51
|
Sikora J, Dworski S, Jones EE, Kamani MA, Micsenyi MC, Sawada T, Le Faouder P, Bertrand-Michel J, Dupuy A, Dunn CK, Xuan ICY, Casas J, Fabrias G, Hampson DR, Levade T, Drake RR, Medin JA, Walkley SU. Acid Ceramidase Deficiency in Mice Results in a Broad Range of Central Nervous System Abnormalities. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:864-883. [PMID: 28342444 DOI: 10.1016/j.ajpath.2016.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Farber disease is a rare autosomal recessive disorder caused by acid ceramidase deficiency that usually presents as early-onset progressive visceral and neurologic disease. To understand the neurologic abnormality, we investigated behavioral, biochemical, and cellular abnormalities in the central nervous system of Asah1P361R/P361R mice, which serve as a model of Farber disease. Behaviorally, the mutant mice had reduced voluntary locomotion and exploration, increased thigmotaxis, abnormal spectra of basic behavioral activities, impaired muscle grip strength, and defects in motor coordination. A few mutant mice developed hydrocephalus. Mass spectrometry revealed elevations of ceramides, hydroxy-ceramides, dihydroceramides, sphingosine, dihexosylceramides, and monosialodihexosylganglioside in the brain. The highest accumulation was in hydroxy-ceramides. Storage compound distribution was analyzed by mass spectrometry imaging and morphologic analyses and revealed involvement of a wide range of central nervous system cell types (eg, neurons, endothelial cells, and choroid plexus cells), most notably microglia and/or macrophages. Coalescing and mostly perivascular granuloma-like accumulations of storage-laden CD68+ microglia and/or macrophages were seen as early as 3 weeks of age and located preferentially in white matter, periventricular zones, and meninges. Neurodegeneration was also evident in specific cerebral areas in late disease. Overall, our central nervous system studies in Asah1P361R/P361R mice substantially extend the understanding of human Farber disease and suggest that this model can be used to advance therapeutic approaches for this currently untreatable disorder.
Collapse
Affiliation(s)
- Jakub Sikora
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York; Institute of Inherited Metabolic Disorders, Charles University, 1st Faculty of Medicine, Prague, Czech Republic; Institute of Pathology, Charles University, 1st Faculty of Medicine, Prague, Czech Republic
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - E Ellen Jones
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | | | - Matthew C Micsenyi
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Tomo Sawada
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Pauline Le Faouder
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | - Aude Dupuy
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier-Toulouse III, Toulouse, France
| | | | - Ingrid Cong Yang Xuan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Josefina Casas
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, Spanish National Research Council, Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, Spanish National Research Council, Barcelona, Spain
| | - David R Hampson
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Levade
- INSERM UMR1037, Cancer Research Center of Toulouse, Universite Toulouse III Paul-Sabatier, Toulouse, France; Metabolic Biochemistry Laboratory, Federative Institute of Biology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
52
|
Dupre TV, Doll MA, Shah PP, Sharp CN, Siow D, Megyesi J, Shayman J, Bielawska A, Bielawski J, Beverly LJ, Hernandez-Corbacho M, Clarke CJ, Snider AJ, Schnellmann RG, Obeid LM, Hannun YA, Siskind LJ. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J Lipid Res 2017; 58:1439-1452. [PMID: 28490444 DOI: 10.1194/jlr.m076745] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/28/2017] [Indexed: 12/26/2022] Open
Abstract
Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.
