51
|
Dexamethasone-induced apoptotic mechanisms in myeloma cells investigated by analysis of mutant glucocorticoid receptors. Blood 2008; 112:1338-45. [PMID: 18515658 DOI: 10.1182/blood-2007-11-124156] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which the glucocorticoid (GC) dexamethasone induces apoptosis in multiple myeloma (MM) cells is unknown, although previous work suggests that either transactivation through the glucocorticoid response element (GRE), transrepression of NF-kappaB, phosphorylation of RAFTK (Pyk2), or induction of Bim is important. We studied this question by ectopically expressing mutant glucocorticoid receptors (GRs) in the dexamethasone-resistant MM1R cell line, which has lost its GR. Lentiviral-mediated reexpression of wild-type GR restored GRE transactivation, NF-kappaB transrepression, RAFTK phosphorylation, Bim induction, and dexamethasone-induced apoptosis. We then reexpressed 4 GR mutants, each possessing various molecular effects, into MM1R cells. A perfect correlation was present between induction of GRE transactivation and induction of apoptosis. In contrast, NF-kappaB transrepression and RAFTK phosphorylation were not required for apoptosis. Although not required for dexamethasone-mediated apoptosis, NF-kappaB inhibition achieved by gene transfer suggested that NF-kappaB transrepression could contribute to apoptosis in dexamethasone-treated cells. Dexamethasone treatment of MM1R cells expressing a mutant incapable of inducing apoptosis successfully resulted in RAFTK (Pyk2) phosphorylation and Bim induction indicating the latter GR-mediated events were not sufficient to induce apoptosis. MM1R cells expressing mutant GRs will be helpful in defining the molecular mechanisms of dexamethasone-induced apoptosis of myeloma cells.
Collapse
|
52
|
Suvannasankha A, Crean CD, Shanmugam R, Farag SS, Abonour R, Boswell HS, Nakshatri H. Antimyeloma effects of a sesquiterpene lactone parthenolide. Clin Cancer Res 2008; 14:1814-22. [PMID: 18347184 DOI: 10.1158/1078-0432.ccr-07-1359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Nuclear factor-kappaB (NF-kappaB), activated in multiple myeloma (MM) cells by microenvironmental cues, confers resistance to apoptosis. The sesquiterpene lactone parthenolide targets NF-kappaB. However, its therapeutic potential in MM is not known. EXPERIMENTAL DESIGNS We explored the effects of parthenolide on MM cells in the context of the bone marrow microenvironment. RESULTS Parthenolide inhibited growth of MM cells lines, including drug-resistant cell lines, and primary cells in a dose-dependent manner. Parthenolide overcame the proliferative effects of cytokines interleukin-6 and insulin-like growth factor I, whereas the adhesion of MM cells to bone marrow stromal cells partially protected MM cells against parthenolide effect. In addition, parthenolide blocked interleukin-6 secretion from bone marrow stromal cells triggered by the adhesion of MM cells. Parthenolide cytotoxicity is both caspase-dependent and caspase-independent. Parthenolide rapidly induced caspase activation and cleavage of PARP, MCL-1, X-linked inhibitor of apoptosis protein, and BID. Parthenolide rapidly down-regulated cellular FADD-like IL-1beta-converting enzyme inhibitory protein, and direct targeting of cellular FADD-like IL-1beta-converting enzyme inhibitory protein using small interfering RNA oligonucleotides inhibited MM cell growth and lowered the parthenolide concentration required for growth inhibition. An additive effect and synergy were observed when parthenolide was combined with dexamethasone and TNF-related apoptosis-inducing ligand, respectively. CONCLUSION Collectively, parthenolide has multifaceted antitumor effects toward both MM cells and the bone marrow microenvironment. Our data support the clinical development of parthenolide in MM therapy.
Collapse
Affiliation(s)
- Attaya Suvannasankha
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
53
|
Kuroda J, Kamitsuji Y, Kimura S, Ashihara E, Kawata E, Nakagawa Y, Takeuichi M, Murotani Y, Yokota A, Tanaka R, Andreeff M, Taniwaki M, Maekawa T. Anti-myeloma effect of homoharringtonine with concomitant targeting of the myeloma-promoting molecules, Mcl-1, XIAP, and beta-catenin. Int J Hematol 2008; 87:507-515. [PMID: 18415656 DOI: 10.1007/s12185-008-0081-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/19/2008] [Accepted: 03/06/2008] [Indexed: 01/29/2023]
Abstract
Since a variety of cell intrinsic and extrinsic molecular abnormalities cooperatively promote tumor formation in multiple myeloma (MM), therapeutic approaches that concomitantly target more than one molecule are increasingly attractive. We herein demonstrate the anti-myeloma effect of a cephalotaxus alkaloid, homoharringtonine (HHT), an inhibitor of protein synthesis, through the induction of apoptosis. HHT significantly reduced Mcl-1, a crucial protein involved in myeloma cell survival, in all three myeloma cell lines examined, whereas certain BH3-only proteins, such as Bim, Bik, and Puma, remained unchanged following HHT treatment, and their expression levels depended on the cell type. HHT also reduced the levels of c-FLIP(L/S), activated caspase-8, and induced active truncated-Bid. Thus, HHT-induced apoptosis appears to be mediated via both intrinsic and extrinsic apoptosis pathways, and the resultant imbalance between BH3-only proteins and Mcl-1 may be pivotal for apoptosis by HHT. In addition, HHT treatment resulted in reduced levels of beta-catenin and XIAP proteins, which also contribute to disease progression and resistance to chemotherapy in MM. In combination, HHT enhanced the effects of melphalan, bortezomib, and ABT-737. These results suggest that HHT could constitute an attractive option for MM treatment though its ability to simultaneously target multiple tumor-promoting molecules.
