transduction, and environmental effects. ACTA ACUST UNITED AC 2012; 93:298-311. [PMID: 22271679 DOI: 10.1002/bdrc.20222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular process of epithelial-mesenchymal cell transition (EMT) is a critical event in development that is reiterated in adult pathologies of metastasis and organ fibrosis. An initial understanding of the cellular and molecular events of this process emerged from an in vitro examination of heart valve development. Explants of the chick atrioventricular valve-forming region were placed on collagen gels and removed to show that EMT was regulated by a tissue interaction. Subsequent studies showed that specific TGFβ isoforms and receptors were required and steps of activation and invasion could be distinguished. The assay was modified for mouse hearts and has been used to explore signal transduction and gene expression in both species. The principle advantages of the system are a defined temporal window, when EMT takes place and the ability to isolate cells at various stages of the EMT process. These advantages are largely unavailable in other developmental or adult models. As the mesenchymal cells produced by EMT in the heart are involved in defects found in congenital heart disease, there is also a direct relevance of cardiac EMT to human birth defects. This relationship has been explored in relation to environmental exposures and in a number of genetic models. This review provides both an overview of the findings developed from the assay and protocols to enable the use of the assay by other laboratories. The assay provides a versatile platform to explore roles of specific gene products, drugs, and environmental agents on a critical cellular process.
Collapse
Affiliation(s)
- Alejandro Lencinas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | | | | | | |
Collapse
|
62
|
Jenkins MW, Watanabe M, Rollins AM. Longitudinal Imaging of Heart Development With Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1166-1175. [PMID: 26236147 PMCID: PMC4520323 DOI: 10.1109/jstqe.2011.2166060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1-2mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects.
Collapse
Affiliation(s)
- Michael W. Jenkins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
63
|
Lee SJ, Yeom E, Ha H, Nam KH. Cardiac outflow and wall motion in hypothermic chick embryos. Microvasc Res 2011; 82:296-303. [PMID: 21971263 DOI: 10.1016/j.mvr.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/01/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
Cardiac outflow in the early developmental stage of a chick embryo is known to be highly variable depending on environmental temperature. To investigate the effects of environmental hypothermia on the blood flow in the outflow tract (OFT) of chick embryonic hearts, microscopic flow images were consecutively captured from chick embryos at HH stage 17 (2.5 days of incubation) at room temperature. Instantaneous velocity field information of blood flow in OFT was obtained using a micro-particle image velocimetry technique. The cyclic variations of the OFT vessel diameter and wall thickness were simultaneously measured. The experimental results show that environmental hypothermia causes bradycardia with a decrease in peak velocity during systole and the occurrence of backflow during diastole in the OFT. These abnormal phenomena seem to be attributed to the suppression of myocardial wall motion under hypothermic conditions.
Collapse
Affiliation(s)
- Sang-Joon Lee
- Center for Biofluid and Biomimic Research, Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.
| | | | | | | |
Collapse
|