51
|
Zhou JW, Tang JJ, Sun W, Wang H. PGK1 facilities cisplatin chemoresistance by triggering HSP90/ERK pathway mediated DNA repair and methylation in endometrial endometrioid adenocarcinoma. Mol Med 2019; 25:11. [PMID: 30925862 PMCID: PMC6441178 DOI: 10.1186/s10020-019-0079-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Endometrial carcinoma represents one of the most common cancer types of the female reproductive tract. If diagnosed at an early stage, the 5-year survival rate is promising. However, recurrence and chemoresistance remain problematic for at least 15% of the patients. In the present study, we aim to reveal the mechanism by which PGK1 regulates chemoresistance in endometrial carcinoma. Methods qPCR was performed to detect expression of PGK1 in clinical tissue samples of endometrial carcinoma. Specific shRNAs were employed to knockdown PGK1 expression in endometrial cancer cell lines. MTT assay was used to evaluate cell viability and cisplatin sensitivity of endometrial carcinoma cell lines. Western blot was performed to assess the effects of PGK1 knockdown on the expression levels of HSP90, DNA repair-associated proteins (c-JUN, FOSL1, and POLD1), and DNA methylation-related enzymes (DNMT1, DNMT3A and DNMT3B). Immunoprecipitation was performed to verify direct binding between PGK1 and HSP90. Results We first showed that PGK1 expression is elevated in tumor tissues of endometrial cancer, and high PGK1 levels are associated with clinical stages and metastasis. Knockdown of PGK1 inhibits proliferation of endometrial cancer cells, and enhances the inhibitory effect of cisplatin on cell viability. In addition, knockdown of PGK1 down-regulates the expression of DNA repair-related proteins, methylation-related enzymes, and total cellular methylation level. PGK1 was next shown to interact directly with HSP90 and exhibit pro-tumor effects by modulating the ATPase activity of HSP90. Conclusions We propose that PGK1 mediates DNA repair and methylation through the HSP90/ERK pathway, and eventually enhances the chemoresistance to cisplatin. The results provide new insights on functions of PGK1 and HSP90, which might make them as promising targets for endometrial cancer chemotherapy.
Collapse
Affiliation(s)
- Jing-Wei Zhou
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China.
| | - Juan-Juan Tang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Wei Sun
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| | - Hui Wang
- Department of Gynecology, Jiangsu Province Hospital, Room 1711, No.220, Jiangdongbei Road, Gulou District, Nanjing, 210000, Jiangsu Province, People's Republic of China
| |
Collapse
|
52
|
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019; 88:221-245. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Robert Hromas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| |
Collapse
|
53
|
Foley MC, Couto L, Rauf S, Boyke A. Insights into DNA polymerase δ’s mechanism for accurate DNA replication. J Mol Model 2019; 25:80. [DOI: 10.1007/s00894-019-3957-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/05/2019] [Indexed: 11/28/2022]
|
54
|
Wang C, Huang J, Zhang J, Wang H, Han Y, Copenhaver GP, Ma H, Wang Y. The Largest Subunit of DNA Polymerase Delta Is Required for Normal Formation of Meiotic Type I Crossovers. PLANT PHYSIOLOGY 2019; 179:446-459. [PMID: 30459265 PMCID: PMC6426404 DOI: 10.1104/pp.18.00861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
Meiotic recombination contributes to the maintenance of the association between homologous chromosomes (homologs) and ensures the accurate segregation of homologs during anaphase I, thus facilitating the redistribution of alleles among progeny. Meiotic recombination is initiated by the programmed formation of DNA double strand breaks, the repair of which requires DNA synthesis, but the role of DNA synthesis proteins during meiosis is largely unknown. Here, we hypothesized that the lagging strand-specific DNA Polymerase δ (POL δ) might be required for meiotic recombination, based on a previous analysis of DNA Replication Factor1 that suggested a role for lagging strand synthesis in meiotic recombination. In Arabidopsis (Arabidopsis thaliana), complete mutation of the catalytic subunit of POL δ, encoded by AtPOLD1, leads to embryo lethality. Therefore, we used a meiocyte-specific knockdown strategy to test this hypothesis. Reduced expression of AtPOLD1 in meiocytes caused decreased fertility and meiotic defects, including incomplete synapsis, the formation of multivalents, chromosome fragmentation, and improper segregation. Analysis of meiotic crossover (CO) frequencies showed that AtPOLD1RNAi plants had significantly fewer interference-sensitive COs than the wild type, indicating that AtPOL δ participates in type I CO formation. AtPOLD1RNAi atpol2a double mutant meiocytes displayed more severe meiotic phenotypes than those of either single mutant, suggesting that the function of AtPOLD1 and AtPOL2A is not identical in meiotic recombination. Given that POL δ is highly conserved among eukaryotes, we hypothesize that the described role of POL δ here in meiotic recombination likely exists widely in eukaryotes.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| | - Jun Zhang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yapeng Han
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Gregory P Copenhaver
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
55
|
Shen Y, Wang K, Qi RZ. The catalytic subunit of DNA polymerase δ is a nucleocytoplasmic shuttling protein. Exp Cell Res 2019; 375:36-40. [PMID: 30625304 DOI: 10.1016/j.yexcr.2019.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
The DNA polymerase δ catalytic subunit (PolD1) is a highly conserved protein with established functions in both the nucleus and the cytoplasm: whereas PolD1 participates in the replication and repair of nuclear DNA, it plays a role in the control of cytoplasmic microtubule growth by directly acting on microtubule-nucleator γ-tubulin ring complexes. Here, we show that PolD1 shuttles between the nucleus and the cytoplasm. PolD1 harbors two nuclear localization signals that mediate the active transport of PolD1 to the nucleus; conversely, PolD1 is exported from the nucleus by the exportin CRM1-dependent mechanism, a major nuclear-export pathway that mediates the export of various cargos. These findings suggest that the nucleocytoplasmic distribution of PolD1 is influenced by both the nuclear import and export activities of the protein.