Collapse
Affiliation(s)
- Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yuri Kamitsuji
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shinya Kimura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eishi Ashihara
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eri Kawata
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoko Nakagawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Miki Takeuichi
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshihide Murotani
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Asumi Yokota
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ruriko Tanaka
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Michael Andreeff
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas, M.D. Anderson Cancer Center, Unit 448, 1400 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
54
|
BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma. Blood 2008; 111:5152-62. [PMID: 18354037 DOI: 10.1182/blood-2007-10-116889] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of arsenic trioxide (ATO) to treat multiple myeloma (MM) is supported by preclinical studies as well as several phase 2 studies, but the precise mechanism(s) of action of ATO has not been completely elucidated. We used gene expression profiling to determine the regulation of apoptosis-related genes by ATO in 4 MM cell lines and then focused on Bcl-2 family genes. ATO induced up-regulation of 3 proapoptotic BH3-only proteins (Noxa, Bmf, and Puma) and down-regulation of 2 antiapoptotic proteins Mcl-1 and Bcl-X(L). Coimmunoprecipitation demonstrated that Noxa and Puma bind Mcl-1 to release Bak and Bim within 6 hours of ATO addition. Bak and Bim are also released from Bcl-X(L). Silencing of Bmf, Noxa, and Bim significantly protected cells from ATO-induced apoptosis, while Puma silencing had no effect. Consistent with a role for Noxa inhibition of Mcl-1, the Bad-mimetic ABT-737 synergized with ATO in the killing of 2 MM lines. Finally, Noxa expression was enhanced by GSH depletion and inhibited by increasing GSH levels in the cells. Understanding the pattern of BH3-only protein response should aid in the rational design of arsenic-containing regimens.
Collapse
|
55
|
Lin FR, Kuo HK, Ying HY, Yang FH, Lin KI. Induction of apoptosis in plasma cells by B lymphocyte-induced maturation protein-1 knockdown. Cancer Res 2008; 67:11914-23. [PMID: 18089822 DOI: 10.1158/0008-5472.can-07-1868] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B lymphocyte-induced maturation protein-1 (Blimp-1) is a transcriptional repressor that plays an important role during plasmacytic differentiation and is expressed in normal and transformed plasma cells. We here investigated the importance of continuous Blimp-1 expression. We found that knockdown of Blimp-1 expression by lentiviral vector-delivered short hairpin RNA causes apoptosis in multiple myeloma cell lines and plasmacytoma cells, indicating that continued expression of Blimp-1 is required for cell survival. We examined the mechanism underlying Blimp-1 knockdown-mediated apoptosis and found that the Blimp-1 knockdown neither reversed the phenotypic markers of plasma cells nor caused cell cycle arrest. Instead, our results show that knockdown of Blimp-1 induced the proapoptotic protein Bim, reduced the antiapoptotic protein Mcl-1, and activated caspase-9 and caspase-3. We further link apoptosis in transformed plasma cells mediated by proteasome inhibitors, the effective therapeutic agent for multiple myeloma patients, with reduced expression of Blimp-1. Lastly, we show that Blimp-1-dependent cell survival may act downstream of IFN regulatory factor 4 (IRF4) because IRF4 knockdown leads to down-regulation of Blimp-1 and apoptosis in multiple myeloma cells and plasmacytoma cells. Together, our data suggest that Blimp-1 ensures the survival of transformed plasma cells.
Collapse
Affiliation(s)
- Fan-Ru Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
56
|
Clybouw C, E L Mchichi B, Hadji A, Portier A, Auffredou MT, Arnoult D, Leca G, Vazquez A. TGFβ-mediated apoptosis of Burkitt's lymphoma BL41 cells is associated with the relocation of mitochondrial BimEL. Oncogene 2008; 27:3446-56. [DOI: 10.1038/sj.onc.1211009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
57
|
Wuillème-Toumi S, Trichet V, Gomez-Bougie P, Gratas C, Bataille R, Amiot M. Reciprocal protection of Mcl-1 and Bim from ubiquitin-proteasome degradation. Biochem Biophys Res Commun 2007; 361:865-9. [PMID: 17681275 DOI: 10.1016/j.bbrc.2007.07.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 02/05/2023]
Abstract
Survival of multiple myeloma cells is essentially dependent on Mcl-1 protein that neutralizes the pro-apoptotic function of Bim and prevents activation of death effectors. To clarify the relationship between Mcl-1 and Bim, we generated cell lines silenced for Mcl-1 (shMcl-1) or Bim (shBim). We demonstrate that Mcl-1 and Bim proteins are concomitantly down-regulated in either shBim or shMcl-1 cells. We show that the down-regulation of either Mcl-1 in shBim or Bim in shMcl-1 cells is not due to a transcriptional event, but results from post-translational regulation. Indeed, the multi-ubiquitinated forms of Mcl-1 or Bim are increased in shBim and shMcl-1 cells, respectively, indicating proteasome degradation. Since Mcl-1/Bim complexes are predominant in myeloma cells the down-regulation of Mcl-1 by shRNA leads to unliganded Bim sensitive to degradation and reciprocally for unliganded Mcl-1 in shBim cells. Finally, our results support that the interaction between Mcl-1 and Bim confers to themselves mutual protection.
