51
|
Castriconi R, Carrega P, Dondero A, Bellora F, Casu B, Regis S, Ferlazzo G, Bottino C. Molecular Mechanisms Directing Migration and Retention of Natural Killer Cells in Human Tissues. Front Immunol 2018; 9:2324. [PMID: 30364222 PMCID: PMC6193061 DOI: 10.3389/fimmu.2018.02324] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
A large body of data shows that Natural Killer (NK) cells are immune effectors exerting a potent cytolytic activity against tumors and virus infected cells. The discovery and characterization of several inhibitory and activating receptors unveiled most of the mechanisms allowing NK cells to spare healthy cells while selectively attacking abnormal tissues. Nevertheless, the mechanisms ruling NK cell subset recirculation among the different compartments of human body have only lately started to be investigated. This is particularly true for pathological settings such as tumors or infected tissues but also for para-physiological condition like pregnant human uterine mucosa. It is becoming evident that the microenvironment associated to a particular clinical condition can deeply influence the migratory capabilities of NK cells. In this review we describe the main mechanisms and stimuli known to regulate the expression of chemokine receptors and other molecules involved in NK cell homing to either normal or pathological/inflamed tissues, including tumors or organs such as lung and liver. We will also discuss the role played by the chemokine/chemokine receptor axes in the orchestration of physiological events such as NK cell differentiation, lymphoid organ retention/egress and recruitment to decidua during pregnancy.
Collapse
Affiliation(s)
- Roberta Castriconi
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, University of Genova, Genova, Italy
| | - Paolo Carrega
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Stefano Regis
- Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Guido Ferlazzo
- Dipartimento di Patologia Umana, University of Messina, Messina, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy.,Istituto di ricovero e cura a carattere scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| |
Collapse
|
52
|
TLR3 Modulates the Response of NK Cells against Schistosoma japonicum. J Immunol Res 2018; 2018:7519856. [PMID: 30246036 PMCID: PMC6136572 DOI: 10.1155/2018/7519856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious diseases. NK cells possess many kinds of TLRs that allow them to sense and respond to invading pathogens. Our previous study found that NK cells could modulate the immune response induced by Schistosoma japonicum (S. japonicum) in C57BL/6 mice. In the present study, the role of TLRs in the progress of S. japonicum infection was investigated. Results showed that the expression of TLR3 on NK cells increased significantly after S. japonicum infection by using RT-PCR and FACS (P < 0.05). TLR3 agonist (Poly I:C) increased IFN-γ and IL-4 levels in the supernatant of cultured splenocytes and induced a higher percentage of IFN-γ- and IL-4-secreting NK cells from infected mouse splenocytes (P < 0.05). Not only the percentages of MHC II-, CD69-, and NKG2A/C/E-expressing cells but also the percentages of IL-4-, IL-5-, and IL-17-producing cells in TLR3+ NK cells increased significantly after infection (P < 0.05). Moreover, the expression of NKG2A/C/E, NKG2D, MHC II, and CD69 on the surface of splenic NK cells was changed in S. japonicum-infected TLR3-/- (TLR3 KO mice, P < 0.05); the abilities of NK cells in IL-4, IL-5, and IL-17 secretion were decreased too (P < 0.05). These results indicate that TLR3 is the primary molecule which modulates the activation and function of NK cells during the course of S. japonicum infection in C57BL/6 mice.
Collapse
|
53
|
Moyes KW, Davis A, Hoglund V, Haberthur K, Lieberman NA, Kreuser SA, Deutsch GH, Franco S, Locke D, Carleton MO, Gilbertson DG, Simmons R, Winter C, Silber J, Gonzalez-Cuyar LF, Ellenbogen RG, Crane CA. Effects of tumor grade and dexamethasone on myeloid cells in patients with glioma. Oncoimmunology 2018; 7:e1507668. [PMID: 30377570 PMCID: PMC6204983 DOI: 10.1080/2162402x.2018.1507668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
Efforts to reduce immunosuppression in the solid tumor microenvironment by blocking the recruitment or polarization of tumor associated macrophages (TAM), or myeloid derived suppressor cells (MDSCs), have gained momentum in recent years. Expanding our knowledge of the immune cell types, cytokines, or recruitment factors that are associated with high-grade disease, both within the tumor and in circulation, is critical to identifying novel targets for immunotherapy. Furthermore, a better understanding of how therapeutic regimens, such as Dexamethasone (Dex), chemotherapy, and radiation, impact these factors will facilitate the design of therapies that can be targeted to the appropriate populations and retain efficacy when administered in combination with standard of care regimens. Here we perform quantitative analysis of tissue microarrays made of samples taken from grades I-III astrocytoma and glioblastoma (GBM, grade IV astrocytoma) to evaluate infiltration of myeloid markers CD163, CD68, CD33, and S100A9. Serum, flow cytometric, and Nanostring analysis allowed us to further elucidate the impact of Dex treatment on systemic biomarkers, circulating cells, and functional markers within tumor tissue. We found that common myeloid markers were elevated in Dex-treated grade I astrocytoma and GBM compared to non-neoplastic brain tissue and grade II-III astrocytomas. Cell frequencies in these samples differed significantly from those in Dex-naïve patients in a pattern that depended on tumor grade. In contrast, observed changes in serum chemokines or circulating monocytes were independent of disease state and were due to Dex treatment alone. Furthermore, these changes seen in blood were often not reflected within the tumor tissue. Conclusions: Our findings highlight the importance of considering perioperative treatment as well as disease grade when assessing novel therapeutic targets or biomarkers of disease.