Collapse
Affiliation(s)
- Tess V Dupre
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Mark A Doll
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Parag P Shah
- Departments of Pharmacology and Medicine, University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Cierra N Sharp
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Deanna Siow
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY
| | - Judit Megyesi
- Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - James Shayman
- Department Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resources, Medical University of South Carolina, Charleston, SC
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Lipidomics Shared Resources, Medical University of South Carolina, Charleston, SC
| | - Levi J Beverly
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY; Departments of Pharmacology and Medicine, University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | | | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Ashley J Snider
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY; Northport Veterans Affairs Medical Center, Northport, NY
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Leah J Siskind
- Departments of Pharmacology and Toxicology University of Louisville, Louisville, KY; James Graham Brown Cancer Center, University of Louisville, Louisville, KY.
| |
Collapse
|
53
|
He X, Dworski S, Zhu C, DeAngelis V, Solyom A, Medin JA, Simonaro CM, Schuchman EH. Enzyme replacement therapy for Farber disease: Proof-of-concept studies in cells and mice. BBA CLINICAL 2017; 7:85-96. [PMID: 28275553 PMCID: PMC5338723 DOI: 10.1016/j.bbacli.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022]
Abstract
A series of studies were carried out in Farber disease (OMIM #228000) cells and mice to evaluate the feasibility of enzyme replacement therapy (ERT) for this disorder. Media from Chinese hamster ovary (CHO) cells overexpressing human recombinant acid ceramidase (rhAC) was used to treat fibroblasts from a Farber disease patient, leading to significantly reduced ceramide. We also found that chondrocytes from Farber disease mice had a markedly abnormal chondrogenic phenotype, and this was corrected by rhAC as well. Acute dosing of rhAC in Farber mice confirmed the enzyme's bioactivity in vivo, and showed that it could be safely administered at doses up to 50 mg/kg. These studies also revealed little or no re-accumulation of ceramide in tissues for at least 7 days after enzyme administration. Once weekly administration of rhAC moderately improved survival of the mice, which could be enhanced by starting enzyme administration at an earlier age (3 days vs. 3 weeks). Repeat administration of the enzyme also led to normalization of spleen size, significantly reduced plasma levels of monocyte chemoattractant protein 1 (MCP-1), reduced infiltration of macrophages into liver and spleen, and significantly reduced ceramide and sphingosine in tissues. Overall, we conclude that ERT should be further developed for this debilitating and life-threatening disorder.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Changzhi Zhu
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Victor DeAngelis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Canada; Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Calogera M Simonaro
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
54
|
Dworski S, Lu P, Khan A, Maranda B, Mitchell JJ, Parini R, Di Rocco M, Hugle B, Yoshimitsu M, Magnusson B, Makay B, Arslan N, Guelbert N, Ehlert K, Jarisch A, Gardner-Medwin J, Dagher R, Terreri MT, Lorenco CM, Barillas-Arias L, Tanpaiboon P, Solyom A, Norris JS, He X, Schuchman EH, Levade T, Medin JA. Acid Ceramidase Deficiency is characterized by a unique plasma cytokine and ceramide profile that is altered by therapy. Biochim Biophys Acta Mol Basis Dis 2016; 1863:386-394. [PMID: 27915031 DOI: 10.1016/j.bbadis.2016.11.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Acid Ceramidase Deficiency (Farber disease, FD) is an ultra-rare Lysosomal Storage Disorder that is poorly understood and often misdiagnosed as Juvenile Idiopathic Arthritis (JIA). Hallmarks of FD are accumulation of ceramides, widespread macrophage infiltration, splenomegaly, and lymphocytosis. The cytokines involved in this abnormal hematopoietic state are unknown. There are dozens of ceramide species and derivatives, but the specific ones that accumulate in FD have not been investigated. We used a multiplex assay to analyze cytokines and mass spectrometry to analyze ceramides in plasma from patients and mice with FD, controls, Farber patients treated by hematopoietic stem cell transplantation (HSCT), JIA patients, and patients with Gaucher disease. KC, MIP-1α, and MCP-1 were sequentially upregulated in plasma from FD mice. MCP-1, IL-10, IL-6, IL-12, and VEGF levels were elevated in plasma from Farber patients but not in control or JIA patients. C16-Ceramide (C16-Cer) and dhC16-Cer were upregulated in plasma from FD mice. a-OH-C18-Cer, dhC12-Cer, dhC24:1-Cer, and C22:1-Cer-1P accumulated in plasma from patients with FD. Most cytokines and only a-OH-C18-Cer returned to baseline levels in HSCT-treated Farber patients. Sphingosines were not altered. Chitotriosidase activity was also relatively low. A unique cytokine and ceramide profile was seen in the plasma of Farber patients that was not observed in plasma from HSCT-treated Farber patients, JIA patients, or Gaucher patients. The cytokine profile can potentially be used to prevent misdiagnosis of Farber as JIA and to monitor the response to treatment. Further understanding of why these signaling molecules and lipids are elevated can lead to better understanding of the etiology and pathophysiology of FD and inform development of future treatments.