Collapse
Affiliation(s)
- Soraya Wuillème-Toumi
- INSERM, UMR601, Département de recherche en Cancérologie, 9, quai Moncousu, Nantes F-44000, France
| | | | | | | | | | | |
Collapse
|
58
|
Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT, Hideshima T, Amiot M, Chauhan D, Harousseau JL, Anderson KC. A pivotal role for Mcl-1 in Bortezomib-induced apoptosis. Oncogene 2007; 27:721-31. [PMID: 17653083 DOI: 10.1038/sj.onc.1210679] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bortezomib is a proteasome inhibitor for the treatment of relapsed/refractory multiple myeloma (MM). Mechanisms of resistance to Bortezomib are undefined. Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic protein, which protects tumor cells against spontaneous and chemotherapy-induced apoptosis. In MM, specific downregulation of Mcl-1 induces apoptosis. Here, we examined the role of Mcl-1 in Bortezomib- and doxorubicin-induced apoptosis. We demonstrate that Bortezomib, but not doxorubicin, triggers caspase-dependent generation of a 28 kDa Mcl-1-fragment, in several MM cell lines, including MM.1S cells. Conversely, transient transfection of MM.1S cells with a previously reported 28 kDa Mcl-1(128-350) fragment, but not with the Mcl-1(1-127) fragment, induces apoptosis. Therefore, both downregulation of full-length antiapoptotic Mcl-1, as well as Bortezomib-induced generation of Mcl-1(128-350) cleaved protein, contribute to MM cell apoptosis. To verify further these findings, we next compared effects triggered by Bortezomib, doxorubicin and melphalan in Mcl-1(wt/wt) and Mcl-1(Delta/null) murine embryonic fibroblasts (MEFs). Our results show that Bortezomib, but not doxorubicin or melphalan, triggers Mcl-1 cleavage in Mcl-1(wt/wt), but not Mcl-1(Delta/null) MEFs and induces sub-G(1) phase cells; caspase-3 and -9, and PARP cleavage as well as morphological signs of apoptosis. Taken together, these results support an important role of Mcl-1 and a Mcl-1 fragment in Bortezomib-induced cell death in general, and in MM in particular. To prevent relapse of MM in patients treated with Bortezomib, we therefore recommend the combination of Bortezomib with agents that induce MM cell death independent of Mcl-1.
Collapse
Affiliation(s)
- K Podar
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 022115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Hussain SRA, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA, Lucas DM, Byrd JC. Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 2007; 13:2144-50. [PMID: 17404098 DOI: 10.1158/1078-0432.ccr-06-2294] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The antiapoptotic Bcl-2 family member protein Mcl-1 is dynamically regulated in transformed B-cells, has a short mRNA and protein half-life, and is rapidly processed during apoptosis. Multiple therapies cause down-regulation of Mcl-1 in chronic and acute lymphoid leukemia (CLL and ALL) cells. Mcl-1 has also been reported to mediate resistance to rituximab in CLL. We therefore investigated whether direct reduction of Mcl-1 was sufficient to induce apoptosis and increase sensitivity to rituximab. EXPERIMENTAL DESIGN We used Mcl-1-specific small interfering RNA in ALL cell lines and tumor cells from CLL patients to block transcription of Mcl-1. RESULTS We show that Mcl-1 down-regulation alone is sufficient to promote mitochondrial membrane depolarization and apoptosis in ALL and CLL cells. Given the importance of rituximab in B-cell malignancies, we next assessed the influence of Mcl-1 down-regulation on antibody-mediated killing. Mcl-1 down-regulation by small interfering RNA increased sensitivity to rituximab-mediated killing both by direct apoptosis and complement-dependent cytotoxicity, but did not enhance antibody-dependent cellular cytotoxicity. CONCLUSIONS These results show that Mcl-1 is a relevant therapeutic target for ALL and CLL, and its down-regulation has the potential to enhance the therapeutic effect of rituximab in CD20-bearing lymphoid cells.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Division of Hematology-Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T, Uchida T, Asakura K, Nakazato T, Kaneda T, Kizaki M, Ikeda Y, Yoshida T. Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther 2007; 6:987-94. [PMID: 17363492 DOI: 10.1158/1535-7163.mct-06-0605] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emodin is an active component of a traditional Chinese and Japanese medicine isolated from the root and rhizomes of Rheum palmatum L. Here, we show that emodin significantly induces cytotoxicity in the human myeloma cells through the elimination of myeloid cell leukemia 1 (Mcl-1). Emodin inhibited interleukin-6-induced activation of Janus-activated kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3), followed by the decreased expression of Mcl-1. Activation of caspase-3 and caspase-9 was triggered by emodin, but the expression of other antiapoptotic Bcl-2 family members, except Mcl-1, did not change in the presence of emodin. To clarify the importance of Mcl-1 in emodin-induced apoptosis, the Mcl-1 expression vector was introduced into the human myeloma cells by electroporation. Induction of apoptosis by emodin was almost abrogated in Mcl-1-overexpressing myeloma cells as the same level as in parental cells, which were not treated with emodin. In conclusion, emodin inhibits interleukin-6-induced JAK2/STAT3 pathway selectively and induces apoptosis in myeloma cells via down-regulation of Mcl-1, which is a good target for treating myeloma. Taken together, our results show emodin as a new potent anticancer agent for the treatment of multiple myeloma patients.