Collapse
Affiliation(s)
- Kara W Moyes
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Virginia Hoglund
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kristen Haberthur
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nicole Ap Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shannon A Kreuser
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Stephanie Franco
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | | | | | - Conrad Winter
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - John Silber
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | | | | | - Courtney A Crane
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington, Seattle WA, USA
| |
Collapse
|
54
|
Molgora M, Supino D, Mavilio D, Santoni A, Moretta L, Mantovani A, Garlanda C. The yin-yang of the interaction between myelomonocytic cells and NK cells. Scand J Immunol 2018; 88:e12705. [PMID: 30048003 DOI: 10.1111/sji.12705] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
NK cells are innate lymphoid cells, which play a key role in the immune response to cancer and pathogens and participate in the shaping of adaptive immunity. NK cells engage in a complex bidirectional interaction with myelomonocytic cells. In particular, macrophages, dendritic cells and neutrophils promote differentiation and effector function of NK cells and, on the other hand, myelomonocytic cells express triggers of checkpoint blockade (eg PD-L1) and other immunosuppressive molecules, which negatively regulate NK cell function. In addition, NK cells express high levels of IL-1R8, which acts as a checkpoint for IL-18 driven differentiation and activation of NK cells. Evidence suggests that targeting the myeloid cell-NK cell crosstalk unleashes effective anti-tumour and anti-viral resistance.
Collapse
Affiliation(s)
| | | | - Domenico Mavilio
- Humanitas Research Hospital, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Laboratory Affiliated to Institute Pasteur -Italia, Sapienza University of Rome, Rome, Italy.,IRCCS, Neuromed, Pozzilli, Italy
| | - Lorenzo Moretta
- Immunology Area, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alberto Mantovani
- Humanitas University, Pieve Emanuele, Italy.,Humanitas Research Hospital, Rozzano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cecilia Garlanda
- Humanitas University, Pieve Emanuele, Italy.,Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
55
|
Kaimala S, Al-Sbiei A, Cabral-Marques O, Fernandez-Cabezudo MJ, Al-Ramadi BK. Attenuated Bacteria as Immunotherapeutic Tools for Cancer Treatment. Front Oncol 2018; 8:136. [PMID: 29765907 PMCID: PMC5938341 DOI: 10.3389/fonc.2018.00136] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
The use of attenuated bacteria as cancer therapeutic tools has garnered increasing scientific interest over the past 10 years. This is largely due to the development of bacterial strains that maintain good anti-tumor efficacy, but with reduced potential to cause toxicities to the host. Because of its ability to replicate in viable as well as necrotic tissue, cancer therapy using attenuated strains of facultative anaerobic bacteria, such as Salmonella, has several advantages over standard treatment modalities, including chemotherapy and radiotherapy. Despite some findings suggesting that it may operate through a direct cytotoxic effect against cancer cells, there is accumulating evidence demonstrating that bacterial therapy acts by modulating cells of the immune system to counter the growth of the tumor. Herein, we review the experimental evidence underlying the success of bacterial immunotherapy against cancer and highlight the cellular and molecular alterations in the peripheral immune system and within the tumor microenvironment that have been reported following different forms of bacterial therapy. Our improved understanding of these mechanisms should greatly aid in the translational application of bacterial therapy to cancer patients.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Otavio Cabral-Marques
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria J Fernandez-Cabezudo
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel K Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
56
|
Dondero A, Casu B, Bellora F, Vacca A, De Luisi A, Frassanito MA, Cantoni C, Gaggero S, Olive D, Moretta A, Bottino C, Castriconi R. NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget 2018; 8:35088-35102. [PMID: 28456791 PMCID: PMC5471037 DOI: 10.18632/oncotarget.17070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis represents a hallmark of tumor progression in Multiple Myeloma (MM), a still incurable malignancy. Here we analyzed the activity of cytokine-stimulated NK cells against tumor-associated endothelial cells isolated from bone marrow aspirates of MM patients with active disease (MMECs). We show that NK cells activated with optimal doses of IL-15 killed MMECs thanks to the concerted action of multiple activating receptors. In particular, according to the high expression of PVR and Nectin-2 on MMECs, DNAM-1 actively participated in target recognition. Interestingly, in MMECs the surface density of PVR was significantly higher than that detected in endothelium from patients with MM in complete remission or with monoclonal gammopathy of undetermined significance (MGUS). Importantly, IL-27, which unlike IL-15 does not display pro-angiogenic properties, maintained or increased the NK cell functions induced by suboptimal concentrations of IL-15. NK cell properties included killing of MMECs, IFN-γ production as well as a peculiar increase of NKp46 expression on NK cell surface. Finally, IL-27 showed a striking capability of up-regulating the expression of PD-L2 and HLA-I on tumor endothelium, whereas it did not modify that of PD-L1 and HLA-II. Our results suggest that cytokine-activated endogenous or adoptively transferred NK cells might support conventional therapies improving the outcome of MM patients.
