51
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C-H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021; 60:6752-6756. [PMID: 33348460 PMCID: PMC7985879 DOI: 10.1002/anie.202015896] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 11/12/2022]
Abstract
S=2 oxoiron(IV) species act as reactive intermediates in the catalytic cycle of nonheme iron oxygenases. The few available synthetic S=2 FeIV =O complexes known to date are often limited to trigonal bipyramidal and very rarely to octahedral geometries. Herein we describe the generation and characterization of an S=2 pseudotetrahedral FeIV =O complex 2 supported by the sterically demanding 1,4,7-tri-tert-butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very potent oxidant in hydrogen atom abstraction (HAA) reactions with large non-classical deuterium kinetic isotope effects, suggesting hydrogen tunneling contributions. For sterically encumbered substrates, direct HAA is impeded and an alternative oxidative asynchronous proton-coupled electron transfer mechanism prevails, which is unique within the nonheme oxoiron community. The high reactivity and the similar spectroscopic parameters make 2 one of the best electronic and functional models for a biological oxoiron(IV) intermediate of taurine dioxygenase (TauD-J).
Collapse
Affiliation(s)
- Katrin Warm
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Alice Paskin
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Uwe Kuhlmann
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC)Stiftstraße 34–3645470MülheimGermany
| | - Marcel Swart
- Institut de Química Computacional i CatàlisiUniversitat de GironaCampus Montilivi (Ciències)Maria Aurèlia Capmany i Farnés, 6917003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - Michael Haumann
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Holger Dau
- Institut für PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Peter Hildebrandt
- Institut für ChemieTechnische Universität Berlin, Fakultät IIStraße des 17. Juni 13510623BerlinGermany
| | - Kallol Ray
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
52
|
Warm K, Paskin A, Kuhlmann U, Bill E, Swart M, Haumann M, Dau H, Hildebrandt P, Ray K. A Pseudotetrahedral Terminal Oxoiron(IV) Complex: Mechanistic Promiscuity in C−H Bond Oxidation Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Alice Paskin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion (CEC) Stiftstraße 34–36 45470 Mülheim Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi Universitat de Girona Campus Montilivi (Ciències) Maria Aurèlia Capmany i Farnés, 69 17003 Girona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Michael Haumann
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie Technische Universität Berlin, Fakultät II Straße des 17. Juni 135 10623 Berlin Germany
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
53
|
Ehret F, Filippou V, Blickle S, Bubrin M, Záliš S, Kaim W. Structural and Oxidation State Alternatives in Platinum and Palladium Complexes of a Redox-Active Amidinato Ligand. Chemistry 2021; 27:3374-3381. [PMID: 32959415 PMCID: PMC7986709 DOI: 10.1002/chem.202003636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/07/2022]
Abstract
Reaction of [Pt(DMSO)2 Cl2 ] or [Pd(MeCN)2 Cl2 ] with the electron-rich LH=N,N'-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2 ] (1) but dinuclear [Pd2 L4 ] (2), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L- . The reversibly accessible cations [PtL2 ]+ and [Pd2 L4 ]+ were also studied, the latter as [Pd2 L4 ][B{3,5-(CF3 )2 C6 H3 }4 ] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII (L- )2 ] or [Pt. (L )2 ], [PtII (L0.5- )2 ]+ or [PtIII (L- )2 ]+ , [(PdII )2 (μ-L- )4 ] or [(Pd1.5 )2 (μ-L0.75- )4 ], and [(Pd2.5 )2 (μ-L- )4 ]+ or [(PdII )2 (μ-L0.75- )4 ]+ . In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2 ] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2 L4 ], and the dimetal (Pd2 4+ →Pd2 5+ ) instead of ligand (L- →L ) oxidation of the dinuclear palladium compound.
Collapse
Affiliation(s)
- Fabian Ehret
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Vasileios Filippou
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Svenja Blickle
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Martina Bubrin
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| | - Stanislav Záliš
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223, Prague, Czech Republic
| | - Wolfgang Kaim
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70550, Stuttgart, Germany
| |
Collapse
|
54
|
Damiano C, Sonzini P, Caselli A, Gallo E. Imido complexes of groups 8–10 active in nitrene transfer reactions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
55
|
Li L, Beckers H, Stüker T, Lindič T, Schlöder T, Andrae D, Riedel S. Molecular oxofluorides OMFn of nickel, palladium and platinum: oxyl radicals with moderate ligand field inversion. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01151g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-valent late transition metal oxo compounds attracted attention because of their peculiar metal–oxygen bond. Their oxo ligands exhibit an electrophilic and distinct radical oxyl (O˙−) rather than the more common nucleophilic (O2−) character.