Collapse
Affiliation(s)
- Akihiro Muto
- Department of Pathophysiology, Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawaku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Trudel S, Li ZH, Rauw J, Tiedemann RE, Wen XY, Stewart AK. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007; 109:5430-8. [PMID: 17332241 DOI: 10.1182/blood-2006-10-047951] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Bcl family members Bcl-2, Bcl-xL, and Mcl-1, are frequently expressed and implicated in the survival of myeloma cells. Obatoclax (GX015-070) is a novel, small-molecule antagonist of the BH3-binding groove of the Bcl family of proteins. We show that GX015-070 inhibits the binding of Bak to Mcl-1, up-regulates Bim, induces cytochrome c release, and activates capase-3 in human myeloma cell lines (HMCLs), confirming the predicted mechanism of action. Consequently, GX015-070 potently inhibited the viability of 15 of 16 HMCLs (mean IC50 of 246 nM), including those resistant to melphalan and dexamethasone. In combination studies, GX015-070 enhanced the antimyeloma activity induced by melphalan, dexamethasone, or bortezomib. Sensitivity to GX015-070 correlated with the absence or near absence of Bcl-xL. Coculture with interleukin-6 or adherence to bone marrow stroma conferred modest resistance; however, it did not overcome GX015-070–induced cytotoxicity. Of importance, GX015-070 as a single agent induced potent cytotoxic responses against patient-derived tumor cells. GX015-070 inhibited normal bone marrow–derived colony formation; however, cytotoxicity to human blood lymphocytes was not observed. Taken together, these studies describe a novel BH3 mimic with selectivity for Mcl-1, and support the therapeutic application of GX015-070 for diverse neoplasias including multiple myeloma.
Collapse
Affiliation(s)
- Suzanne Trudel
- Hematology-Oncology, Princess Margaret Hospital, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Gomez-Bougie P, Wuillème-Toumi S, Ménoret E, Trichet V, Robillard N, Philippe M, Bataille R, Amiot M. Noxa Up-regulation and Mcl-1 Cleavage Are Associated to Apoptosis Induction by Bortezomib in Multiple Myeloma. Cancer Res 2007; 67:5418-24. [PMID: 17545623 DOI: 10.1158/0008-5472.can-06-4322] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting the ubiquitin-proteasome pathway has emerged as a potent anticancer strategy. Bortezomib, a specific proteasome inhibitor, has been approved for the treatment of relapsed or refractory multiple myeloma. Multiple myeloma cell survival is highly dependent on Mcl-1 antiapoptotic molecules. In a recent study, proteasome inhibitors induced Mcl-1 accumulation that slowed down their proapoptotic effects. Consequently, we investigated the role of Bcl-2 family members in bortezomib-induced apoptosis. We found that bortezomib induced apoptosis in five of seven human myeloma cell lines (HMCL). Bortezomib-induced apoptosis was associated with Mcl-1 cleavage regardless of Mcl-1L accumulation. Furthermore, RNA interference mediated Mcl-1 decrease and sensitized RPMI-8226 HMCL to bortezomib, highlighting the contribution of Mcl-1 in bortezomib-induced apoptosis. Interestingly, an important induction of Noxa was found in all sensitive HMCL both at protein and mRNA level. Concomitant to Mcl-1 cleavage and Noxa induction, we also found caspase-3, caspase-8, and caspase-9 activation. Under bortezomib treatment, Mcl-1L/Noxa complexes were highly increased, Mcl-1/Bak complexes were disrupted, and there was an accumulation of free Noxa. Finally, we observed a dissociation of Mcl-1/Bim complexes that may be due to a displacement of Bim induced by Noxa. Thus, in myeloma cells, the mechanistic basis for bortezomib sensitivity can be explained mainly by the model in which the sensitizer Noxa can displace Bim, a BH3-only activator, from Mcl-1, thus leading to Bax/Bak activation.