Collapse
Affiliation(s)
- Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Beatrice Casu
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Francesca Bellora
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Annunziata De Luisi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70124 Bari, Italy
| | | | - Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| | - Silvia Gaggero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniel Olive
- U1068, CRCM, Immunity and Cancer, INSERM, 13009 Marseille, France
| | - Alessandro Moretta
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, 16132 Genova, Italy
| |
Collapse
|
57
|
Kobori T, Hamasaki S, Kitaura A, Yamazaki Y, Nishinaka T, Niwa A, Nakao S, Wake H, Mori S, Yoshino T, Nishibori M, Takahashi H. Interleukin-18 Amplifies Macrophage Polarization and Morphological Alteration, Leading to Excessive Angiogenesis. Front Immunol 2018; 9:334. [PMID: 29559970 PMCID: PMC5845536 DOI: 10.3389/fimmu.2018.00334] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
M2 macrophage (Mφ) promotes pathologic angiogenesis through a release of pro-angiogenic mediators or the direct cell–cell interaction with endothelium in the micromilieu of several chronic inflammatory diseases, including rheumatoid arthritis and cancer, where interleukin (IL)-18 also contributes to excessive angiogenesis. However, the detailed mechanism remains unclear. The aim of this study is to investigate the mechanism by which M2 Mφs in the micromilieu containing IL-18 induce excessive angiogenesis in the in vitro experimental model using mouse Mφ-like cell line, RAW264.7 cells, and mouse endothelial cell line, b.End5 cells. We discovered that IL-18 acts synergistically with IL-10 to amplify the production of Mφ-derived mediators like osteopontin (OPN) and thrombin, yielding thrombin-cleaved form of OPN generation, which acts through integrins α4/α9, thereby augmenting M2 polarization of Mφ with characteristics of increasing surface CD163 expression in association with morphological alteration. Furthermore, the results of visualizing temporal behavior and morphological alteration of Mφs during angiogenesis demonstrated that M2-like Mφs induced excessive angiogenesis through the direct cell–cell interaction with endothelial cells, possibly mediated by CD163.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Hamasaki
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuhiro Kitaura
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yui Yamazaki
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Atsuko Niwa
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Shinichi Nakao
- Department of Anesthesiology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| |
Collapse
|
58
|
Nuñez SY, Ziblat A, Secchiari F, Torres NI, Sierra JM, Raffo Iraolagoitia XL, Araya RE, Domaica CI, Fuertes MB, Zwirner NW. Human M2 Macrophages Limit NK Cell Effector Functions through Secretion of TGF-β and Engagement of CD85j. THE JOURNAL OF IMMUNOLOGY 2017; 200:1008-1015. [DOI: 10.4049/jimmunol.1700737] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
|
59
|
Abstract
This review by Micalizzi et al. discusses advances in analysis and characterization of circulating tumor cells (CTCs) from patients with cancer. It focuses on the current knowledge of CTC biology and the potential clinical implications. Advances in the enrichment and analysis of rare cells from the bloodstream have allowed for detection and characterization of circulating tumor cells (CTCs) from patients with cancer. The analysis of CTCs has provided significant insight into the metastatic process. Studies on the biology of CTCs have begun to elucidate the molecular mechanisms of CTC generation, intravasation, survival, interactions with components of the blood, extravasation, and colonization of distant organs. Additionally, the study of CTCs has exposed dramatic intrapatient and interpatient heterogeneity and their evolution over time. In this review, we focus on the current knowledge of CTC biology and the potential clinical implications.