Collapse
Affiliation(s)
- Lin Li
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Helmut Beckers
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Tony Stüker
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| | - Tilen Lindič
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Theoretische Chemie
- 14195 Berlin
- Germany
| | - Tobias Schlöder
- Karlsruher Institut für Technologie
- Institut für Nanotechnologie
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Dirk Andrae
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Theoretische Chemie
- 14195 Berlin
- Germany
| | - Sebastian Riedel
- Freie Universität Berlin
- Institut für Chemie und Biochemie – Anorganische Chemie
- 14195 Berlin
- Germany
| |
Collapse
|
56
|
Chatterjee B, Chang W, Werlé C. Molecularly Controlled Catalysis – Targeting Synergies Between Local and Non‐local Environments. ChemCatChem 2020. [DOI: 10.1002/cctc.202001431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Wei‐Chieh Chang
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| |
Collapse
|
57
|
Stüker T, Hohmann T, Beckers H, Riedel S. Fluoro Nitrenoid Complexes FN=MF
2
(M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF
3. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tony Stüker
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Thomas Hohmann
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Helmut Beckers
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| | - Sebastian Riedel
- Anorganische Chemie Institut für Chemie und Biochemie Freie Universität Berlin 14195 Berlin Germany
| |
Collapse
|
58
|
Stüker T, Hohmann T, Beckers H, Riedel S. Fluoro Nitrenoid Complexes FN=MF 2 (M=Co, Rh, Ir): Electronic Structure Dichotomy and Formation of Nitrido Fluorides N≡MF 3. Angew Chem Int Ed Engl 2020; 59:23174-23179. [PMID: 32886443 PMCID: PMC7756499 DOI: 10.1002/anie.202010950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/30/2020] [Indexed: 11/10/2022]
Abstract
The fluoronitrenoid metal complexes FNCoF2 and FNRhF2 as well as the first ternary RhVI and IrVI complexes NIrF3 and NRhF3 are described. They were obtained by the reaction of excited Group-9 metal atoms with NF3 and their IR spectra, isolated in solid rare gases (neon and argon), were recorded. Aided by the observed 14/15 N isotope shifts and quantum-chemical predictions, all four stretching fundamentals of the novel complexes were safely assigned. The F-N stretching frequencies of the fluoronitrenoid complexes FNCoF2 (1056.8 cm-1 ) and FNRhF2 (872.6 cm-1 ) are very different and their N-M bonds vary greatly. In FNCoF2 , the FN ligand is singly bonded to Co and bears considerable iminyl/nitrene radical character, while the N-Rh bond in FNRhF2 is a strong double bond with comparatively strong σ- and π-bonds. The anticipated rearrangement of FNCoF2 to the nitrido CoVI complex is predicted to be endothermic and was not observed.
Collapse
Affiliation(s)
- Tony Stüker
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Thomas Hohmann
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Helmut Beckers
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| | - Sebastian Riedel
- Anorganische ChemieInstitut für Chemie und BiochemieFreie Universität Berlin14195BerlinGermany
| |
Collapse
|
59
|
Sinclair MJ, Chaplin AB. Oxidative ring expansion of a low-coordinate palladacycle: Synthesis of a robust T-shaped alkylpalladium(II) complex. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
60
|
Martin J, Langer J, Elsen H, Harder S. Alkaline Earth Metal Imido Complexes with Doubly Deprotonated Amidine and β‐Diketimine Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Johannes Martin
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Jens Langer
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Holger Elsen
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| | - Sjoerd Harder
- Inorganic and Organometallic Chemistry Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Egerlandstraße 1 91058 Erlangen Germany
| |
Collapse
|
61
|
Liu S, Pu M, Wu YD, Zhang X. Computational Study on the Fate of Oxidative Directing Groups in Ru(II), Rh(III), and Pd(II) Catalyzed C-H Functionalization. J Org Chem 2020; 85:12594-12602. [PMID: 32931704 DOI: 10.1021/acs.joc.0c01775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of C-H bonds assisted by a directing group is indispensable in organic synthesis. Among them, utilizing oxidative directing groups that can serve as an internal oxidant to drive the Mn/Mn+2 catalytic cycle has recently become a promising strategy. A survey of published reactions involving N-alkoxyamides or N-acyloxyamides reveals that not all N-O bonds act as an internal oxidant. We have therefore systematically investigated the effect of the oxidative groups on a model reaction catalyzed by Ru(II), Rh(III), and Pd(II) complexes. DFT calculations show that N-methoxy and N-acyloxy groups oxidize Ru(II) to Ru(IV) and Rh(III) to Rh(V), but cannot oxidize a cyclo-Pd(II) intermediate to Pd(IV). The stability of the metal imido intermediate 7-M (M = Ru, Rh, and Pd) controls whether the oxidation occurs or not. N-Acyloxy groups show a more pronounced selectivity than N-methoxy to oxidize Ru(II) and Rh(III) species, while no distinctive effect is observed for Pd(II).
Collapse
Affiliation(s)
- Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
62
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Larson VA, Battistella B, Ray K, Lehnert N, Nam W. Iron and manganese oxo complexes, oxo wall and beyond. Nat Rev Chem 2020; 4:404-419. [PMID: 37127969 DOI: 10.1038/s41570-020-0197-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 11/09/2022]
Abstract
High-valent metal-oxo species with multiply-bonded M-O groups have been proposed as key intermediates in many biological and abiological catalytic oxidation reactions. These intermediates are implicated as active oxidants in alkane hydroxylation, olefin epoxidation and other oxidation reactions. For example, [FeivO(porphyrinato•-)]+ cofactors bearing π-radical porphyrinato•- ligands oxidize organic substrates in cytochrome P450 enzymes, which are common to many life forms. Likewise, high-valent Mn-oxo species are active for H2O oxidation in photosystem II. The chemistry of these native reactive species has inspired chemists to prepare highly oxidized transition-metal complexes as functional mimics. Although many synthetic Fe-O and Mn-O complexes now exist, the analogous oxo complexes of the late transition metals (groups 9-11) are rare. Indeed, late-transition-metal-oxo complexes of tetragonal (fourfold) symmetry should be electronically unstable, a rule commonly referred to as the 'oxo wall'. A few late metal-oxos have been prepared by targeting other symmetries or unusual spin states. These complexes have been studied using spectroscopic and theoretical methods. This Review describes mononuclear non-haem Fe-O and Mn-O species, the nature of the oxo wall and recent advances in the preparation of oxo complexes of Co, Ni and Cu beyond the oxo wall.