Collapse
Affiliation(s)
- Yuehong Shen
- HKUST Shenzhen Research Institute and Shenzhen Key Laboratory of Edible & Medicinal Bioresources, Shenzhen, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Kexin Wang
- HKUST Shenzhen Research Institute and Shenzhen Key Laboratory of Edible & Medicinal Bioresources, Shenzhen, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert Z Qi
- HKUST Shenzhen Research Institute and Shenzhen Key Laboratory of Edible & Medicinal Bioresources, Shenzhen, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
56
|
Fiorillo C, D'Apice MR, Trucco F, Murdocca M, Spitalieri P, Assereto S, Baratto S, Morcaldi G, Minetti C, Sangiuolo F, Novelli G. Characterization of MDPL Fibroblasts Carrying the Recurrent p.Ser605del Mutation in POLD1 Gene. DNA Cell Biol 2018; 37:1061-1067. [PMID: 30388038 DOI: 10.1089/dna.2018.4335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mandibular hypoplasia, deafness, and progeroid features, with concomitant lipodystrophy, define a multisystem disorder named MDPL syndrome. MDPL has been associated with heterozygous mutations in POLD1 gene resulting in loss of DNA polymerase δ activity. In this study, we report clinical, genetic, and cellular studies of a 13-year-old Pakistani girl, presenting growth retardation, sensorineural deafness, altered distribution of subcutaneous adipose tissue, and insulin resistance. We performed Sanger sequencing of POLD1 gene in the proband and the healthy parents. Fibroblasts obtained from dermal biopsy were evaluated for the specific hallmarks of cellular senescence and for their response to the DNA-induced damage. Patient carried the recurrent heterozygous de novo in frame deletion (c.1812_1814delCTC, p.Ser605del ) within POLD1 gene, previously detected in 16 MDPL patients. In patient's fibroblasts we observed severe nuclear envelope anomalies, presence of micronuclei, accumulation of prelamin A, altered cell growth, and cellular senescence. In addition, we observed a persistence of DNA damage after cisplatin exposure, compared to control cells. In conclusion, the MDPL nuclear and cellular findings resemble features observed in other progeroid syndromes and familial lipodystrophies. Although further investigations will be necessary, these information could be used to establish targeted therapeutic approaches.
Collapse
Affiliation(s)
- Chiara Fiorillo
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | | | - Federica Trucco
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Michela Murdocca
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Paola Spitalieri
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Stefania Assereto
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Serena Baratto
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Guido Morcaldi
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Carlo Minetti
- 1 Paediatric Neurology and Neuromuscular Disorders, University of Genoa and Istituto G. Gaslini , Genoa, Italy
| | - Federica Sangiuolo
- 2 Laboratory of Medical Genetics, Tor Vergata Hospital , Rome, Italy
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| | - Giuseppe Novelli
- 2 Laboratory of Medical Genetics, Tor Vergata Hospital , Rome, Italy
- 3 Department of Biomedicine and Prevention, University of Rome "Tor Vergata ," Rome, Italy
| |
Collapse
|
57
|
Weßbecher IM, Brieger A. Phosphorylation meets DNA mismatch repair. DNA Repair (Amst) 2018; 72:107-114. [PMID: 30249411 DOI: 10.1016/j.dnarep.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
DNA mismatch repair (MMR) is a highly conserved process and ensures the removal of mispaired DNA bases and insertion-deletion loops right after replication. For this, a MutSα or MutSβ protein complex recognizes the DNA damage, MutLα nicks the erroneous strand, exonuclease 1 removes the wrong nucleotides, DNA polymerase δ refills the gap and DNA ligase I joins the fragments to seal the nicks and complete the repair process. The failure to accomplish these functions is associated with higher mutation rates and may lead to cancer, which highlights the importance of MMR by the maintenance of genomic stability. The post-replicative MMR implies that involved proteins are regulated at several levels, including posttranslational modifications (PTMs). Phosphorylation is one of the most common and major PTMs. Suitable with its regulatory force phosphorylation was shown to influence MMR factors thereby adjusting eukaryotic MMR activity. In this review, we summarized the current knowledge of the role of phosphorylation of MMR process involved proteins and their functional relevance.
Collapse
Affiliation(s)
| | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a.M., Germany.
| |
Collapse
|
58
|
Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. Proc Natl Acad Sci U S A 2018; 115:E9085-E9094. [PMID: 30201724 DOI: 10.1073/pnas.1807762115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.
Collapse
|
59
|
Ohashi E, Tsurimoto T. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:135-162. [PMID: 29357057 DOI: 10.1007/978-981-10-6955-0_7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) were identified in the late 1980s as essential factors for replication of simian virus 40 DNA in human cells, by reconstitution of the reaction in vitro. Initially, they were only thought to be involved in the elongation stage of DNA replication. Subsequent studies have demonstrated that PCNA functions as more than a replication factor, through its involvement in multiple protein-protein interactions. PCNA appears as a functional hub on replicating and replicated chromosomal DNA and has an essential role in the maintenance genome integrity in proliferating cells.Eukaryotes have multiple paralogues of sliding clamp, PCNA and its loader, RFC. The PCNA paralogues, RAD9, HUS1, and RAD1 form the heterotrimeric 9-1-1 ring that is similar to the PCNA homotrimeric ring, and the 9-1-1 clamp complex is loaded onto sites of DNA damage by its specific loader RAD17-RFC. This alternative clamp-loader system transmits DNA-damage signals in genomic DNA to the checkpoint-activation network and the DNA-repair apparatus.Another two alternative loader complexes, CTF18-RFC and ELG1-RFC, have roles that are distinguishable from the role of the canonical loader, RFC. CTF18-RFC interacts with one of the replicative DNA polymerases, Polε, and loads PCNA onto leading-strand DNA, and ELG1-RFC unloads PCNA after ligation of lagging-strand DNA. In the progression of S phase, these alternative PCNA loaders maintain appropriate amounts of PCNA on the replicating sister DNAs to ensure that specific enzymes are tethered at specific chromosomal locations.