Collapse
Affiliation(s)
- Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, 02129, USA.,Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, 02129, USA.,Department of Surgery, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, 02129, USA.,Department of Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
60
|
Regis S, Caliendo F, Dondero A, Casu B, Romano F, Loiacono F, Moretta A, Bottino C, Castriconi R. TGF-β1 Downregulates the Expression of CX 3CR1 by Inducing miR-27a-5p in Primary Human NK Cells. Front Immunol 2017; 8:868. [PMID: 28791023 PMCID: PMC5524732 DOI: 10.3389/fimmu.2017.00868] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX3CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX3CR1. We demonstrated the functional interaction of miR-27a-5p with the 3′ untranslated region (3′UTR) of CX3CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX3CR1 3′UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX3CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX3CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX3CR1 expression.
Collapse
Affiliation(s)
- Stefano Regis
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Caliendo
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Filomena Romano
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, Ospedale Policlinico San Martino IRCCS, Genova, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, Istituto Giannina Gaslini, Genova, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Genova, Italy
| |
Collapse
|
61
|
Bellora F, Dondero A, Corrias MV, Casu B, Regis S, Caliendo F, Moretta A, Cazzola M, Elena C, Vinti L, Locatelli F, Bottino C, Castriconi R. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:1516-1525. [PMID: 28701512 DOI: 10.4049/jimmunol.1601695] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 06/11/2017] [Indexed: 12/22/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses.
Collapse
Affiliation(s)
- Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Alessandra Dondero
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Beatrice Casu
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | | | - Fabio Caliendo
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy; .,Centro di Eccellenza per la Ricerca Biomedica, Università degli Studi di Genova, 16132 Genoa, Italy
| | - Mario Cazzola
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy.,Dipartimento di Onco-Ematologia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, 27100 Pavia, Italy; and
| | - Chiara Elena
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Luciana Vinti
- Dipartimento di Onco-Ematologia Pediatrica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Franco Locatelli
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy.,Dipartimento di Onco-Ematologia Pediatrica, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Cristina Bottino
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy.,Istituto Giannina Gaslini, 16148 Genoa, Italy
| | - Roberta Castriconi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, 16132 Genoa, Italy.,Centro di Eccellenza per la Ricerca Biomedica, Università degli Studi di Genova, 16132 Genoa, Italy
| |
Collapse
|
62
|
Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Müller R. The Unique Molecular and Cellular Microenvironment of Ovarian Cancer. Front Oncol 2017; 7:24. [PMID: 28275576 PMCID: PMC5319992 DOI: 10.3389/fonc.2017.00024] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
The reciprocal interplay of cancer cells and host cells is an indispensable prerequisite for tumor growth and progression. Cells of both the innate and adaptive immune system, in particular tumor-associated macrophages (TAMs) and T cells, as well as cancer-associated fibroblasts enter into a malicious liaison with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Ovarian cancer, the most lethal of all gynecological malignancies, is characterized by a unique TME that enables specific and efficient metastatic routes, impairs immune surveillance, and mediates therapy resistance. A characteristic feature of the ovarian cancer TME is the role of resident host cells, in particular activated mesothelial cells, which line the peritoneal cavity in huge numbers, as well as adipocytes of the omentum, the preferred site of metastatic lesions. Another crucial factor is the peritoneal fluid, which enables the transcoelomic spread of tumor cells to other pelvic and peritoneal organs, and occurs at more advanced stages as a malignancy-associated effusion. This ascites is rich in tumor-promoting soluble factors, extracellular vesicles and detached cancer cells as well as large numbers of T cells, TAMs, and other host cells, which cooperate with resident host cells to support tumor progression and immune evasion. In this review, we summarize and discuss our current knowledge of the cellular and molecular interactions that govern this interplay with a focus on signaling networks formed by cytokines, lipids, and extracellular vesicles; the pathophysiologial roles of TAMs and T cells; the mechanism of transcoelomic metastasis; and the cell type selective processing of signals from the TME.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), Philipps University, Marburg, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Magdalena Huber
- Institute of Medical Microbiology and Hygiene, Biomedical Research Center, Philipps University , Marburg , Germany
| | - Till Adhikary
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital of Giessen and Marburg (UKGM) , Marburg , Germany
| | - Silke Reinartz
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, Center for Tumor Biology and Immunology (ZTI), Philipps University , Marburg , Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University , Marburg , Germany
| |
Collapse
|
63
|
Sommariva M, Le Noci V, Storti C, Bianchi F, Tagliabue E, Balsari A, Sfondrini L. Activation of NK cell cytotoxicity by aerosolized CpG-ODN/poly(I:C) against lung melanoma metastases is mediated by alveolar macrophages. Cell Immunol 2017; 313:52-58. [PMID: 28089340 DOI: 10.1016/j.cellimm.2017.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Controversies remain about NK cells direct responsiveness to Toll-like receptor (TLR) agonists or dependence on macrophages. In a melanoma lung metastasis model, aerosolized TLR9 and TLR3 agonists have been reported to induce antitumor immunity through NK cells activation. In the current study, we demonstrated that in vitro TLR9/TLR3 stimulation induced IFN-γ secretion by NK cells, but an increase in their cytotoxicity was detected only after NK cells co-culture with in vitro TLR9/TLR3 agonists pretreated alveolar macrophages. Alveolar macrophages from melanoma lung metastases-bearing mice, treated with aerosolized TLR agonists, also promoted NK cell cytotoxicity. Activated NK cells from lungs of melanoma metastases-bearing mice that were given aerosolized TLR9/TLR3 agonists were able to polarize naive alveolar macrophages toward a M1-like phenotype. Our results demonstrate that activation of NK cells in the lung after TLR engagement is mediated by alveolar macrophages and that activated NK cells shape macrophage behavior.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Chiara Storti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| | - Elda Tagliabue
- Molecular Targets Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy; Molecular Targets Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133 Milan, Italy.