Collapse
|
64
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C-H Bond Activation by an Imido Cobalt(III) and the Resulting Amido Cobalt(II) Complex. Angew Chem Int Ed Engl 2020; 59:8527-8531. [PMID: 32119164 PMCID: PMC7318117 DOI: 10.1002/anie.201914718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/31/2022]
Abstract
The 3d-metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C-H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt-imido bond. It can cleanly cleave strong C-H bonds with a bond dissociation energy of up to 92 kcal mol-1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2 (NHt Bu)]- . Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt-mediated catalytic application for substrate dehydrogenation using an organo azide is presented.
Collapse
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Clemens Pietzonka
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Florian Kraus
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - C. Gunnar Werncke
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
65
|
Comba P, Löhr A, Pfaff F, Ray K. Redox Potentials of High‐Valent Iron‐, Cobalt‐, and Nickel‐Oxido Complexes: Evidence for Exchange Enhanced Reactivity. Isr J Chem 2020. [DOI: 10.1002/ijch.202000038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peter Comba
- Universität Heidelberg Anorganisch-Chemisches Institut, INF 270 D-69120 Heidelberg Germany
- Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) D-69120 Heidelberg Germany
| | - Anna‐Maria Löhr
- Universität Heidelberg Anorganisch-Chemisches Institut, INF 270 D-69120 Heidelberg Germany
| | - Florian Pfaff
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin Germany 12489
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin Germany 12489
| |
Collapse
|
66
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020; 59:19494-19502. [DOI: 10.1002/anie.202004458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
67
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
68
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C‐H‐Bindungsaktivierung durch einen Imidocobalt(III)‐ und den resultierenden Amidocobalt(II)‐Komplex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Clemens Pietzonka
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Florian Kraus
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - C. Gunnar Werncke
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| |
Collapse
|
69
|
Evans MJ, Anker MD, Mouchfiq A, Lein M, Fulton JR. The “Metallo”‐Diels–Alder Reactions: Examining the Metalloid Behavior of Germanimines. Chemistry 2020; 26:2606-2609. [DOI: 10.1002/chem.201905693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew J. Evans
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Mathew D. Anker
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Ahmed Mouchfiq
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - Matthias Lein
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| | - J. Robin Fulton
- School of Chemical and Physical SciencesVictoria University of Wellington, PO Box 600 Wellington 6012 New Zealand
| |
Collapse
|
70
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
71
|
Peters M, Baabe D, Maekawa M, Bockfeld D, Zaretzke MK, Tamm M, Walter MD. Pogo-Stick Iron and Cobalt Complexes: Synthesis, Structures, and Magnetic Properties. Inorg Chem 2019; 58:16475-16486. [PMID: 31769666 DOI: 10.1021/acs.inorgchem.9b02411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis, structures, and magnetic properties of monomeric half-sandwich iron and cobalt imidazolin-2-iminato complexes have been comprehensively investigated. Salt metathesis reactions of [Cp'M(μ-I)]2 (1-M, M = Fe, Co; Cp' = η5-1,2,4-tri-tert-butylcyclopentadienyl) with [ImDippNLi]2 (ImDippN = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) furnishes the terminal half-sandwich compounds [Cp'M(NImDipp)] (2-M, M = Fe, Co), which can be regarded as models for elusive half-sandwich iron and cobalt imido complexes. X-ray diffraction analysis confirmed the structure motif of a one-legged piano stool. Complex 2-Co can also be prepared by an acid-base reaction between [Cp'Co{N(SiMe3)2}] (3-Co) and ImDippNH. The electronic and magnetic properties of 2-M and 3-Co were probed by 57Fe Mössbauer spectroscopy (M = Fe), X-band EPR spectroscopy (M = Co), and solid-state magnetic susceptibility measurements. In particular, the central metal atom adopts a high-spin (S = 2) state in 2-Fe, while the cobalt complex 2-Co represents a rare example of a Co(II) species with a coordination number different from six displaying a low-spin to high-spin spin-crossover (SCO) behavior. The experimental observations are complemented by DFT calculations.
Collapse
Affiliation(s)
- Marius Peters
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Miyuki Maekawa
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc-Kevin Zaretzke
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany
| |
Collapse
|
72
|
Li Y, Handunneththige S, Farquhar ER, Guo Y, Talipov MR, Li F, Wang D. Highly Reactive Co III,IV2(μ-O) 2 Diamond Core Complex That Cleaves C-H Bonds. J Am Chem Soc 2019; 141:20127-20136. [PMID: 31794198 DOI: 10.1021/jacs.9b09531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The selective activation of strong sp3 C-H bonds at mild conditions is a key step in many biological and synthetic transformations and an unsolved challenge for synthetic chemists. In nature, soluble methane monooxygenase (sMMO) is one representative example of nonheme dinuclear iron-dependent enzymes that activate strong sp3 C-H bonds by a high-valent diiron(IV) intermediate Q. To date, synthetic model complexes of sMMO-Q have shown limited abilities to oxidize strong C-H bonds. In this work, we generated a high-valent CoIII,IV2(μ-O)2 complex 3 supported by a tetradentate tris(2-pyridylmethyl)amine (TPA) ligand via one-electron oxidation of its CoIII2(μ-O)2 precursor 2. Characterization of 2 and 3 using X-ray absorption spectroscopy and DFT calculations showed that both species possess a diamond core structure with a short Co···Co distance of 2.78 Å. Furthermore, 3 is an EPR active species showing an S = 1/2 signal with clearly observable hyperfine splittings originated from the coupling of the 59Co nuclear spin with the electronic spin. Importantly, 3 is a highly reactive oxidant for sp3 C-H bonds, and an oxygenation reagent. 3 has the highest rate constant (1.5 M-1 s-1 at -60 °C) for oxidizing 9,10-dihydroanthracene (DHA) compared to diamond core complexes of other first-row transition metals including Mn, Fe and Cu reported previously. Specifically, 3 is about 4-5 orders of magnitude more reactive than the diiron analogs FeIII,IV2(μ-O)2 and FeIV2(μ-O)2 supported by TPA and related ligands. These findings shed light on future development of more reactive approaches for C-H bond activation by bioinspired dicobalt complexes.