Collapse
Affiliation(s)
- Shaalee Dworski
- Institute of Medical Science, University of Toronto, Toronto M5G 1L7, Canada
| | - Ping Lu
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425-5040, USA
| | - Aneal Khan
- Medical Genetics and Pediatrics, University of Calgary, Alberta Children's Hospital, Calgary T3B 6A8, Canada
| | - Bruno Maranda
- Department of Genetics, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke J1G 2E8, Canada
| | - John J Mitchell
- Department of Medical Genetics, McGill University, Montréal H3A 0G4, Canada; Department of Pediatrics, McGill University, Montréal H3A 0G4, Canada
| | - Rossella Parini
- Pediatric Department, University Milano Bicocca, San Gerardo Hospital, Monza 20126, Italy
| | | | - Boris Hugle
- German Center for Paediatric and Adolescent Rheumatology, Garmisch-Partenkirchen 82467, Germany
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Bo Magnusson
- Pediatric Rheumatology, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Balahan Makay
- Pediatric Rheumatology, Dokuz Eylul University, Izmir 35210, Turkey
| | - Nur Arslan
- Gastroenterology and Metabolic Diseases, Dokuz Eylul University, Izmir 35210, Turkey
| | | | - Karoline Ehlert
- Department of Paediatric Oncology and Haematology, Medical University of Greifswald, Greifswald 17475, Germany
| | - Andrea Jarisch
- Department of Paediatric Oncology and Haematology, Goethe University, Frankfurt 60323, Germany
| | - Janet Gardner-Medwin
- Pediatric Rheumatology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Rawane Dagher
- Pediatric Rheumatology, Notre Dame De Secours University Hospital, Byblos, Lebanon
| | - Maria Teresa Terreri
- Pediatric Rheumatology, Federal University of Sao Paulo, Sao Paulo 04023-900, Brazil
| | - Charles Marques Lorenco
- Neurogenetics, Hospital of Ribeirao Preto, University of Sao Paulo, Sao Paulo 04023-900, Brazil
| | - Lilianna Barillas-Arias
- Pediatric Rheumatology, Bernard & Millie Duker Children's Hospital, Albany Medical Center, Albany, NY 12208, USA
| | - Pranoot Tanpaiboon
- Metabolic Diseases, Children's National Health System, Washington, DC 20010, USA
| | | | - James S Norris
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425-5040, USA
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Edward H Schuchman
- Plexcera Therapeutics, New York, NY 10029-6574, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, and INSERM UMR1037 CRCT, Toulouse 31037 Cedex 1, France
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada; University Health Network, Toronto M5G 1L7, Canada; Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
55
|
Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman H, Nitulescu M, Persson AF, Fisher RM, Melander O, Orho-Melander M, Borén J, Nilsson J, Gonçalves I. Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation. Arterioscler Thromb Vasc Biol 2016; 36:1132-40. [DOI: 10.1161/atvbaha.116.305675] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Andreas Edsfeldt
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Pontus Dunér
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Marcus Ståhlman
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Ines G. Mollet
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Giuseppe Asciutto
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Helena Grufman
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Mihaela Nitulescu
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Ana Flor Persson
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Rachel M. Fisher
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Olle Melander
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Marju Orho-Melander
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Jan Borén
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Jan Nilsson
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| | - Isabel Gonçalves
- From the Experimental Cardiovascular Research Unit, Clinical Research Centre, Clinical Sciences Malmö, Lund University, Malmö, Sweden (A.E., P.D., G.A., H.G., M.N., A.F.P., J.N., I.G.); Vascular Centre Malmö-Lund, Skåne, University Hospital, Malmö, Sweden (G.A.); Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden (A.E., H.G., A.F.P., I.G.); Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska University Hospital University, Gothenburg, Sweden (M.S., J
| |
Collapse
|
56
|
Simonaro CM. Lysosomes, Lysosomal Storage Diseases, and Inflammation. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816650465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
57
|
Schuchman EH. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1459-71. [PMID: 27155573 DOI: 10.1016/j.bbadis.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/20/2023]
Abstract
Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
58
|
Abstract