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, via Magiagalli 31, 20133 Milan, Italy.
| |
Collapse
|
64
|
Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 2016; 14:155-167. [PMID: 27644321 DOI: 10.1038/nrclinonc.2016.144] [Citation(s) in RCA: 435] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metastatic spread of tumour cells is the main cause of cancer-related deaths. Understanding the mechanisms of tumour-cell dissemination has, therefore, become an important focus for cancer research. In patients with cancer, disseminated cancer cells are often detectable in the peripheral blood as circulating tumour cells (CTCs) and in the bone marrow or lymph nodes as disseminated tumour cells (DTCs). The identification and characterization of CTCs and DTCs has yielded important insights into the mechanisms of metastasis, resulting in a better understanding of the molecular alterations and profiles underlying drug resistance. Given the expanding role of immunotherapies in the treatment of cancer, interactions between tumour cells and immune cells are the subject of intense research. Theoretically, cancer cells that exit the primary tumour site - leaving the protection of the typically immunosuppressive tumour microenvironment - will be more vulnerable to attack by immune effector cells; thus, the survival of tumour cells after dissemination might be the 'Achilles' heel' of metastatic progression. In this Review, we discuss findings relating to the interactions of CTCs and DTCs with the immune system, in the context of cancer immuno-editing, evasion from immune surveillance, and formation of metastases.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.,Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sabine Riethdorf
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
65
|
|
66
|
NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy? J Immunol Res 2016; 2016:4684268. [PMID: 27294158 PMCID: PMC4880686 DOI: 10.1155/2016/4684268] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/10/2016] [Indexed: 12/31/2022] Open
Abstract
Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue.
Collapse
|
67
|
De Souza A, Tinguely M, Burghart DR, Berisha A, Mertz KD, Kempf W. Characterization of the tumor microenvironment in primary cutaneous CD30-positive lymphoproliferative disorders: a predominance of CD163-positive M2 macrophages. J Cutan Pathol 2016; 43:579-88. [PMID: 27080437 DOI: 10.1111/cup.12719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 01/13/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The tumor microenvironment is essential for tumor survival, growth and progression. There are only a few studies on the tumor microenvironment in cutaneous CD30-positive lymphoproliferative disorders. METHODS We assessed the composition of the tumor microenvironment using immunohistochemistry studies in skin biopsies from cases diagnosed with lymphomatoid papulosis (LyP: 18 specimens), primary cutaneous anaplastic large-cell lymphoma (PC-ALCL: 8 specimens), and reactive diseases harboring CD30-positive cells (18 specimens). RESULTS The predominant cells present in LyP and PC-ALCL were CD163+ M2 macrophages (44.7%, 35%), followed by CD8+ tumor infiltrating lymphocytes (11%, 15%), FOXP3+ T-regulatory cells (9%, 4.5%) and programmed cell death 1(PD-1) + lymphocytes (2.2%, 6.8%). In contrast, CD30-positive reactive inflammatory and infectious disorders were characterized by higher numbers of CD123+ plasmacytoid dendritic cells (6.3%) when compared to LyP (1%), and PC-ALCL (1.1%). CONCLUSIONS Key differences exist between the microenvironment of CD30-positive lymphoproliferative disorders and reactive conditions harboring CD30-positive lymphocytes. The high number of tumor associated macrophages, and the close vicinity of these immune cells to the CD30-positive tumor cells might suggest that tumor associated macrophages have direct influence on tumorigenesis in LyP and ALCL. Therefore, modulation of M2 macrophages may represent a new therapeutic strategy in cutaneous CD30-positive lymphoproliferative disorders.