Collapse
Affiliation(s)
- Yan Li
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Erik R Farquhar
- CWRU Center for Synchrotron Biosciences, NSLS-II , Brookhaven National Laboratory , Upton , New York 11973 , United States.,School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Yisong Guo
- Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Marat R Talipov
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Feifei Li
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics , University of Montana , Missoula , Montana 59803 , United States
| |
Collapse
|
73
|
Rebreyend C, Mouarrawis V, Siegler MA, van der Vlugt JI, de Bruin B. Steric Protection of Rhodium‐Nitridyl Radical Species. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christophe Rebreyend
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Valentinos Mouarrawis
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Maxime A. Siegler
- Department of Chemistry Johns Hopkins University 21218 Baltimore Maryland USA
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio‐Inspired Catalysis (HomKat) van ′t Hoff Institute for Molecular Sciences (HIMS) University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
74
|
Deegan MM, Peters JC. O-Functionalization of a cobalt carbonyl generates a terminal cobalt carbyne. Chem Commun (Camb) 2019; 55:9531-9534. [PMID: 31332413 DOI: 10.1039/c9cc04032c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite efforts toward extending multiple bonding motifs to late metal systems, examples of late transition metal carbynes remain scarce. Herein, we describe the synthesis of a series of L3Co(CO) complexes supported by a trisphosphine ligand framework, with the most reduced of these complexes being amenable to O-functionalization. This transformation provides access to the second reported example of a terminal Co-carbyne complex, in this case stabilized in a pseudotetrahedral geometry (i.e., L3Co[triple bond, length as m-dash]C-OSiR3). Its geometry makes its electronic structure suitable for comparison to structurally-related examples of terminal Co-imido and oxo species.
Collapse
Affiliation(s)
- Meaghan M Deegan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
75
|
Abstract
Metal-oxyl (Mn+-O•) complexes having an oxyl radical ligand, which are electronically equivalent to well-known metal-oxo (M(n+1)+═O) complexes, are surveyed as a new category of metal-based oxidants. Detection and characterization of Mn+-O• species have been made in some cases, although proposals and characterization of the species are mostly done on the basis of density functional theory (DFT) calculations. The reactivity of Mn+-O• complexes will provide a way to achieve potentially difficult oxidative conversion of substrates. This Viewpoint will provide state-of-the-art knowledge on the Mn+-O• species in terms of the formation, characterization, and DFT-based proposals to shed light on the characteristics of the intriguing oxidatively active species.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan.,Interdisciplinary Research Center for Catalytic Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
76
|
Andris E, Navrátil R, Jašík J, Srnec M, Rodríguez M, Costas M, Roithová J. M-O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes. Angew Chem Int Ed Engl 2019; 58:9619-9624. [PMID: 31083766 PMCID: PMC6618258 DOI: 10.1002/anie.201904546] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Indexed: 01/05/2023]
Abstract
Terminal oxo complexes of late transition metals are frequently proposed reactive intermediates. However, they are scarcely known beyond Group 8. Using mass spectrometry, we prepared and characterized two such complexes: [(N4Py)CoIII (O)]+ (1) and [(N4Py)CoIV (O)]2+ (2). Infrared photodissociation spectroscopy revealed that the Co-O bond in 1 is rather strong, in accordance with its lack of chemical reactivity. On the contrary, 2 has a very weak Co-O bond characterized by a stretching frequency of ≤659 cm-1 . Accordingly, 2 can abstract hydrogen atoms from non-activated secondary alkanes. Previously, this reactivity has only been observed in the gas phase for small, coordinatively unsaturated metal complexes. Multireference ab-initio calculations suggest that 2, formally a cobalt(IV)-oxo complex, is best described as cobalt(III)-oxyl. Our results provide important data on changes to metal-oxo bonding behind the oxo wall and show that cobalt-oxo complexes are promising targets for developing highly active C-H oxidation catalysts.