Glycosphingolipids (GSLs) are a family of bioactive lipids that in addition to their role in the regulation of structural properties of membrane bilayers have emerged as crucial players in many biological processes and signal transduction pathways. Rather than being uniformly distributed within membrane bilayers, GSLs are localized in selective domains called lipid rafts where many signaling platforms operate. One of the most important functions of GSLs, particularly ceramide, is their ability to regulate cell death pathways and hence cell fate. This complex role is accomplished by the ability of GSLs to act in distinct subcellular strategic centers, such as mitochondria, endoplasmic reticulum (ER) or lysosomes to mediate apoptosis, ER stress, autophagy, lysosomal membrane permeabilization and necroptosis. Hence better understanding the role of GSLs in cell death may be of relevance for a number of pathological processes and diseases, including neurodegeneration, metabolic liver diseases and cancer.
Collapse
|
59
|
Wang K, Xu R, Schrandt J, Shah P, Gong YZ, Preston C, Wang L, Yi JK, Lin CL, Sun W, Spyropoulos DD, Rhee S, Li M, Zhou J, Ge S, Zhang G, Snider AJ, Hannun YA, Obeid LM, Mao C. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. PLoS Genet 2015; 11:e1005591. [PMID: 26474409 PMCID: PMC4608763 DOI: 10.1371/journal.pgen.1005591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023] Open
Abstract
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. Bioactive sphingolipids, such as ceramides and sphingosine-1-phosphates, have been implicated in neurodegenerative diseases. However, it remains unclear as to how the homeostasis of these bioactive lipids is sustained. Alkaline ceramidase 3 (ACER3) catalyzes the hydrolysis of saturated long-chain ceramides (C18:1-ceramide and C20:1-ceramide) to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). In this study we found that Acer3 is upregulated with age in the mouse brain and blocking Acer3 upregulation elevates the levels of ceramides while reducing S1P levels in the brain, thereby resulting in Purkinje cell loss and cerebellar ataxia. This study not only offers novel insights into the role for the homeostasis of ceramides and their metabolites in regulating normal aging of the cerebellum, but also provides a useful genetic tool to dissect the mechanism by which an aberrant accumulation of ceramides results in age-related neurological disorders.
Collapse
Affiliation(s)
- Kai Wang
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijuan Xu
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Jennifer Schrandt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Prithvi Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Yong Z. Gong
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Chet Preston
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Louis Wang
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Jae Kyo Yi
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Chih-Li Lin
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Wei Sun
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Demetri D. Spyropoulos
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Soyoung Rhee
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mingsong Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyu Ge
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Guofeng Zhang
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
60
|
Acid ceramidase deficiency associated with spinal muscular atrophy with progressive myoclonic epilepsy. Neuromuscul Disord 2015; 25:959-63. [PMID: 26526000 DOI: 10.1016/j.nmd.2015.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is an extremely rare disorder related to the lysosomal storage disease, Farber lipogranulomatosis. Both disorders are autosomal recessive conditions caused by mutations in the ASAH1 gene encoding acid ceramidase. Farber disease is associated with joint deformities, lipomatous skin nodules, and often is fatal by 2-3 years of age; while SMA-PME is characterized by childhood-onset motor neuron disease and progressive myoclonic epilepsy. We report a case of SMA-PME with a novel mutation in the ASAH1 gene encoding acid ceramidase. The proband presented with childhood-onset of diffuse muscle atrophy and hypotonia. He also had diffuse weakness with greater proximal than distal involvement. Tongue fasciculations were present and his reflexes were either diminished or absent. He ambulated with an unsteady and hesitant gait. He subsequently developed myoclonic epilepsy along with other associated features including tremor, polymyoclonus, and sensorineural hearing loss. Neurophysiological studies revealed a motor neuron disorder and generalized epilepsy. Exome sequencing analysis identified compound heterozygous variants and biochemical analysis indicated acid ceramidase activity was approximately 12 percent of normal controls. Our proband was phenotypically similar to other cases of SMA-PME, albeit with somewhat lesser severity, slower progression, and greater longevity. As lysosomal disorders are sometimes amendable to early interventions, it is important to make early diagnoses in these cases. The combination of motor neuron disease and progressive myoclonic epilepsy should prompt genetic evaluation of ASAH1.