Collapse
Affiliation(s)
- Aieska De Souza
- Kempf and Pfaltz Histologische Diagnostik, Zürich, Switzerland.,Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | - Daniel R Burghart
- Kempf and Pfaltz Histologische Diagnostik, Zürich, Switzerland.,Department of Economics, California State University Sacramento, Sacramento, CA, USA
| | | | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Werner Kempf
- Kempf and Pfaltz Histologische Diagnostik, Zürich, Switzerland
| |
Collapse
|
68
|
Chiossone L, Conte R, Spaggiari GM, Serra M, Romei C, Bellora F, Becchetti F, Andaloro A, Moretta L, Bottino C. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses. Stem Cells 2016; 34:1909-21. [PMID: 27015881 DOI: 10.1002/stem.2369] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/07/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921.
Collapse
Affiliation(s)
- Laura Chiossone
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Romana Conte
- Laboratory of Immunology, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Martina Serra
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Cristina Romei
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Francesca Bellora
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Flavio Becchetti
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Antonio Andaloro
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Cristina Bottino
- Laboratory of Clinical and Experimental Immunology, G. Gaslini Institute, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
69
|
Samarani S, Allam O, Sagala P, Aldabah Z, Jenabian MA, Mehraj V, Tremblay C, Routy JP, Amre D, Ahmad A. Imbalanced production of IL-18 and its antagonist in human diseases, and its implications for HIV-1 infection. Cytokine 2016; 82:38-51. [PMID: 26898120 DOI: 10.1016/j.cyto.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 12/16/2022]
Abstract
IL-18 is a pleiotropic and multifunctional cytokine that belongs to the IL-1 family. It is produced as a biologically inactive precursor, which is cleaved into its active mature form mainly by caspase-1. The caspase becomes active from its inactive precursor (procaspase-1) upon assembly of an inflammasome. Because of IL-18's potential pro-inflammatory and tissue destructive effects, its biological activities are tightly controlled in the body by its naturally occurring antagonist called IL-18BP. The antagonist is produced in the body both constitutively and in response to an increased production of IL-18 as a negative feedback mechanism. Under physiological conditions, most of IL-18 in the circulation is bound with IL-18BP and is inactive. However, an imbalance in the production of IL-18 and its antagonist (an increase in the production of IL-18 with a decrease, no increase or an insufficient increase in the production of IL-18BP) has been described in many chronic inflammatory diseases in humans. The imbalance results in an increase in the concentrations of free IL-18 (unbound with its antagonist) resulting in increased biological activities of the cytokine that contribute towards pathogenesis of the disease. In this article, we provide an overview of the current biology of IL-18 and its antagonist, discuss how the imbalance occurs in HIV infections and how it contributes towards development of AIDS and other non-AIDS-associated clinical conditions occurring in HIV-infected individuals undergoing combination anti-retroviral therapy (cART). Finally, we discuss challenges facing immunotherapeutic strategies aimed at restoring balance between IL-18 and its antagonist in these patients.
Collapse
Affiliation(s)
- Suzanne Samarani
- Laboratory of Innate Immunity, Canada; CHU-Sainte-Justine Research Center, Canada; Department of Microbiology, Infectiology & Immunology, Canada; University of Montreal, Montreal, Canada
| | - Ossama Allam
- Laboratory of Innate Immunity, Canada; CHU-Sainte-Justine Research Center, Canada; Department of Microbiology, Infectiology & Immunology, Canada; University of Montreal, Montreal, Canada
| | - Patrick Sagala
- Laboratory of Innate Immunity, Canada; CHU-Sainte-Justine Research Center, Canada; Department of Microbiology, Infectiology & Immunology, Canada; University of Montreal, Montreal, Canada
| | - Zainab Aldabah
- Laboratory of Innate Immunity, Canada; CHU-Sainte-Justine Research Center, Canada; Department of Microbiology, Infectiology & Immunology, Canada; University of Montreal, Montreal, Canada
| | | | - Vikram Mehraj
- McGill University Health Center, McGill University, Montreal, Canada
| | - Cécile Tremblay
- Department of Microbiology, Infectiology & Immunology, Canada; Division of Infectious Diseases, CHUM, Canada; University of Montreal, Montreal, Canada
| | - Jean-Pierre Routy
- McGill University Health Center, McGill University, Montreal, Canada
| | - Devendra Amre
- CHU-Sainte-Justine Research Center, Canada; Department of Pediatrics, Canada; University of Montreal, Montreal, Canada
| | - Ali Ahmad
- Laboratory of Innate Immunity, Canada; CHU-Sainte-Justine Research Center, Canada; Department of Microbiology, Infectiology & Immunology, Canada; University of Montreal, Montreal, Canada.