Collapse
Affiliation(s)
- Erik Andris
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Rafael Navrátil
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Juraj Jašík
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CASv. v. i., Dolejškova 2155/31822 3Prague 8Czech Republic
| | - Mònica Rodríguez
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of GironaCampus MontiliviGirona17071Spain
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of GironaCampus MontiliviGirona17071Spain
| | - Jana Roithová
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 2030/8128 43Prague 2Czech Republic
- Radboud University NijmegenInstitute for Molecules and MaterialsHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
77
|
Andris E, Navrátil R, Jašík J, Srnec M, Rodríguez M, Costas M, Roithová J. M−O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)‐Oxyl and Cobalt(III)‐Oxo Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Erik Andris
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Rafael Navrátil
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Juraj Jašík
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS v. v. i., Dolejškova 2155/3 1822 3 Prague 8 Czech Republic
| | - Mònica Rodríguez
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of Girona Campus Montilivi Girona 17071 Spain
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC)University of Girona Campus Montilivi Girona 17071 Spain
| | - Jana Roithová
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 128 43 Prague 2 Czech Republic
- Radboud University NijmegenInstitute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
78
|
Goodner SJ, Grünwald A, Heinemann FW, Munz D. Carbon Dioxide Activation by a Palladium Terminal Imido Complex. Aust J Chem 2019. [DOI: 10.1071/ch19323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We recently reported the first example of a palladium(ii) terminal imido complex. We proposed that this complex features exceptional high nucleophilicity at the nitrogen atom and a peculiar zwitterionic electronic structure with an anti-bonding highest-occupied molecular orbital (HOMO). This complex swiftly activated moderately acidic CH, OH, and NH bonds and also reacted with dihydrogen. However, unambiguous nucleophilic reactivity with substrates not featuring a hydrogen atom could not be observed. Herein, we now show that this nucleophilic complex also reacts with CO2 to give a ring-strained four-membered palladium(ii) carbamate complex. Remarkably, the same product is obtained in the reaction of the related bisamido complex, albeit at a slower reaction rate. Density functional theory calculations indicate that the addition of CO2 does not proceed via initial 1,2-addition across the Pd–N bond, but instead through nucleophilic attack by the imido (amido respectively) nitrogen atom.
Collapse
|
79
|
Domenianni LI, Fligg R, Schäfermeier A, Straub S, Beerhues J, Sarkar B, Vöhringer P. Molecular and electronic structure of an azidocobalt(iii) complex derived from X-ray crystallography, linear spectroscopy and quantum chemical calculations. Phys Chem Chem Phys 2019; 21:20393-20402. [DOI: 10.1039/c9cp04350k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray diffraction, UV/Vis electronic spectroscopy and Fourier-transform infrared spectroscopy are used with DFT and CAS calculations to explore the molecular and electronic structure of the cationic complex (cyclam)(diazido)cobalt(iii).
Collapse
Affiliation(s)
- Luis I. Domenianni
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Reinhold Fligg
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Annett Schäfermeier
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Steffen Straub
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| | - Julia Beerhues
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie
- Anorganische Chemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Peter Vöhringer
- Abteilung für Molekulare Physikalische Chemie
- Institut für Physikalische und Theoretische Chemie
- Rheinische Friedrich-Wilhelms-Universität
- 53115 Bonn
- Germany
| |
Collapse
|
80
|
Hoffbauer MR, Comanescu CC, Iluc VM. Reactivity of a Pd(II) carbene towards 2,6-dimesitylphenyldiazomethane and 2,6-dimesitylphenylazide. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
81
|
Peters M, Bannenberg T, Bockfeld D, Tamm M. Pentamethylcyclopentadienyl ruthenium “pogo stick” complexes with nitrogen donor ligands. Dalton Trans 2019; 48:4228-4238. [DOI: 10.1039/c9dt00577c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation and reactivity of an imidazolin-2-iminato ruthenium complex with a rare one-legged piano-stool (“pogo stick”) geometry is reported.
Collapse
Affiliation(s)
- Marius Peters
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
82
|
|
83
|
Nurdin L, Spasyuk DM, Fairburn L, Piers WE, Maron L. Oxygen-Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O 2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. J Am Chem Soc 2018; 140:16094-16105. [PMID: 30398331 DOI: 10.1021/jacs.8b07726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In reactions of significance to alternative energy schemes, metal catalysts are needed to overcome kinetically and thermodynamically difficult processes. Often, high-oxidation-state, high-energy metal oxo intermediates are proposed as mediators in elementary steps involving O-O bond cleavage and formation, but the mechanisms of these steps are difficult to study because of the fleeting nature of these species. Here we utilized a novel dianionic pentadentate ligand system that enabled a detailed mechanistic investigation of the protonation of a cobalt(III)-cobalt(III) peroxo dimer, a known intermediate in oxygen reduction catalysis to hydrogen peroxide. It was shown that double protonation occurs rapidly and leads to a low-energy O-O bond cleavage step that generates a Co(III) aquo complex and a highly reactive Co(IV) oxyl cation. The latter was probed computationally and experimentally implicated through chemical interception and isotope labeling experiments. In the absence of competing chemical reagents, it dimerizes and eliminates dioxygen in a step highly relevant to O-O bond formation in the oxygen evolution step in water oxidation. Thus, the study demonstrates both facile O-O bond cleavage and formation in the stoichiometric reduction of O2 to H2O with 2 equiv of Co(II) and suggests a new pathway for selective reduction of O2 to water via Co(III)-O-O-Co(III) peroxo intermediates.
Collapse
Affiliation(s)
- Lucie Nurdin
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Denis M Spasyuk
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laura Fairburn
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Warren E Piers
- Department of Chemistry , University of Calgary , 2500 University Drive NW , Calgary , Alberta T2N 1N4 , Canada
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS, LPCNO , 135 avenue de Rangueil , F-31077 Toulouse , France , and CNRS, LPCNO, F-31077 Toulouse, France
| |
Collapse
|
84
|
Grünwald A, Orth N, Scheurer A, Heinemann FW, Pöthig A, Munz D. An Isolable Terminal Imido Complex of Palladium and Catalytic Implications. Angew Chem Int Ed Engl 2018; 57:16228-16232. [PMID: 30312511 DOI: 10.1002/anie.201809152] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/21/2018] [Indexed: 11/12/2022]
Abstract
Herein, we report the isolation and a reactivity study of the first example of an elusive palladium(II) terminal imido complex. This scaffold is an alleged key intermediate for various catalytic processes, including the amination of C-H bonds. We demonstrate facile nitrene transfer with H-H, C-H, N-H, and O-H bonds and elucidate its role in catalysis. The high reactivity is due to the population of the antibonding highest occupied molecular orbital (HOMO), which results in unique charge separation within the closed-shell imido functionality. Hence, N atom transfer is not necessarily associated with the high valency of the metal (PdIII , PdIV ) or the open-shell character of a nitrene as commonly inferred.