Collapse
|
63
|
Trudel S, Stewart AK, Li Z, Shu Y, Liang SB, Trieu Y, Reece D, Paterson J, Wang D, Wen XY. The Bcl-2 family protein inhibitor, ABT-737, has substantial antimyeloma activity and shows synergistic effect with dexamethasone and melphalan. Clin Cancer Res 2007; 13:621-9. [PMID: 17255285 DOI: 10.1158/1078-0432.ccr-06-1526] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study is to investigate the antimyeloma activity of a novel Bcl-2 family inhibitor, ABT-737, in preclinical treatment of multiple myeloma. EXPERIMENTAL DESIGN The antimyeloma activity of ABT-737 was evaluated in cultured myeloma cell lines and patient myeloma samples, and in a xenograft mouse myeloma model. Drug combination therapy using ABT-737 with other commonly used myeloma drugs was also investigated. RESULTS MY5 and JJN3 cell lines exhibited the most sensitivity to ABT-737 with an EC(50) of 0.2 and 0.5 micromol/L, respectively, with increased cell apoptosis and elevated activated caspase-3. We identified two distinct groups of myeloma patient samples that were either sensitive or resistant to the drug. Four of 15 patient bone marrow samples (27%) were highly sensitive to ABT-737 at doses of 0.25 and 0.5 micromol/L, which eliminated 80% to 90% of myeloma cells as a result of cellular apoptosis 3 days after drug treatment. ABT-737 showed a synergistic effect when combined with dexamethasone or melphalan in inducing myeloma cell death. Furthermore, the dexamethasone-resistant MM1(Dex)R myeloma cell line was highly sensitive to 0.2 micromol/L ABT-737. As determined by colony assay, little or no detectable toxicity to patient hematologic progenitor cells was observed at 1 micromol/L ABT-737. ABT-737 dose dependently suppressed tumor growth in a xenograft MY5 mouse model. CONCLUSIONS These studies show substantial antimyeloma activity of ABT-737 as a single agent or in combination with dexamethasone or melphalan and suggest a rationale for future clinical trials.
Collapse
Affiliation(s)
- Suzanne Trudel
- Department of Medical Oncology and Hematology, Princess Margaret Hospital, University Health Network, University of Toronto, 620 University Avenue, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Han J, Goldstein LA, Hou W, Rabinowich H. Functional linkage between NOXA and Bim in mitochondrial apoptotic events. J Biol Chem 2007; 282:16223-31. [PMID: 17374615 DOI: 10.1074/jbc.m611186200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NOXA is a BH3-only protein whose expression is induced by certain p53-depenent or independent apoptotic stimuli. Both NOXA and Bim are avid binders of Mcl-1, but a functional linkage between these BH3-only proteins has not yet been reported. In this study, we demonstrate that Mcl-1 binding of endogenously induced NOXA interferes with the ability of Mcl-1 to efficiently sequester endogenous Bim, as Bim is displaced from its complex with Mcl-1. Induced NOXA significantly enhances the UV sensitivity of cells, and the ensuing mitochondrial depolarization is entirely abrogated by Bim knockdown. These results demonstrate a Mcl-1-mediated cross-talk between endogenous NOXA and Bim that occurs upstream of the Bak/Bax-dependent execution of UV-induced mitochondrial depolarization. The current findings demonstrate that the mitochondrial response to an induced expression of NOXA is executed by endogenous Bim and suggest a plausible mechanism for the observed NOXA-Bim linkage.
Collapse
Affiliation(s)
- Jie Han
- Department of Pathology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | | | | | |
Collapse
|
65
|
Abstract
Apoptosis, or programmed cell death, is essential for normal development and homeostasis. Insufficient apoptosis may contribute to the pathogenesis of malignancy and acute and chronic inflammation. Apoptosis may be induced by the death receptor or the mitochondrial pathways. Myeloid cell leukemia (Mcl)-1 is a member of the Bcl-2 family that contributes to the control of mitochondrial integrity, which is critical for maintaining cell viability. Mcl-1 has been shown to be essential for the development and survival of a variety of cell types. This review characterizes the role of Mcl-1 in the regulation of apoptosis and the promotion of disease, and defines novel strategies that have been identified to target this molecule.
Collapse
Affiliation(s)
- Arthur M Mandelin
- Division of Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
66
|
Adams KW, Cooper GM. Rapid turnover of mcl-1 couples translation to cell survival and apoptosis. J Biol Chem 2007; 282:6192-200. [PMID: 17200126 PMCID: PMC1831535 DOI: 10.1074/jbc.m610643200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibition of translation plays a role in apoptosis induced by a variety of stimuli, but the mechanism by which it promotes apoptosis has not been established. We have investigated the hypothesis that selective degradation of anti-apoptotic regulatory protein(s) is responsible for apoptosis resulting from translation inhibition. Induction of apoptosis by cycloheximide was detected within 2-4 h and blocked by proteasome inhibitors, indicating that degradation of short-lived protein(s) was required. Caspase inhibition and overexpression of Bcl-x(L) blocked cycloheximide-induced apoptosis. In addition, cycloheximide induced rapid activation of Bak and Bax, which required proteasome activity. Mcl-1 was degraded by the proteasome with a half-life of approximately 30 min following inhibition of protein synthesis, preceding Bak/Bax activation and the onset of apoptosis. Overexpression of Mcl-1 blocked apoptosis induced by cycloheximide, whereas RNA interference knockdown of Mcl-1 induced apoptosis. Knockdown of Bim and Bak, downstream targets of Mcl-1, inhibited cycloheximide-induced apoptosis, as did knockdown of Bax. Apoptosis resulting from inhibition of translation thus involves the rapid degradation of Mcl-1, leading to activation of Bim, Bak, and Bax. Because of its rapid turnover, Mcl-1 may serve as a convergence point for signals that affect global translation, coupling translation to cell survival and the apoptotic machinery.