| |
Collapse
|
70
|
Cantoni C, Grauwet K, Pietra G, Parodi M, Mingari MC, Maria AD, Favoreel H, Vitale M. Role of NK cells in immunotherapy and virotherapy of solid tumors. Immunotherapy 2015; 7:861-82. [PMID: 26314197 DOI: 10.2217/imt.15.53] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although natural killer (NK) cells are endowed with powerful cytolytic activity against cancer cells, their role in different therapies against solid tumors has not yet been fully elucidated. Their interactions with various elements of the tumor microenvironment as well as their possible effects in contributing to and/or limiting oncolytic virotherapy render this potential immunotherapeutic tool still difficult to exploit at the bedside. Here, we will review the current literature with the aim of providing new hints to manage this powerful cell type in future innovative therapies, such as the use of NK cells in combination with new cytokines, specific mAbs (inducing ADCC), Tyr-Kinase inhibitors, immunomodulatory drugs and/or the design of oncolytic viruses aimed at optimizing the effect of NK cells in virotherapy.
Collapse
Affiliation(s)
- Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,Istituto Giannina Gaslini, Genova, Italy
| | - Korneel Grauwet
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Gabriella Pietra
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Monica Parodi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy
| | - Andrea De Maria
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy.,IRCCS AOU San Martino-IST Genova, Genova, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Herman Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology & Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
71
|
Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 2014; 97:665-75. [DOI: 10.1189/jlb.5ru0714-360rr] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
72
|
Jung M, Mertens C, Brüne B. Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology 2014; 220:295-304. [PMID: 25260218 DOI: 10.1016/j.imbio.2014.09.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/07/2014] [Accepted: 09/05/2014] [Indexed: 12/28/2022]
Abstract
Macrophages are central in regulating iron homeostasis, which is tightly linked to their versatile role during innate immunity. They sequester iron by phagocytosis of senescent erythrocytes and represent a major source of available iron in the body. Macrophage iron homeostasis is coupled to the functional heterogeneity and plasticity of these cells, with their extreme roles during inflammation, immune modulation, and resolution of inflammation. It is now appreciated that the macrophage polarization process dictates expression profiles of genes involved in iron metabolism. Therefore, macrophages have evolved a multitude of mechanisms to sequester, transport, store, and release iron. A new, enigmatic protein entering the iron scene and affecting the macrophage phenotype is lipocalin-2. Iron sequestration in macrophages depletes the microenvironment, thereby limiting extracellular pathogen or tumor growth, while fostering inflammation. In contrast, iron release from macrophages contributes to bystander cell proliferation, which is important for tissue regeneration and repair. This dichotomy is also reflected by the dual role of lipocalin-2 in macrophages. Unfortunately, the iron release macrophage phenotype is also a characteristic of tumor-associated macrophages and stimulates tumor cell survival and growth. Iron sequestration versus its release is now appreciated to be associated with the macrophage polarization program and can be used to explain a number of biological functions attributed to distinct macrophage phenotypes. Here we discuss macrophage iron homeostasis with a special focus on lipocalin-2 related to the formation and function of tumor-associated macrophages.
Collapse
Affiliation(s)
- Michaela Jung
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Christina Mertens
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
73
|
Dar AA, Patil RS, Chiplunkar SV. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Front Immunol 2014; 5:366. [PMID: 25132835 PMCID: PMC4116803 DOI: 10.3389/fimmu.2014.00366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other's activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy.
Collapse
Affiliation(s)
- Asif Amin Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Rushikesh Sudam Patil
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| | - Shubhada Vivek Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre , Navi Mumbai , India
| |
Collapse
|
74
|
Muccioli M, Benencia F. Toll-like Receptors in Ovarian Cancer as Targets for Immunotherapies. Front Immunol 2014; 5:341. [PMID: 25101083 PMCID: PMC4105689 DOI: 10.3389/fimmu.2014.00341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/04/2014] [Indexed: 01/21/2023] Open
Abstract
In the last decade, it has become apparent that toll-like receptor (TLR) signaling can play an important role in ovarian cancer (OC) progression. Interestingly, TLR activation in immune cells can help activate an anti-tumor response, while TLR signaling in tumor cells themselves is often associated with cancer-promoting inflammation. For example, it has been shown that TLR activation in dendritic cells can result in more effective antigen presentation to T cells, thereby favoring tumor eradication. However, aberrant TLR expression in OC cells is associated with more aggressive disease (likely due to recruitment of pro-tumoral leukocytes to the tumor site) and has also been implicated in resistance to mainstream chemotherapy. The delicate balance of TLR activation in the tumor microenvironment in different cell types altogether help shape the inflammatory profile and outcome of tumor growth or regression. With further studies, specific activation or repression of TLRs may be harnessed to offer novel immunotherapies or adjuvants to traditional chemotherapy for some OC patients. Herewith, we review recent literature on basic and translational research concerning therapeutic targeting of TLR pathways for the treatment of OC.