Collapse
Affiliation(s)
- Eiji Ohashi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
60
|
SIRT1 promotes proliferation, migration, and invasion of breast cancer cell line MCF-7 by upregulating DNA polymerase delta1 (POLD1). Biochem Biophys Res Commun 2018; 502:351-357. [DOI: 10.1016/j.bbrc.2018.05.164] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/19/2022]
|
61
|
Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas. J Neurooncol 2018; 139:563-571. [PMID: 29923053 DOI: 10.1007/s11060-018-2915-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/27/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Lower-grade gliomas (LGGs, defined as WHO grades II and III) with 1p19q codeletion have increased chemosensitivity when compared to LGGs without 1p19q codeletion, but the mechanism is currently unknown. METHODS RNAseq data from 515 LGG patients in the Cancer Genome Atlas (TCGA) were analyzed to compare the effect of expression of the 9 DNA repair genes located on chromosome arms 1p and 19q on progression free survival (PFS) and overall survival (OS) between patients who received chemotherapy and those who did not. Chemosensitivity of cells with DNA repair genes knocked down was tested using MTS cell proliferation assay in HS683 cell line and U251 cell line. RESULTS The expression of 9 DNA repair genes on 1p and 19q was significantly lower in 1p19q-codeleted tumors (n = 175) than in tumors without the codeletion (n = 337) (p < 0.001). In LGG patients who received chemotherapy, lower expression of LIG1, POLD1, PNKP, RAD54L and MUTYH was associated with longer PFS and OS. This difference between chemotherapy and non-chemotherapy groups in the association of gene expression with survival was not observed in non-DNA repair genes located on chromosome arms 1p and 19q. MTS assays showed that knockdown of DNA repair genes LIG1, POLD1, PNKP, RAD54L and MUTYH significantly inhibited recovery in response to temozolomide when compared with control group (p < 0.001). CONCLUSIONS Our results suggest that reduced expression of DNA repair genes on chromosome arms 1p and 19q may account for the increased chemosensitivity of LGGs with 1p19q codeletion.
Collapse
|
62
|
Sasaki H, Yanagi K, Ugi S, Kobayashi K, Ohkubo K, Tajiri Y, Maegawa H, Kashiwagi A, Kaname T. Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene. Endocr J 2018; 65:227-238. [PMID: 29199204 DOI: 10.1507/endocrj.ej17-0287] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Segmental progeroid syndromes with lipodystrophy are extremely rare, heterogeneous, and complex multi-system disorders that are characterized by phenotypic features of premature aging affecting various tissues and organs. In this study, we present a "sporadic/isolated" Japanese woman who was ultimately diagnosed with mandibular hypoplasia, deafness, progeroid features, and progressive lipodystrophy (MDPL) syndrome (MIM #615381) using whole exome sequencing analysis. She had been suspected as having atypical Werner syndrome and/or progeroid syndrome based on observations spanning a 30-year period; however, repeated genetic testing by Sanger sequencing did not identify any causative mutation related to various subtypes of congenital partial lipodystrophy (CPLD) and/or mandibular dysplasia with lipodystrophy (MAD). Recently, MDPL syndrome has been described as a new entity showing progressive lipodystrophy. Furthermore, polymerase delta 1 (POLD1) gene mutations on chromosome 19 have been identified in patients with MDPL syndrome. To date, 21 cases with POLD1-related MDPL syndrome have been reported worldwide, albeit almost entirely of European origin. Here, we identified a de novo mutation in exon 15 (p.Ser605del) of the POLD1 gene in a Japanese case by whole exome sequencing. To the best of our knowledge, this is the first identified case of MDPL syndrome in Japan. Our results provide further evidence that mutations in POLD1 are responsible for MDPL syndrome and serve as a common genetic determinant across different ethnicities.
Collapse
Affiliation(s)
- Haruka Sasaki
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
- Division of Diabetic Medicine, Bunyukai Hara Hospital, Ohnojo, Fukuoka 816-0943, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan
| | - Kumiko Ohkubo
- Department of Laboratory Medicine, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuji Tajiri
- Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Fukuoka 830-0111, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Atsunori Kashiwagi
- Diabetes Center, Seikokai Kusatsu General Hospital, Kusatsu, Shiga 525-8585, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
63
|
Bartels PL, Stodola JL, Burgers PM, Barton JK. A Redox Role for the [4Fe4S] Cluster of Yeast DNA Polymerase δ. J Am Chem Soc 2017; 139:18339-18348. [PMID: 29166001 PMCID: PMC5881389 DOI: 10.1021/jacs.7b10284] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A [4Fe4S]2+ cluster in the C-terminal domain of the catalytic subunit of the eukaryotic B-family DNA polymerases is essential for the formation of active multi-subunit complexes. Here we use a combination of electrochemical and biochemical methods to assess the redox activity of the [4Fe4S]2+ cluster in Saccharomyces cerevisiae polymerase (Pol) δ, the lagging strand DNA polymerase. We find that Pol δ bound to DNA is indeed redox-active at physiological potentials, generating a DNA-mediated signal electrochemically with a midpoint potential of 113 ± 5 mV versus NHE. Moreover, biochemical assays following electrochemical oxidation of Pol δ reveal a significant slowing of DNA synthesis that can be fully reversed by reduction of the oxidized form. A similar result is apparent with photooxidation using a DNA-tethered anthraquinone. These results demonstrate that the [4Fe4S] cluster in Pol δ can act as a redox switch for activity, and we propose that this switch can provide a rapid and reversible way to respond to replication stress.
Collapse
Affiliation(s)
- Phillip L. Bartels
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Joseph L. Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Peter M.J. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
64
|
Schaich MA, Smith MR, Cloud AS, Holloran SM, Freudenthal BD. Structures of a DNA Polymerase Inserting Therapeutic Nucleotide Analogues. Chem Res Toxicol 2017; 30:1993-2001. [PMID: 28862449 PMCID: PMC6494084 DOI: 10.1021/acs.chemrestox.7b00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase β (pol β) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol β. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.