Collapse
Affiliation(s)
- Kenneth W Adams
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
67
|
Fontenay M, Cathelin S, Amiot M, Gyan E, Solary E. Mitochondria in hematopoiesis and hematological diseases. Oncogene 2006; 25:4757-67. [PMID: 16892088 DOI: 10.1038/sj.onc.1209606] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitochondria are involved in hematopoietic cell homeostasis through multiple ways such as oxidative phosphorylation, various metabolic processes and the release of cytochrome c in the cytosol to trigger caspase activation and cell death. In erythroid cells, the mitochondrial steps in heme synthesis, iron (Fe) metabolism and Fe-sulfur (Fe-S) cluster biogenesis are of particular importance. Mutations in the specific delta-aminolevulinic acid synthase (ALAS) 2 isoform that catalyses the first and rate-limiting step in heme synthesis pathway in the mitochondrial matrix, lead to ineffective erythropoiesis that characterizes X-linked sideroblastic anemia (XLSA), the most common inherited sideroblastic anemia. Mutations in the adenosine triphosphate-binding cassette protein ABCB7, identified in XLSA with ataxia (XLSA-A), disrupt the maturation of cytosolic (Fe-S) clusters, leading to mitochondrial Fe accumulation. In addition, large deletions in mitochondrial DNA, whose integrity depends on a specific DNA polymerase, are the hallmark of Pearson's syndrome, a rare congenital disorder with sideroblastic anemia. In acquired myelodysplastic syndromes at early stage, exacerbation of physiological pathways involving caspases and the mitochondria in erythroid differentiation leads to abnormal activation of a mitochondria-mediated apoptotic cell death pathway. In contrast, oncogenesis-associated changes at the mitochondrial level can alter the apoptotic response of transformed hematopoietic cells to chemotherapeutic agents. Recent findings in mitochondria metabolism and functions open new perspectives in treating hematopoietic cell diseases, for example various compounds currently developed to trigger tumor cell death by directly targeting the mitochondria could prove efficient as either cytotoxic drugs or chemosensitizing agents in treating hematological malignancies.
Collapse
Affiliation(s)
- M Fontenay
- Inserm U567, Institut Cochin, Department of Hematology, Paris, Cedex, France
| | | | | | | | | |
Collapse
|
68
|
Abstract
Loss of myocardial cells via apoptosis has been observed in many cardiovascular diseases and has been shown to contribute to the initiation and progression of heart failure. The Bcl-2 family members are important regulators of the mitochondrial pathway of apoptosis. These proteins decide whether the mitochondria should initiate the cell death program and release proapoptotic factors such as cytochrome c. The Bcl-2 proteins consist of anti- and proapoptotic members and play a key role in regulating apoptosis in the myocardium. The antiapoptotic proteins have been demonstrated to protect against various cardiac pathologies, whereas the antiapoptotic proteins have been reported to contribute to heart disease. This review summarizes the current understanding of the role of Bcl-2 proteins in the heart.
Collapse
Affiliation(s)
- Asa B Gustafsson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
69
|
Menoret E, Gomez-Bougie P, Geffroy-Luseau A, Daniels S, Moreau P, Le Gouill S, Harousseau JL, Bataille R, Amiot M, Pellat-Deceunynck C. Mcl-1L cleavage is involved in TRAIL-R1– and TRAIL-R2–mediated apoptosis induced by HGS-ETR1 and HGS-ETR2 human mAbs in myeloma cells. Blood 2006; 108:1346-52. [PMID: 16638930 DOI: 10.1182/blood-2005-12-007971] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
We evaluated the ability of 2 human mAbs directed against TRAILR1 (HGS-ETR1) and TRAILR2 (HGS-ETR2) to kill human myeloma cells. HGS-ETR1 and HGS-ETR2 mAbs killed 15 and 9 human myeloma cell lines (HMCLs; n = 22), respectively. IL-6, the major survival and growth factor for these HMCLs, did not prevent their killing. Killing induced by either HGS-ETR1 or HGS-ETR2 was correlated with the cleavage of Mcl-1L, a major molecule for myeloma survival. Mcl-1L cleavage and anti-TRAILR HMCL killing were dependent on caspase activation. Kinetic studies showed that Mcl-1L cleavage occurred very early (less than 1 hour) and became drastic once caspase 3 was activated. Our data showed that both the extrinsic (caspase 8, Bid) and the intrinsic (caspase 9) pathways are activated by anti–TRAIL mAb. Finally, we showed that the HGS-ETR1 and, to a lesser extent, the HGS-ETR2 mAbs were able to induce the killing of primary myeloma cells. Of note, HGS-ETR1 mAb was able to induce the death of medullary and extramedullary myeloma cells collected from patients at relapse. Taken together, our data clearly encourage clinical trials of anti–TRAILR1 mAb in multiple myeloma, especially for patients whose disease is in relapse, at the time of drug resistance.