Collapse
Affiliation(s)
- Maria Muccioli
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA
| | - Fabian Benencia
- Molecular and Cell Biology Program, Ohio University , Athens, OH , USA ; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University , Athens, OH , USA
| |
Collapse
|
75
|
Colvin EK. Tumor-associated macrophages contribute to tumor progression in ovarian cancer. Front Oncol 2014; 4:137. [PMID: 24936477 PMCID: PMC4047518 DOI: 10.3389/fonc.2014.00137] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/21/2014] [Indexed: 01/21/2023] Open
Abstract
Ovarian cancer is the leading cause of death in women with gynecological malignancy and improvements in current treatments are needed. As with many other solid cancers, the ovarian tumor microenvironment is emerging as a key player in tumor progression and a potential therapeutic target. The tumor microenvironment contains several non-malignant cell types that are known to contribute to tumor progression and metastasis. Included in this population of non-malignant cells are several different types of immune cells, of which tumor-associated macrophages (TAMs) are the most abundant. An increasing amount of evidence is emerging to suggest that TAMs display a unique activation profile in ovarian tumors and are able to create an immunosuppressive microenvironment, allowing tumors to evade immune detection and promoting tumor progression. Therefore, an increased understanding of how these immune cells interact with tumor cells and the microenvironment will greatly benefit the development of more effective immunotherapies to treat ovarian cancer. This review focuses on the role of TAMs in the ovarian tumor microenvironment and how they promote tumor progression.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney , St. Leonards, NSW , Australia
| |
Collapse
|
76
|
Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and tumor microenvironment on NK-cell function. Eur J Immunol 2014; 44:1582-92. [DOI: 10.1002/eji.201344272] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/21/2014] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Massimo Vitale
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
- Centro di Eccellenza per la Ricerca Biomedica; Genova Italy
- Istituto Giannina Gaslini; Genova Italy
| | - Gabriella Pietra
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
| | - Maria Cristina Mingari
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST; Istituto Nazionale per la Ricerca sul Cancro; Genova Italy
- Dipartimento di Medicina Sperimentale; Università di Genova; Genova Italy
- Centro di Eccellenza per la Ricerca Biomedica; Genova Italy
| | | |
Collapse
|
77
|
Marras F, Bozzano F, Ascierto ML, De Maria A. Baseline and Dynamic Expression of Activating NK Cell Receptors in the Control of Chronic Viral Infections: The Paradigm of HIV-1 and HCV. Front Immunol 2014; 5:305. [PMID: 25071766 PMCID: PMC4078246 DOI: 10.3389/fimmu.2014.00305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/16/2014] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cell function is regulated by a balance between the triggering of activating and inhibitory receptors expressed on their surface. A relevant effort has been focused so far on the study of KIR carriage/expression setting the basis for NK cell education and self-tolerance. Focus on the evolution and regulation of activating NK receptors has lagged behind so far. Our understanding of activating receptor expression and regulation has recently improved by evidences derived from in vitro and in vivo studies. Virus infection - either acute or chronic - determines preferential expansion of NK cells with specific phenotype, activating receptors, and with recall-like functional activity. Studies on patients with viral infection (HIV and HCV) and specific diverging clinical courses confirm that inter-individual differences may exist in baseline expression of natural cytotoxicity receptors (NKp46 and NKp30). The findings that patients with divergent clinical courses have different kinetics of activating receptor density expression upon NK cell activation in vitro provide an additional, time-dependent, functional parameter. Kinetic changes in receptor expression thus represent an additional parameter to basal receptor density expression. Different expression and inducibilities of activating receptors on NK cells contribute to the high diversity of NK cell populations and may help our understanding of the inter-individual differences in innate responses that underlie divergent disease courses.
Collapse
Affiliation(s)
| | - Federica Bozzano
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Maria Libera Ascierto
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Andrea De Maria
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- Department of Health Sciences, University of Genova, Genova, Italy
- Clinica Malattie Infettive, IRCCS A.O.U. S. Martino-IST, Istituto Nazionale Ricerca sul Cancro, Genova, Italy
- *Correspondence: Andrea De Maria, University of Genova, Largo R. Benzi 10, Genova 16132, Italy e-mail:
| |
Collapse
|