Collapse
Affiliation(s)
| | | | | | | | - Bret D. Freudenthal
- Corresponding Author 4015 Wahl Hall West, Laboratory of Genome Maintenance and Structural Biology, Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center Kansas City, Kansas 66160. Phone: 913-588-5560,
| |
Collapse
|
65
|
Liu D, Frederiksen JH, Liberti SE, Lützen A, Keijzers G, Pena-Diaz J, Rasmussen LJ. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro. Nucleic Acids Res 2017; 45:9427-9440. [PMID: 28934474 PMCID: PMC5766205 DOI: 10.1093/nar/gkx611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.
Collapse
Affiliation(s)
- Dekang Liu
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Jane H Frederiksen
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Sascha E Liberti
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Anne Lützen
- Department of Science, Systems and Models, Roskilde University, Denmark
| | - Guido Keijzers
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Javier Pena-Diaz
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| |
Collapse
|
66
|
Abstract
Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.
Collapse
Affiliation(s)
- Jonathan Snedeker
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| | - Matthew Wooten
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218; , ,
| |
Collapse
|
67
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
68
|
Shen Y, Liu P, Jiang T, Hu Y, Au FKC, Qi RZ. The catalytic subunit of DNA polymerase δ inhibits γTuRC activity and regulates Golgi-derived microtubules. Nat Commun 2017; 8:554. [PMID: 28916777 PMCID: PMC5601897 DOI: 10.1038/s41467-017-00694-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
γ-Tubulin ring complexes (γTuRCs) initiate microtubule growth and mediate microtubule attachment at microtubule-organizing centers, such as centrosomes and the Golgi complex. However, the mechanisms that control γTuRC-mediated microtubule nucleation have remained mostly unknown. Here, we show that the DNA polymerase δ catalytic subunit (PolD1) binds directly to γTuRCs and potently inhibits γTuRC-mediated microtubule nucleation. Whereas PolD1 depletion through RNA interference does not influence centrosome-based microtubule growth, the depletion augments microtubule nucleation at the Golgi complex. Conversely, PolD1 overexpression inhibits Golgi-based microtubule nucleation. Golgi-derived microtubules are required for the assembly and maintenance of the proper Golgi structure, and we found that alteration of PolD1 levels affects Golgi structural organization. Moreover, suppression of PolD1 expression impairs Golgi reassembly after nocodazole-induced disassembly and causes defects in Golgi reorientation and directional cell migration. Collectively, these results reveal a mechanism that controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules. Microtubule organization requires γ-tubulin ring complexes (γTuRCs), but the mechanisms that control γTuRC-mediated microtubule nucleation are unclear. Here the authors show that the DNA polymerase δ catalytic subunit controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.
Collapse
Affiliation(s)
- Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Pengfei Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Taolue Jiang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yu Hu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
69
|
Polyzos AA, McMurray CT. Close encounters: Moving along bumps, breaks, and bubbles on expanded trinucleotide tracts. DNA Repair (Amst) 2017; 56:144-155. [PMID: 28690053 PMCID: PMC5558859 DOI: 10.1016/j.dnarep.2017.06.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Expansion of simple triplet repeats (TNR) underlies more than 30 severe degenerative diseases. There is a good understanding of the major pathways generating an expansion, and the associated polymerases that operate during gap filling synthesis at these "difficult to copy" sequences. However, the mechanism by which a TNR is repaired depends on the type of lesion, the structural features imposed by the lesion, the assembled replication/repair complex, and the polymerase that encounters it. The relationships among these parameters are exceptionally complex and how they direct pathway choice is poorly understood. In this review, we consider the properties of polymerases, and how encounters with GC-rich or abnormal structures might influence polymerase choice and the success of replication and repair. Insights over the last three years have highlighted new mechanisms that provide interesting choices to consider in protecting genome stability.
Collapse
Affiliation(s)
- Aris A Polyzos
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States
| | - Cynthia T McMurray
- MBIB Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, United States.
| |
Collapse
|
70
|
Elouej S, Beleza-Meireles A, Caswell R, Colclough K, Ellard S, Desvignes JP, Béroud C, Lévy N, Mohammed S, De Sandre-Giovannoli A. Exome sequencing reveals a de novo POLD1 mutation causing phenotypic variability in mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL). Metabolism 2017; 71:213-225. [PMID: 28521875 DOI: 10.1016/j.metabol.2017.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome (MDPL) is an autosomal dominant systemic disorder characterized by prominent loss of subcutaneous fat, a characteristic facial appearance and metabolic abnormalities. This syndrome is caused by heterozygous de novo mutations in the POLD1 gene. To date, 19 patients with MDPL have been reported in the literature and among them 14 patients have been characterized at the molecular level. Twelve unrelated patients carried a recurrent in-frame deletion of a single codon (p.Ser605del) and two other patients carried a novel heterozygous mutation in exon 13 (p.Arg507Cys). Additionally and interestingly, germline mutations of the same gene have been involved in familial polyposis and colorectal cancer (CRC) predisposition. PATIENTS AND METHODS We describe a male and a female patient with MDPL respectively affected with mild and severe phenotypes. Both of them showed mandibular hypoplasia, a beaked nose with bird-like facies, prominent eyes, a small mouth, growth retardation, muscle and skin atrophy, but the female patient showed such a severe and early phenotype that a first working diagnosis of Hutchinson-Gilford Progeria was made. The exploration was performed by direct sequencing of POLD1 gene exon 15 in the male patient with a classical MDPL phenotype and by whole exome sequencing in the female patient and her unaffected parents. RESULTS Exome sequencing identified in the latter patient a de novo heterozygous undescribed mutation in the POLD1 gene (NM_002691.3: c.3209T>A), predicted to cause the missense change p.Ile1070Asn in the ZnF2 (Zinc Finger 2) domain of the protein. This mutation was not reported in the 1000 Genome Project, dbSNP and Exome sequencing databases. Furthermore, the Isoleucine1070 residue of POLD1 is highly conserved among various species, suggesting that this substitution may cause a major impairment of POLD1 activity. For the second patient, affected with a typical MDPL phenotype, direct sequencing of POLD1 exon 15 revealed the recurrent in-frame deletion (c.1812_1814del, p.S605del). CONCLUSION Our work highlights that mutations in different POLD1 domains can lead to phenotypic variability, ranging from dominantly inherited cancer predisposition syndromes, to mild MDPL phenotypes without lifespan reduction, to very severe MDPL syndromes with major premature aging features. These results also suggest that POLD1 gene testing should be considered in patients presenting with severe progeroid features.