Collapse
Affiliation(s)
- Emmanuelle Menoret
- Institut National de la Santé et de la Recherche Médicale, Unité 601, Nantes, F-44000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Guo S, Yang S, Taylor C, Sonenshein GE. Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7,12-dimethylbenz[a]anthracene. J Nutr 2005; 135:2978S-2986S. [PMID: 16317158 DOI: 10.1093/jn/135.12.2978s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since the 1980s, the incidence of late-onset breast cancer has been increasing in the United States. Known risk factors, such as genetic modifications, have been estimated to account for approximately 5 to 10% of breast cancer cases, and these tend to be early onset. Thus, exposure to and bioaccumulation of ubiquitous environmental chemicals, such as polycyclic aromatic hydrocarbons (PAHs), have been proposed to play a role in this increased incidence. Treatment of female Sprague-Dawley rats with a single dose of the PAH 7,12-dimethylbenz[a]anthracene (DMBA) induces mammary tumors in approximately 90 to 95% of test animals. We showed previously that female rats treated with DMBA and given green tea as drinking fluid displayed significantly decreased mammary tumor burden and invasiveness and a significantly increased latency to first tumor. Here we used cDNA microarray analysis to elucidate the effects of the green tea polyphenol epigallocatechin-3 gallate (EGCG) on the gene expression profile in a DMBA-transformed breast cancer cell line. RNA was isolated, in quadruplicate, from D3-1 cells treated with 60 mug/mL EGCG for 2, 7, or 24 h and subjected to analysis. Semiquantitative RT-PCR and Northern blot analyses confirmed the changes in the expression of 12 representative genes seen in the microarray experiments. Overall, our results documented EGCG-altered expression of genes involved in nuclear and cytoplasmic transport, transformation, redox signaling, response to hypoxia, and PAHs.
Collapse
Affiliation(s)
- Shangqin Guo
- Department of Biochemistry and Women's Health Interdisciplinary Research Center, Boston University School of Medicine, Boston, MA 02118-2394, USA
| | | | | | | |
Collapse
|
71
|
Gomez-Bougie P, Oliver L, Le Gouill S, Bataille R, Amiot M. Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex. Oncogene 2005; 24:8076-9. [PMID: 16091744 DOI: 10.1038/sj.onc.1208949] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiple myeloma (MM) is a rapidly fatal plasma-cell malignancy that evolves mainly in the bone marrow. Melphalan is widely used to treat patients with MM but as yet its mechanisms of action are poorly documented. In the current study, we demonstrate that melphalan induces a drastic downregulation of Mcl-1L, Bcl-x(L) and BimEL in human melphalan-sensitive myeloma cells while the most potent proapoptotic isoforms, BimL and S, are affected to a lesser extent. Moreover, Mcl-1L and BimEL disappearance is associated with the generation of proapoptotic cleaved forms generated by a caspase cleavage. In myeloma cells, we have previously shown that Mcl-1 neutralizes the proapoptotic function of Bim and therefore, prevents the activation of death effectors. In this study, we demonstrate that melphalan disrupts the Mcl-1/Bim complex whereas the Bcl-2/Bim complex is not modified. The disappearance of full length Mcl-1 allows the release of Bim isoforms, particularly L and S, which can exert their proapoptotic function and leads to Bax activation and cytochrome c release. Thus, we can hypothesize that the cleaved 26 kDa proapoptotic Mcl-1 and the 19 and 12 kDa of Bim, generated during melphalan treatment could contribute to the amplification loop of apoptosis.