Collapse
|
61
|
Stein A, Stroobants S, Gieselmann V, D'Hooge R, Matzner U. Anti-inflammatory Therapy With Simvastatin Improves Neuroinflammation and CNS Function in a Mouse Model of Metachromatic Leukodystrophy. Mol Ther 2015; 23:1160-1168. [PMID: 25896249 DOI: 10.1038/mt.2015.69] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by a functional deficiency of the lysosomal enzyme arylsulfatase A. The prevailing late-infantile variant of MLD is characterized by widespread and progressive demyelination of the central nervous system (CNS) causing death during childhood. In order to gain insight into the pathomechanism of the disease and to identify novel therapeutic targets, we analyzed neuroinflammation in two mouse models reproducing a mild, nondemyelinating, and a more severe, demyelinating, variant of MLD, respectively. Microgliosis and upregulation of cytokine/chemokine levels were clearly more pronounced in the demyelinating model. The analysis of the temporal cytokine/chemokine profiles revealed that the onset of demyelination is preceded by a sustained elevation of the macrophage inflammatory protein (MIP)-1α followed by an upregulation of MIP-1β, monocyte chemotactic protein (MCP)-1, and several interleukins. The tumor necrosis factor (TNF)-α remains unchanged. Treatment of the demyelinating mouse model with the nonsteroidal anti-inflammatory drug simvastatin reduced neuroinflammation, improved the swimming performance and ataxic gait, and retarded demyelination of the spinal cord. Our data suggest that neuroinflammation is causative for demyelination in MLD mice and that anti-inflammatory treatment might be a novel therapeutic option to improve the CNS function of MLD patients.
Collapse
Affiliation(s)
- Axel Stein
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Stijn Stroobants
- Laboratory of Biological Psychology, Department of Psychology, University of Leuven, Leuven, Belgium
| | - Volkmar Gieselmann
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, University of Leuven, Leuven, Belgium
| | - Ulrich Matzner
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany.
| |
Collapse
|
62
|
Mizutani N, Inoue M, Omori Y, Ito H, Tamiya-Koizumi K, Takagi A, Kojima T, Nakamura M, Iwaki S, Nakatochi M, Suzuki M, Nozawa Y, Murate T. Increased acid ceramidase expression depends on upregulation of androgen-dependent deubiquitinases, USP2, in a human prostate cancer cell line, LNCaP. J Biochem 2015; 158:309-19. [PMID: 25888580 DOI: 10.1093/jb/mvv039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023] Open
Abstract
Acid ceramidase (ACDase) metabolizes ceramide to sphingosine, leading to sphingosine 1-phosphate production. Reportedly, ACDase has been upregulated in prostate cancer. However, its regulatory mechanism remains unclear. LNCaP (androgen-sensitive prostate cancer cell line) but not PC3 and DU-145, (androgen-unresponsive cell lines) exhibited the highest ACDase protein. Among three cell lines, ASAH1 mRNA level was not correlated with ACDase protein expression, and the 5'-promoter activity did not show androgen dependency, suggesting the post-transcriptional regulation of ACDase in LNCaP cells. Based on these results, LNCaP was analysed further. Casodex, androgen receptor antagonist, and charcoal-stripped FCS (CS-FCS) decreased ACDase protein and activity, whereas dihydrotestosterone in CS-FCS culture increased ACDase protein and enzyme activity. MG132, a proteasome inhibitor, prevented the decrease of ACDase protein when cultured in CS-FCS, suggesting the involvement of ubiquitin/proteasome system. Reportedly, USP2, a deubiquitinase, plays an important role in LNCaP cells. USP2 siRNA decreased ACDase protein, whereas USP2 overexpression increased ACDase protein of LNCaP cells. However, SKP2, an ubiquitin E3 ligase known to be active in prostate cancer, did not affect androgen-dependent ACDase expression in LNCaP cells. Thus, ACDase regulation by androgen in androgen-sensitive LNCaP cells is mainly due to its prolonged protein half-life by androgen-stimulated USP2 expression.