Collapse
Affiliation(s)
- Sahar Elouej
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Ana Beleza-Meireles
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Richard Caswell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kevin Colclough
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | | - Christophe Béroud
- Aix Marseille Univ, INSERM, GMGF, Marseille, France; Department of Medical Genetics, Molecular genetics Laboratory, La Timone Children's Hospital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France; Department of Medical Genetics, Molecular genetics Laboratory, La Timone Children's Hospital, 264 Rue Saint Pierre, 13005, Marseille, France
| | - Shehla Mohammed
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France; Department of Medical Genetics, Molecular genetics Laboratory, La Timone Children's Hospital, 264 Rue Saint Pierre, 13005, Marseille, France.
| |
Collapse
|
71
|
Wang X, Zhang S, Zheng R, Yue F, Lin SHS, Rahmeh AA, Lee EYC, Zhang Z, Lee MYWT. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ. Oncotarget 2017; 7:6294-313. [PMID: 26819372 PMCID: PMC4868757 DOI: 10.18632/oncotarget.7034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Rong Zheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Fu Yue
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Amal A Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
72
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
73
|
Hocke S, Guo Y, Job A, Orth M, Ziesch A, Lauber K, De Toni EN, Gress TM, Herbst A, Göke B, Gallmeier E. A synthetic lethal screen identifies ATR-inhibition as a novel therapeutic approach for POLD1-deficient cancers. Oncotarget 2016; 7:7080-95. [PMID: 26755646 PMCID: PMC4872770 DOI: 10.18632/oncotarget.6857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
The phosphoinositide 3-kinase-related kinase ATR represents a central checkpoint regulator and mediator of DNA-repair. Its inhibition selectively eliminates certain subsets of cancer cells in various tumor types, but the underlying genetic determinants remain enigmatic. Here, we applied a synthetic lethal screen directed against 288 DNA-repair genes using the well-defined ATR knock-in model of DLD1 colorectal cancer cells to identify potential DNA-repair defects mediating these effects. We identified a set of DNA-repair proteins, whose knockdown selectively killed ATR-deficient cancer cells. From this set, we further investigated the profound synthetic lethal interaction between ATR and POLD1. ATR-dependent POLD1 knockdown-induced cell killing was reproducible pharmacologically in POLD1-depleted DLD1 cells and a panel of other colorectal cancer cell lines by using chemical inhibitors of ATR or its major effector kinase CHK1. Mechanistically, POLD1 depletion in ATR-deficient cells caused caspase-dependent apoptosis without preceding cell cycle arrest and increased DNA-damage along with impaired DNA-repair. Our data could have clinical implications regarding tumor genotype-based cancer therapy, as inactivating POLD1 mutations have recently been identified in small subsets of colorectal and endometrial cancers. POLD1 deficiency might thus represent a predictive marker for treatment response towards ATR- or CHK1-inhibitors that are currently tested in clinical trials.
Collapse
Affiliation(s)
- Sandra Hocke
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Yang Guo
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Albert Job
- Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Andreas Ziesch
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Enrico N De Toni
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Thomas M Gress
- Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| | - Andreas Herbst
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Burkhard Göke
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| | - Eike Gallmeier
- Department of Medicine II, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany.,Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
74
|
Roles of human POLD1 and POLD3 in genome stability. Sci Rep 2016; 6:38873. [PMID: 27974823 PMCID: PMC5156928 DOI: 10.1038/srep38873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022] Open
Abstract
DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction.
Collapse
|
75
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
76
|
Speit G, Schütz P, Bausinger J. Different sensitivities of cultured mammalian cells towards aphidicolin-enhanced DNA effects in the comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 803-804:22-6. [PMID: 27265376 DOI: 10.1016/j.mrgentox.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/07/2023]
Abstract
The comet assay in combination with the polymerase inhibitor aphidicolin (APC) has been used to measure DNA excision repair activity, DNA repair kinetics and individual DNA repair capacity. Since APC can enhance genotoxic effects of mutagens measured by the comet assay, this approach has been proposed for increasing the sensitivity of the comet assay in human biomonitoring. The APC-modified comet assay has mainly been performed with human blood and it was shown that it not only enhances the detection of DNA damage repaired by nucleotide excision repair (NER) but also damage typically repaired by base excision repair (BER). Recently, we reported that in contrast to blood leukocytes, A549 cells (a human lung adenocarcinoma cell line) seem to be insensitive towards the repair-inhibiting action of APC. To further elucidate the general usefulness of the APC-modified comet assay for studying repair in cultured mammalian cells, we comparatively investigated further cell lines (HeLa, TK6, V79). DNA damage was induced by BPDE (benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide) and MMS (methyl methanesulfonate) in the absence and presence of APC (3 or 15μM). APC was either added for 2h together with the mutagen or cells were pre-incubated for 30min with APC before the mutagen was added. The results indicate that the cell lines tested differ fundamentally with regard to their sensitivity and specificity towards the repair-inhibiting effect of APC. The actual cause for these differences is still unclear but potential molecular explanations are discussed. Irrespective of the underlying mechanism(s), our study revealed practical limitations of the use of the APC-modified comet assay.