Collapse
Affiliation(s)
- Patricia Gomez-Bougie
- Département de recherche en cancérologie, Equipe 5 labélisée L N C 2005, Institut de biologie, 9 quai Moncousu, 44093 Nantes cedex 01, France
| | | | | | | | | |
Collapse
|
72
|
MacCallum DE, Melville J, Frame S, Watt K, Anderson S, Gianella-Borradori A, Lane DP, Green SR. Seliciclib (CYC202, R-Roscovitine) Induces Cell Death in Multiple Myeloma Cells by Inhibition of RNA Polymerase II–Dependent Transcription and Down-regulation of Mcl-1. Cancer Res 2005; 65:5399-407. [PMID: 15958589 DOI: 10.1158/0008-5472.can-05-0233] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seliciclib (CYC202, R-roscovitine) is a cyclin-dependent kinase (CDK) inhibitor that competes for the ATP binding site on the kinase. It has greatest activity against CDK2/cyclin E, CDK7/cyclin H, and CDK9/cyclin T. Seliciclib induces apoptosis from all phases of the cell cycle in tumor cell lines, reduces tumor growth in xenografts in nude mice and is currently in phase II clinical trials. This study investigated the mechanism of cell death in multiple myeloma cells treated with seliciclib. In myeloma cells treated in vitro, seliciclib induced rapid dephosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation at these sites is crucial for RNA polymerase II-dependent transcription. Inhibition of transcription would be predicted to exert its greatest effect on gene products where both mRNA and protein have short half-lives, resulting in rapid decline of the protein levels. One such gene product is the antiapoptotic factor Mcl-1, crucial for the survival of a range of cell types including multiple myeloma. As hypothesized, following the inhibition of RNA polymerase II phosphorylation, seliciclib caused rapid Mcl-1 down-regulation, which preceded the induction of apoptosis. The importance of Mcl-1 was confirmed by short interfering RNA, demonstrating that reducing Mcl-1 levels alone was sufficient to induce apoptosis. These results suggest that seliciclib causes myeloma cell death by disrupting the balance between cell survival and apoptosis through the inhibition of transcription and down-regulation of Mcl-1. This study provides the scientific rationale for the clinical development of seliciclib for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- David E MacCallum
- Cyclacel Ltd., Dundee Technopole, James Lindsay Place, Dundee, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Gomez-Bougie P, Bataille R, Amiot M. Endogenous association of Bim BH3-only protein with Mcl-1, Bcl-xL and Bcl-2 on mitochondria in human B cells. Eur J Immunol 2005; 35:971-6. [PMID: 15724238 DOI: 10.1002/eji.200425878] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bim is an essential regulator of lymphoid system homeostasis and appears essential for B cell apoptosis induction. The mechanism by which Bim isoforms are held in an inactive form remains poorly documented in normal B cells. In the current study, we demonstrated that in normal tonsil B cells the three major Bim isoforms are strongly associated with the anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2 and Bcl-x(L). On the other hand, only a weak association of BimEL and L with the dynein LC8 chain has been found. In addition, there is no free Bim in normal B cells. Moreover, subcellular fractionation demonstrated that Bim and the anti-apoptotic counterparts are localized preferentially in the mitochondria-rich fraction. The fact that most Bim was found in this fraction supports the hypothesis that it is sequestered by anti-apoptotic molecules in mitochondria where its pro-apoptotic activity is controlled. Of interest, BimS is essentially complexed to Mcl-1 and the Mcl-1/Bim complex is the most abundant among the three types of complexes. This supports the idea that this complex is critical for the control of B cell death. In conclusion, these results favor a model in which Bim release from anti-apoptotic proteins is a critical event for initiation of apoptosis.
Collapse
Affiliation(s)
- Patricia Gomez-Bougie
- INSERM, UMR601, Département de Recherche en Cancérologie, Equipe 5 labélisée L N C, Institut de Biologie, Nantes, France
| | | | | |
Collapse
|
74
|
Gómez-Benito M, Marzo I, Anel A, Naval J. Farnesyltransferase inhibitor BMS-214662 induces apoptosis in myeloma cells through PUMA up-regulation, Bax and Bak activation, and Mcl-1 elimination. Mol Pharmacol 2005; 67:1991-8. [PMID: 15738311 DOI: 10.1124/mol.104.007021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have studied the mechanism of apoptosis elicited by the farnesyltransferase inhibitor (R)-7-cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662) in human myeloma cell lines. Low concentrations of BMS-214662 efficiently inhibited protein farnesylation but did not affect the activation of Akt. BMS-214662 treatment increased levels of the BH3-only protein PUMA; induced proapoptotic conformational changes of Bax and Bak; reduced Mcl-1 levels; caused mitochondrial transmembrane potential loss; induced cytochrome c release, caspase activation, apoptosis-inducing factor (AIF) nuclear translocation, and phosphatidylserine exposure; and allowed the development of apoptotic morphology. Western blot analysis of cell extracts revealed the activation of caspases 2, 3, 8, and 9 upon treatment with BMS-214662. The general caspase inhibitor Z-VAD-fmk significantly prevented BMS-214662-induced death in U266 and RPMI 8226 cells but not in NCI-H929 cells. A mixture of selective caspase inhibitors for caspases 9 [N-benzyloxycarbonyl-Leu-Glu-His-Asp-fluoromethyl ketone (Z-LEHD-fmk)], 3 (Z-DEVD-fmk), and 6 (Z-VEID-fmk) approached the protective effect of Z-VAD upon cell death. However, Z-VAD-fmk did not prevent BMS-214662-induced Bax and Bak activation and decrease of Mcl-1 levels. According to its effect on cell death, Z-VAD-fmk inhibited nuclear translocation of AIF in RPMI 8226 and U266 but not in NCI-H929 cells. These results suggest that apoptosis triggered by BMS-214662 is initiated by a PUMA/Bax/Bak/Mcl-1-dependent mechanism. In some cell lines, Bax/Bak activation is not sufficient per se to induce mitochondrial failure and release of apoptogenic proteins, and so caspases need to be activated to facilitate apoptosis. After DeltaPsi(m) loss, execution of apoptosis was performed in all cases by a cytochrome c-enabled, caspase-9-triggered, caspase cascade and the nuclear action of AIF.
Collapse
Affiliation(s)
- María Gómez-Benito
- Departamento de Bioquimica y Biologia Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|