Collapse
Affiliation(s)
- Annette Grünwald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Nicole Orth
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Frank W Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| | - Alexander Pöthig
- Technical University München, Catalysis Research Center, Ernst-Otto-Fischer-Straße 1, 85748, Garching, Germany
| | - Dominik Munz
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058, Erlangen, Germany
| |
Collapse
|
85
|
Grünwald A, Orth N, Scheurer A, Heinemann FW, Pöthig A, Munz D. Ein isolierbarer terminaler Imidkomplex des Palladiums und katalytische Implikationen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Annette Grünwald
- Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| | - Nicole Orth
- Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| | - Andreas Scheurer
- Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| | - Frank W. Heinemann
- Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| | - Alexander Pöthig
- Technische Universität MünchenCatalysis Research Center Ernst-Otto-Fischer-Straße 1 85748 Garching Deutschland
| | - Dominik Munz
- Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstraße 1 91058 Erlangen Deutschland
| |
Collapse
|
86
|
Andris E, Navrátil R, Jašík J, Puri M, Costas M, Que L, Roithová J. Trapping Iron(III)-Oxo Species at the Boundary of the "Oxo Wall": Insights into the Nature of the Fe(III)-O Bond. J Am Chem Soc 2018; 140:14391-14400. [PMID: 30336001 DOI: 10.1021/jacs.8b08950] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Terminal non-heme iron(IV)-oxo compounds are among the most powerful and best studied oxidants of strong C-H bonds. In contrast to the increasing number of such complexes (>80 thus far), corresponding one-electron-reduced derivatives are much rarer and presumably less stable, and only two iron(III)-oxo complexes have been characterized to date, both of which are stabilized by hydrogen-bonding interactions. Herein we have employed gas-phase techniques to generate and identify a series of terminal iron(III)-oxo complexes, all without built-in hydrogen bonding. Some of these complexes exhibit ∼70 cm-1 decrease in ν(Fe-O) frequencies expected for a half-order decrease in bond order upon one-electron reduction to an S = 5/2 center, while others have ν(Fe-O) frequencies essentially unchanged from those of their parent iron(IV)-oxo complexes. The latter result suggests that the added electron does not occupy a d orbital with Fe═O antibonding character, requiring an S = 3/2 spin assignment for the nascent FeIII-O- species. In the latter cases, water is found to hydrogen bond to the FeIII-O- unit, resulting in a change from quartet to sextet spin state. Reactivity studies also demonstrate the extraordinary basicity of these iron(III)-oxo complexes. Our observations show that metal-oxo species at the boundary of the "Oxo Wall" are accessible, and the data provide a lead to detect iron(III)-oxo intermediates in biological and biomimetic reactions.
Collapse
Affiliation(s)
- Erik Andris
- Department of Organic Chemistry, Faculty of Science , Charles University , Hlavova 2030/8 , 128 43 Prague 2 , Czech Republic
| | - Rafael Navrátil
- Department of Organic Chemistry, Faculty of Science , Charles University , Hlavova 2030/8 , 128 43 Prague 2 , Czech Republic
| | - Juraj Jašík
- Department of Organic Chemistry, Faculty of Science , Charles University , Hlavova 2030/8 , 128 43 Prague 2 , Czech Republic
| | - Mayank Puri
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC) , University of Girona , Campus Montilivi , Girona 17071 , Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science , Charles University , Hlavova 2030/8 , 128 43 Prague 2 , Czech Republic.,Institute for Molecules and Materials , Radboud University , Heyendaalseweg 135 , 6525 AJ Nijmegen , Netherlands
| |
Collapse
|
87
|
Murphy LJ, Ruddy AJ, McDonald R, Ferguson MJ, Turculet L. Activation of Molecular Hydrogen and Oxygen by PSiP Complexes of Cobalt. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800915] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Luke J. Murphy
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| | - Adam J. Ruddy
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| | - Robert McDonald
- X‐ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta CanadaT6G 2G2
| | - Michael J. Ferguson
- X‐ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta CanadaT6G 2G2
| | - Laura Turculet
- Department of Chemistry Dalhousie University 6274 Coburg Road P.O. Box 15000 Halifax Nova Scotia Canada, B3H 4R 2
| |
Collapse
|
88
|
Xu S, Huang B, Qiao G, Huang Z, Zhang Z, Li Z, Wang P, Zhang Z. Rh(III)-Catalyzed C-H Activation of Boronic Acid with Aryl Azide. Org Lett 2018; 20:5578-5582. [PMID: 30179495 DOI: 10.1021/acs.orglett.8b02247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Rh(III)-catalyzed C-H activation of boronic acid with aryl azide to obtain unsymmetric carbazoles, 1 H-indoles, or indolines has been developed. The reaction constructs dual distinct C-N bonds via sp2/sp3 C-H activation and rhodium nitrene insertion. Synthetically, this approach represents an access to widely used carbazole derivatives. The practical application to CBP and unsymmetric TCTA derivatives has also been performed. Mechanistic experiments and DFT calculations demonstrate that a five-membered rhodacycle species is the key intermediate.