Collapse
Affiliation(s)
- Günter Speit
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany.
| | - Petra Schütz
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany
| | - Julia Bausinger
- Universität Ulm, Institut für Humangenetik, 89069 Ulm, Germany
| |
Collapse
|
77
|
Zhang J, Xie S, Cheng J, Lai J, Zhu JK, Gong Z. The Second Subunit of DNA Polymerase Delta Is Required for Genomic Stability and Epigenetic Regulation. PLANT PHYSIOLOGY 2016; 171:1192-208. [PMID: 27208288 PMCID: PMC4902588 DOI: 10.1104/pp.15.01976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/24/2016] [Indexed: 05/08/2023]
Abstract
DNA polymerase δ plays crucial roles in DNA repair and replication as well as maintaining genomic stability. However, the function of POLD2, the second small subunit of DNA polymerase δ, has not been characterized yet in Arabidopsis (Arabidopsis thaliana). During a genetic screen for release of transcriptional gene silencing, we identified a mutation in POLD2. Whole-genome bisulfite sequencing indicated that POLD2 is not involved in the regulation of DNA methylation. POLD2 genetically interacts with Ataxia Telangiectasia-mutated and Rad3-related and DNA polymerase α The pold2-1 mutant exhibits genomic instability with a high frequency of homologous recombination. It also exhibits hypersensitivity to DNA-damaging reagents and short telomere length. Whole-genome chromatin immunoprecipitation sequencing and RNA sequencing analyses suggest that pold2-1 changes H3K27me3 and H3K4me3 modifications, and these changes are correlated with the gene expression levels. Our study suggests that POLD2 is required for maintaining genome integrity and properly establishing the epigenetic markers during DNA replication to modulate gene expression.
Collapse
Affiliation(s)
- Jixiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| | - Shaojun Xie
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (J.Z., J.C., Z.G.);Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (S.X., J.-K.Z.);Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47906 (S.X., J.-K.Z.); andState Key Laboratory of Agrobiotechnology, China National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, China (J.L.)
| |
Collapse
|
78
|
Zhang Y, Baranovskiy AG, Tahirov ET, Tahirov TH, Pavlov YI. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction. DNA Repair (Amst) 2016; 43:24-33. [PMID: 27235627 DOI: 10.1016/j.dnarep.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022]
Abstract
DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization.
Collapse
Affiliation(s)
- Yinbo Zhang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Emin T Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
79
|
Schmidt TT, Hombauer H. Visualization of mismatch repair complexes using fluorescence microscopy. DNA Repair (Amst) 2016; 38:58-67. [DOI: 10.1016/j.dnarep.2015.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/30/2015] [Accepted: 11/30/2015] [Indexed: 11/15/2022]
|
80
|
Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I, Church DN. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer 2016; 16:71-81. [PMID: 26822575 DOI: 10.1038/nrc.2015.12] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although it has long been recognized that the exonucleolytic proofreading activity intrinsic to the replicative DNA polymerases Pol δ and Pol ε is essential for faithful replication of DNA, evidence that defective DNA polymerase proofreading contributes to human malignancy has been limited. However, recent studies have shown that germline mutations in the proofreading domains of Pol δ and Pol ε predispose to cancer, and that somatic Pol ε proofreading domain mutations occur in multiple sporadic tumours, where they underlie a phenotype of 'ultramutation' and favourable prognosis. In this Review, we summarize the current understanding of the mechanisms and consequences of polymerase proofreading domain mutations in human malignancies, and highlight the potential utility of these variants as novel cancer biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Emily Rayner
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Inge C van Gool
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Claire Palles
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Albinusdreef 2, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Ian Tomlinson
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - David N Church
- Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
81
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
82
|
Uchimura A, Higuchi M, Minakuchi Y, Ohno M, Toyoda A, Fujiyama A, Miura I, Wakana S, Nishino J, Yagi T. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res 2015; 25:1125-34. [PMID: 26129709 PMCID: PMC4509997 DOI: 10.1101/gr.186148.114] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/30/2015] [Indexed: 12/19/2022]
Abstract
The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10−9 (95% confidence interval = 4.6 × 10−9–6.5 × 10−9) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.
Collapse
Affiliation(s)
- Arikuni Uchimura
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Mayumi Higuchi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Mizuki Ohno
- Department of Medical Biophysics and Radiation Biology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, Japan Mouse Clinic, RIKEN BioResource Center, Tsukuba 305-0074, Japan
| | - Jo Nishino
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
83
|
Song J, Hong P, Liu C, Zhang Y, Wang J, Wang P. Human POLD1 modulates cell cycle progression and DNA damage repair. BMC BIOCHEMISTRY 2015; 16:14. [PMID: 26087769 PMCID: PMC4471906 DOI: 10.1186/s12858-015-0044-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/05/2015] [Indexed: 11/22/2022]
Abstract
Background The activity of eukaryotic DNA polymerase delta (Pol δ) plays an essential role in genome stability through its effects on DNA replication and repair. The p125 catalytic subunit of Pol δ is encoded by POLD1 gene in human cells. To clarify biological functions of POLD1, we investigated the effects of POLD1 overexpression or downregulation on cell proliferation, cell cycle progression, DNA synthesis and oxidative DNA damage induced by H2O2. Methods HEK293 cells were transfected with POLD1 expression plasmid or shRNA, cell proliferation, cell cycle progression, and DNA synthesis in HEK293 cells were analyzed. Results HEK293 cells were transfected with POLD1 expression plasmid or shRNA. POLD1 downregulation by shRNA suppressed cell proliferation, cell cycle progression, and DNA synthesis in HEK293 cells. However, POLD1 overexpression had no significant effects on these processes. Finally, comet assay showed that POLD1 downregulation led to increased DNA damage. Conclusions Our results suggest that human POLD1 plays important role in the regulation of cell cycle progression and DNA damage repair.
Collapse
Affiliation(s)
- Jing Song
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Ping Hong
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Chengeng Liu
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Yueqi Zhang
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Jinling Wang
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| | - Peichang Wang
- Department of Clinical Laboratory, Xuanwu Hospital Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
84
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
85
|
Tritto P, Palumbo V, Micale L, Marzulli M, Bozzetti MP, Specchia V, Palumbo G, Pimpinelli S, Berloco M. Loss of Pol32 in Drosophila melanogaster causes chromosome instability and suppresses variegation. PLoS One 2015; 10:e0120859. [PMID: 25826374 PMCID: PMC4380491 DOI: 10.1371/journal.pone.0120859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32’s participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutantssuppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.
Collapse
Affiliation(s)
- Patrizia Tritto
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università degli Studi di Roma “La Sapienza”, 00185 Roma, Italy
| | - Lucia Micale
- IRCCS Casa Sollievo Della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy
| | - Marco Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy
| | - Gioacchino Palumbo
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur—Fondazione Cenci Bolognetti and Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università degli Studi di Roma “La Sapienza”, 00185 Roma, Italy
| | - Maria Berloco
- Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, 70125 Bari, Italy
- * E-mail:
| |
Collapse
|
86
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
87
|
Iglesias FM, Bruera NA, Dergan-Dylon S, Marino-Buslje C, Lorenzi H, Mateos JL, Turck F, Coupland G, Cerdán PD. The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering. PLoS Genet 2015; 11:e1004975. [PMID: 25693187 PMCID: PMC4334202 DOI: 10.1371/journal.pgen.1004975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. Three DNA polymerases replicate DNA in Eukaryotes. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Not only the information encoded in the DNA, but also the inheritance of chromatin states is essential during development. Loss of function mutants in DNA polymerases lead to lethal phenotypes. Hence, hypomorphic alleles are necessary to study their roles beyond DNA replication. Here we identify a thermosensitive mutant of the Polδ in the model plant Arabidopsis thaliana, which bears an aminoacid substitution in the polymerase-domain. The mutants were essentially normal at 18°C but arrested development at 28°C. Interestingly, at 24°C we were able to study the roles of Polδ in epigenetic inheritance and plant development. We observed a tight connection between DNA replication stress and an increase the deposition of transcriptionally active chromatin marks in the SEPALLATA3 (SEP3) locus. Finally, we tested by genetic means that the ectopic expression of SEP3 was indeed the cause of early flowering and the leaf phenotypes by promoting the expression of FLOWERING LOCUS T (FT). These results link Polδ activity to the proper establishment of transcriptionally active epigenetic marks, which then impact the development of multicellular organisms.
Collapse
Affiliation(s)
| | | | | | | | - Hernán Lorenzi
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Julieta L. Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
88
|
Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J, Tsuda M, Phillips LG, Narita T, Nishihara K, Kobayashi K, Yamada K, Nakamura J, Pommier Y, Lehmann A, Sale JE, Takeda S. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ. Nucleic Acids Res 2015; 43:1671-83. [PMID: 25628356 PMCID: PMC4330384 DOI: 10.1093/nar/gkv023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kazunori Yoshikiyo
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Lara G Phillips
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kaori Kobayashi
- Department of Chemistry, GraduateSchool of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji- shi, Tokyo 192-0397, Japan
| | - Kouich Yamada
- Division of Genetic Biochemistry, National Institute of Health and Nutrition, Tokyo 162-8636, Japan
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yves Pommier
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Alan Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
89
|
Mehta A, Haber JE. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 2014; 6:a016428. [PMID: 25104768 PMCID: PMC4142968 DOI: 10.1101/cshperspect.a016428] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous recombination, including single-strand annealing, gene conversion, and break-induced replication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Anuja Mehta
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
90
|
Yang W. An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η. Biochemistry 2014; 53:2793-803. [PMID: 24716551 PMCID: PMC4018060 DOI: 10.1021/bi500019s] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Y-Family
DNA polymerases specialize in translesion synthesis, bypassing
damaged bases that would otherwise block the normal progression of
replication forks. Y-Family polymerases have unique structural features
that allow them to bind damaged DNA and use a modified template base
to direct nucleotide incorporation. Each Y-Family polymerase is unique
and has different preferences for lesions to bypass and for dNTPs
to incorporate. Y-Family polymerases are also characterized by a low
catalytic efficiency, a low processivity, and a low fidelity on normal
DNA. Recruitment of these specialized polymerases to replication forks
is therefore regulated. The catalytic center of the Y-Family polymerases
is highly conserved and homologous to that of high-fidelity and high-processivity
DNA replicases. In this review, structural differences between Y-Family
and A- and B-Family polymerases are compared and correlated with their
functional differences. A time-resolved X-ray crystallographic study
of the DNA synthesis reaction catalyzed by the Y-Family DNA polymerase
human polymerase η revealed transient elements that led to the
nucleotidyl-transfer reaction.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
91
|
|
92
|
Lee MYWT, Zhang S, Lin SHS, Wang X, Darzynkiewicz Z, Zhang Z, Lee EYC. The tail that wags the dog: p12, the smallest subunit of DNA polymerase δ, is degraded by ubiquitin ligases in response to DNA damage and during cell cycle progression. Cell Cycle 2013; 13:23-31. [PMID: 24300032 DOI: 10.4161/cc.27407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase δ (Pol δ) is a key enzyme in eukaryotic DNA replication. Human Pol δ is a heterotetramer whose p12 subunit is degraded in response to DNA damage, leading to the in vivo conversion of Pol δ4 to Pol δ3. Two E3 ubiquitin ligases, RNF8 and CRL4(Cdt2), participate in the DNA damage-induced degradation of p12. We discuss how these E3 ligases integrate the formation of Pol δ3 and ubiquitinated PCNA for DNA repair processes. CRL4(Cdt2) partially degrades p12 during normal cell cycle progression, thereby generating Pol δ3 during S phase. This novel finding extends the current view of the role of Pol δ3 in DNA repair and leads to the hypothesis that it participates in DNA replication. The coordinated regulation of licensing factors and Pol δ3 by CRL4(Cdt2) now opens new avenues for control of DNA replication. A parallel study of Pol δ4 and Pol δ3 in Okazaki fragment processing provides evidence for a role of Pol δ3 in DNA replication. We discuss several new perspectives of the role of the 2 forms of Pol δ in DNA replication and repair, as well the significance of the integration of p12 regulation in DNA repair and cell cycle progression.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Zbigniew Darzynkiewicz