Collapse
Affiliation(s)
- Shiyang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Baoliang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Guanyu Qiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Ziyue Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Zhen Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Zongyang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| | - Zhenhua Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, and Department of Applied Chemistry , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
89
|
Yousif M, Wannipurage D, Huizenga CD, Washnock-Schmid E, Peraino NJ, Ozarowski A, Stoian SA, Lord RL, Groysman S. Catalytic Nitrene Homocoupling by an Iron(II) Bis(alkoxide) Complex: Bulking Up the Alkoxide Enables a Wider Range of Substrates and Provides Insight into the Reaction Mechanism. Inorg Chem 2018; 57:9425-9438. [PMID: 30015481 DOI: 10.1021/acs.inorgchem.8b01418] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of HOR' (OR' = di-t-butyl-(3,5-diphenylphenyl)methoxide) with an iron(II) amide precursor forms the iron(II) bis(alkoxide) complex Fe(OR')2(THF)2 (2). 2 (5-10 mol %) serves as a catalyst for the conversion of aryl azides into the corresponding azoarenes. The highest yields are observed for aryl azides featuring two ortho substituents; other substitution patterns in the aryl azide precursor lead to moderate or low yields. The reaction of 2 with stoichiometric amounts (2 equiv) of the corresponding aryl azide shows the formation of azoarenes as the only organic products for the bulkier aryl azides (Ar = mesityl, 2,6-diethylphenyl). In contrast, formation of tetrazene complexes Fe(OR')2(ArNNNNAr) (3-6) is observed for the less bulky aryl azides (Ar = phenyl, 4-methylphenyl, 4-methoxyphenyl, 3,5-dimethylphenyl). The electronic structure of selected tetrazene complexes was probed by spectroscopy (field-dependent 57Fe Mössbauer and high-frequency EPR) and density functional theory calculations. These studies revealed that Fe(OR')2(ArNNNNAr) complexes contain high-spin ( S = 5/2) iron(III) centers exchange-coupled to tetrazene radical anions. Tetrazene complexes Fe(OR')2(ArNNNNAr) produce the corresponding azoarenes (ArNNAr) upon heating. Treatment of a tetrazene complex Fe(OR')2(ArNNNNAr) with a different azide (N3Ar') produces all three possible products ArNNAr, ArNNAr', and Ar'NNAr'. These experiments and quantum mechanics/molecular mechanics calculations exploring the reaction mechanism suggest that the tetrazene functionality serves as a masked form of the reactive iron mono(imido) species.
Collapse
Affiliation(s)
- Maryam Yousif
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Duleeka Wannipurage
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Caleb D Huizenga
- Department of Chemistry , Grand Valley State University , Allendale , Michigan 49401 , United States
| | - Elizabeth Washnock-Schmid
- Department of Chemistry , Grand Valley State University , Allendale , Michigan 49401 , United States
| | - Nicholas J Peraino
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Richard L Lord
- Department of Chemistry , Grand Valley State University , Allendale , Michigan 49401 , United States
| | - Stanislav Groysman
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
90
|
|
91
|
Fujita D, Sugimoto H, Morimoto Y, Itoh S. Noninnocent Ligand in Rhodium(III)-Complex-Catalyzed C–H Bond Amination with Tosyl Azide. Inorg Chem 2018; 57:9738-9747. [DOI: 10.1021/acs.inorgchem.8b00289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daiki Fujita
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuma Morimoto
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
92
|
Zhang LL, Wang XY, Jiang KY, Zhao BY, Yan HM, Zhang XY, Zhang ZX, Guo Z, Che CM. A theoretical study on the oxidation of alkenes to aldehydes catalyzed by ruthenium porphyrins using O 2 as the sole oxidant. Dalton Trans 2018; 47:5286-5297. [PMID: 29569676 DOI: 10.1039/c8dt00614h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Density functional theory (DFT) calculations were used to study the ruthenium porphyrin-catalyzed oxidation of styrene to generate an aldehyde. The results indicate that two reactive oxidants, dioxoruthenium and monooxoruthenium-superoxo porphyrins, participate in the catalytic oxidation. In the mechanism, the resultant monooxoruthenium porphyrin acts in the tandem epoxide isomerization (E-I) to selectively yield an aldehyde and generate a dioxoruthenium porphyrin, thereby triggering new oxidation reaction cycles. In this calculation, several key elements responsible for the observed oxidative ability have been established by using Frontier molecular orbital (FMO) theory, natural bond orbital (NBO) analysis, etc., which include the reaction energy, the spin exchange effect, the spin-state conversion process, and the energy level of the lowest unoccupied molecular orbitals (LUMOs) of the reactive oxidants. The comparative oxidative abilities of the ruthenium-oxo/superoxo compounds with different axial ligands are also investigated. The results suggest that the ruthenium-oxo/superoxo species featuring a chlorine axial ligand is more reactive than that substituted with oxygen. This tuneable reactivity can be understood when considering the different electronic characters of the two ligands and the effective atomic number rule (EAN).
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiang-Yun Wang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Kun-Yao Jiang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Bing-Yuan Zhao
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Hui-Min Yan
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Xiao-Yun Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhu-Xia Zhang
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Zhen Guo
- College of Material Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi, 030024, P. R. China.
| | - Chi-Ming Che
- Department of Chemistry, the University of Hong Kong, Hong Kong, P. R. China.
| |
Collapse
|
93
|
Abstract
Transition metal complexes bearing terminal oxido ligands are quite common, yet group 11 terminal oxo complexes remain elusive. Here we show that excited coinage metal atoms M (M = Au, Ag, Cu) react with OF2 to form hypofluorites FOMF and group 11 oxygen metal fluorides OMF2, OAuF and OAgF. These compounds have been characterized by IR matrix-isolation spectroscopy in conjunction with state-of-the-art quantum-chemical calculations. The oxygen fluorides are formed by photolysis of the initially prepared hypofluorites. The linear molecules OAgF and OAuF have a 3Σ − ground state with a biradical character. Two unpaired electrons are located mainly at the oxygen ligand in antibonding O−M π* orbitals. For the 2B2 ground state of the OMIIIF2 compounds only an O−M single bond arises and a significant spin-density contribution was found at the oxygen atom as well. While transition metal complexes bearing terminal oxido ligands are common, those of group 11 elements have yet to be experimentally observed. Here, Riedel and colleagues synthesise molecular oxygen fluorides of copper, silver and gold, and show that the oxo ligands possess radical character.