- Department of Pathology; Brander Cancer Research Institute; New York Medical College; Valhalla, NY USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology; New York Medical College; Valhalla, NY USA
| |
Collapse
|
93
|
Lin SHS, Wang X, Zhang S, Zhang Z, Lee EY, Lee MY. Dynamics of enzymatic interactions during short flap human Okazaki fragment processing by two forms of human DNA polymerase δ. DNA Repair (Amst) 2013; 12:922-35. [PMID: 24035200 PMCID: PMC3825817 DOI: 10.1016/j.dnarep.2013.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022]
Abstract
Lagging strand DNA replication requires the concerted actions of DNA polymerase δ, Fen1 and DNA ligase I for the removal of the RNA/DNA primers before ligation of Okazaki fragments. To better understand this process in human cells, we have reconstituted Okazaki fragment processing by the short flap pathway in vitro with purified human proteins and oligonucleotide substrates. We systematically characterized the key events in Okazaki fragment processing: the strand displacement, Pol δ/Fen1 combined reactions for removal of the RNA/DNA primer, and the complete reaction with DNA ligase I. Two forms of human DNA polymerase δ were studied: Pol δ4 and Pol δ3, which represent the heterotetramer and the heterotrimer lacking the p12 subunit, respectively. Pol δ3 exhibits very limited strand displacement activity in contrast to Pol δ4, and stalls on encounter with a 5'-blocking oligonucleotide. Pol δ4 and Pol δ3 exhibit different characteristics in the Pol δ/Fen1 reactions. While Pol δ3 produces predominantly 1 and 2 nt cleavage products irrespective of Fen1 concentrations, Pol δ4 produces cleavage fragments of 1-10 nts at low Fen1 concentrations. Pol δ3 and Pol δ4 exhibit comparable formation of ligated products in the complete system. While both are capable of Okazaki fragment processing in vitro, Pol δ3 exhibits ideal characteristics for a role in Okazaki fragment processing. Pol δ3 readily idles and in combination with Fen1 produces primarily 1 nt cleavage products, so that nick translation predominates in the removal of the blocking strand, avoiding the production of longer flaps that require additional processing. These studies represent the first analysis of the two forms of human Pol δ in Okazaki fragment processing. The findings provide evidence for the novel concept that Pol δ3 has a role in lagging strand synthesis, and that both forms of Pol δ may participate in DNA replication in higher eukaryotic cells.
Collapse
Affiliation(s)
- Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Ernest Y.C. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| | - Marietta Y.W.T. Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|
94
|
Vogel R, Seyffert M, Pereira BDA, Fraefel C. Viral and Cellular Components of AAV2 Replication Compartments. Open Virol J 2013; 7:98-120. [PMID: 24222808 PMCID: PMC3822785 DOI: 10.2174/1874357901307010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated virus 2 (AAV2) is a helpervirus-dependent parvovirus with a bi-phasic life cycle comprising latency in absence and lytic replication in presence of a helpervirus, such as adenovirus (Ad) or herpes simplex virus type 1 (HSV-1). Helpervirus-supported AAV2 replication takes place in replication compartments (RCs) in the cell nucleus where virus DNA replication and transcription occur. RCs consist of a defined set of helper virus-, AAV2-, and cellular proteins. Here we compare the profile of cellular proteins recruited into AAV2 RCs or identified in Rep78-associated complexes when either Ad or HSV-1 is the helpervirus, and we discuss the potential roles of some of these proteins in AAV2 and helpervirus infection.
Collapse
Affiliation(s)
| | | | | | - Cornel Fraefel
- Institute of Virology, University of Zurich, Winterthurerstr. 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
95
|
Weedon MN, Ellard S, Prindle MJ, Caswell R, Lango Allen H, Oram R, Godbole K, Yajnik CS, Sbraccia P, Novelli G, Turnpenny P, McCann E, Goh KJ, Wang Y, Fulford J, McCulloch LJ, Savage DB, O'Rahilly S, Kos K, Loeb LA, Semple RK, Hattersley AT. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 2013; 45:947-50. [PMID: 23770608 PMCID: PMC3785143 DOI: 10.1038/ng.2670] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/22/2013] [Indexed: 02/02/2023]
Abstract
DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication. It carries out this synthesis with high fidelity owing to its intrinsic 3'- to 5'-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3'- to 5'-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.
Collapse
Affiliation(s)
- Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Prindle MJ, Schmitt MW, Parmeggiani F, Loeb LA. A substitution in the fingers domain of DNA polymerase δ reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 2013; 288:5572-80. [PMID: 23283971 DOI: 10.1074/jbc.m112.436410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase δ (Pol δ) is one of the major replicative DNA polymerases in eukaryotic cells, catalyzing lagging strand synthesis as well as playing a role in many DNA repair pathways. The catalytic site for polymerization consists of a palm domain and mobile fingers domain that opens and closes each catalytic cycle. We explored the effect of amino acid substitutions in a region of the highly conserved sequence motif B in the fingers domain on replication fidelity. A novel substitution, A699Q, results in a marked increase in mutation rate at the yeast CAN1 locus, and is synthetic lethal with both proofreading deficiency and mismatch repair deficiency. Modeling the A699Q mutation onto the crystal structure of Saccharomyces cerevisiae Pol δ template reveals four potential contacts for A699Q but not for A699. We substituted alanine for each of these residues and determined that an interaction with multiple residues of the N-terminal domain is responsible for the mutator phenotype. The corresponding mutation in purified human Pol δ results in a similar 30-fold increase in mutation frequency when copying gapped DNA templates. Sequence analysis indicates that the most characteristic mutation is a guanine-to-adenine (G to A) transition. The increase in deoxythymidine 5'-triphosphate-G mispairs was confirmed by performing steady state single nucleotide addition studies. Our combined data support a model in which the Ala-to-Gln substitution in the fingers domain of Pol δ results in an interaction with the N-terminal domain that affects the base selectivity of the enzyme.
Collapse
Affiliation(s)
- Marc J Prindle
- Joseph Gottstein Memorial Laboratory, Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
97
|
Eckert KA, Sweasy JB. DNA polymerases and their role in genomic stability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:643-644. [PMID: 23055294 DOI: 10.1002/em.21746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|