Collapse
|
94
|
Powers IG, Andjaba JM, Luo X, Mei J, Uyeda C. Catalytic Azoarene Synthesis from Aryl Azides Enabled by a Dinuclear Ni Complex. J Am Chem Soc 2018; 140:4110-4118. [PMID: 29488760 DOI: 10.1021/jacs.8b00503] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ian G. Powers
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - John M. Andjaba
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Xuyi Luo
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
95
|
Vreeken V, Baij L, de Bruin B, Siegler MA, van der Vlugt JI. N-Atom transfer via thermal or photolytic activation of a Co-azido complex with a PNP pincer ligand. Dalton Trans 2018; 46:7145-7149. [PMID: 28517014 DOI: 10.1039/c7dt01712j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal or photolytic activation of well-defined mononuclear [Co(N3)(PNP)] (PNP = 2,2'-bis(diisopropylphosphino)-4,4'-ditolylamido) results in the structurally characterized dinuclear species [Co(μ-N;κ3-P,N,N-PNPN)]2 (3), with two N-bridging phosphiniminato bridgeheads. Density Functional Theory (DFT) calculations indicate the intermediacy of a mononuclear cobalt-nitrido complex, followed by N-migratory insertion into a Co-P bond. Reaction of 3 with two equiv. HCl leads to rupture of the dimer with formation of mononuclear [CoCl(PNPNH)] (4) by protonation of the N-bridges.
Collapse
Affiliation(s)
- V Vreeken
- Homogeneous, Bioinspired and Supramolecular Group, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
96
|
Abstract
The isolation of terminal oxo complexes of the late transition metals promises new avenues in oxidation catalysis like the selective and catalytic hydroxylation of unreactive CH bonds, the activation of water, or the upgrading of olefins. While terminal oxo ligands are ubiquitous for early transition metals, well-characterized examples with group 10 metals remain hitherto elusive. In search for palladium terminal oxo complexes, the relative stability/reactivity of such compounds are evaluated computationally (CASSCF/NEVPT2; DFT). The calculations investigate only well-known ligand systems with established synthetic procedures and relevance for coordination chemistry and homogeneous catalysis. They delineate and quantify, which electronic properties of ancillary ligands are crucial for taming otherwise highly reactive terminal oxo intermediates. Notably, carbene ligands with both strong σ-donor and strong π-acceptor properties are best suited for the stabilization of palladium(ii) terminal oxo complexes, whereas ligands with a weaker ligand field lead to highly reactive complexes. Strongly donating ligands are an excellent choice for high-valent palladium(iv) terminal oxo compounds. Low coordinate palladium(ii) as well as high-valent palladium(iv) complexes are best suited for the activation of strong bonds.
Collapse
Affiliation(s)
- Dominik Munz
- Friedrich-Alexander Universität Erlangen-Nürnberg , Egerlandstr. 1 , 91058 Erlangen , Germany .
| |
Collapse
|
97
|
Mondal P, Pirovano P, Das A, Farquhar ER, McDonald AR. Hydrogen Atom Transfer by a High-Valent Nickel-Chloride Complex. J Am Chem Soc 2018; 140:1834-1841. [DOI: 10.1021/jacs.7b11953] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasenjit Mondal
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Paolo Pirovano
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Ankita Das
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R. Farquhar
- Case
Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven National Laboratory II, Upton, New York 11973, United States
| | - Aidan R. McDonald
- School
of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
98
|
Affiliation(s)
- Paolo Pirovano
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| | - Aidan R. McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute; Trinity College Dublin; The University of Dublin; College Green 2 Dublin Ireland
| |
Collapse
|
99
|
LaPierre EA, Clapson ML, Piers WE, Maron L, Spasyuk DM, Gendy C. Oxygen Atom Transfer to Cationic PCPNi(II) Complexes Using Amine-N-Oxides. Inorg Chem 2017; 57:495-506. [DOI: 10.1021/acs.inorgchem.7b02766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Etienne A. LaPierre
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Marissa L. Clapson
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA, UPS, LPCNO, 135
avenue de Rangueil, F-31077 Toulouse, France
| | - Denis M. Spasyuk
- Canadian Light Source, Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan, Canada S7N 2V3
| | - Chris Gendy
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
100
|
Zhang J, Wei WJ, Lu X, Yang H, Chen Z, Liao RZ, Yin G. Nonredox Metal Ions Promoted Olefin Epoxidation by Iron(II) Complexes with H2O2: DFT Calculations Reveal Multiple Channels for Oxygen Transfer. Inorg Chem 2017; 56:15138-15149. [DOI: 10.1021/acs.inorgchem.7b02463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jisheng Zhang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen-Jie Wei
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiaoyan Lu
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hang Yang
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhuqi Chen
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rong-Zhen Liao
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Key laboratory
of Material Chemistry for Energy Conversion and Storage, Ministry
of Education, Hubei Key Laboratory of Material Chemistry and Service
Failure, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|