Collapse
Affiliation(s)
- Naoki Mizutani
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Minami Inoue
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Yukari Omori
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Hiromi Ito
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Keiko Tamiya-Koizumi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Akira Takagi
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Tetsuhito Kojima
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673
| | - Mitsuhiro Nakamura
- Department of Drug Information, Gifu Pharmaceutical University, Gifu 501-1196
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathophysiology and Therapeutics, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 467-8603
| | - Masahiro Nakatochi
- Bioinformatics Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550
| | - Motoshi Suzuki
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya 466-8560; and
| | - Yoshinori Nozawa
- Department of Food and Health Science, Tokai Gakuin University, Kakamigahara 504-8511, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya 461-8673;
| |
Collapse
|
63
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
64
|
Dworski S, Berger A, Furlonger C, Moreau JM, Yoshimitsu M, Trentadue J, Au BCY, Paige CJ, Medin JA. Markedly perturbed hematopoiesis in acid ceramidase deficient mice. Haematologica 2015; 100:e162-5. [PMID: 25682603 DOI: 10.3324/haematol.2014.108530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
| | | | | | | | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | | | | | - Christopher J Paige
- University Health Network, Toronto, Canada Department of Immunology, University of Toronto, Canada Department of Medical Biophysics, University of Toronto, Canada
| | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Canada University Health Network, Toronto, Canada Department of Medical Biophysics, University of Toronto, Canada
| |
Collapse
|
65
|
Sabourdy F, Astudillo L, Colacios C, Dubot P, Mrad M, Ségui B, Andrieu-Abadie N, Levade T. Monogenic neurological disorders of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1040-51. [PMID: 25660725 DOI: 10.1016/j.bbalip.2015.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Sphingolipids comprise a wide variety of molecules containing a sphingoid long-chain base that can be N-acylated. These lipids are particularly abundant in the central nervous system, being membrane components of neurons as well as non-neuronal cells. Direct evidence that these brain lipids play critical functions in brain physiology is illustrated by the dramatic consequences of genetic disturbances of their metabolism. Inherited defects of both synthesis and catabolism of sphingolipids are now identified in humans. These monogenic disorders are due to mutations in the genes encoding for the enzymes that catalyze either the formation or degradation of simple sphingolipids such as ceramides, or complex sphingolipids like glycolipids. They cause varying degrees of central nervous system dysfunction, quite similarly to the neurological disorders induced in mice by gene disruption of the corresponding enzymes. Herein, the enzyme deficiencies and metabolic alterations that underlie these diseases are reviewed. Their possible pathophysiological mechanisms and the functions played by sphingolipids one can deduce from these conditions are discussed. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Frédérique Sabourdy
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Leonardo Astudillo
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Service de Médecine Interne, CHU Purpan, Toulouse, France
| | - Céline Colacios
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Patricia Dubot
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Marguerite Mrad
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France
| | - Thierry Levade
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037, Toulouse, France; Equipe Labellisée Ligue Nationale Contre le Cancer 2013, Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse-III Paul Sabatier, Toulouse, France; Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France.
| |
Collapse
|
66
|
Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 2014; 86:8303-11. [PMID: 25072097 PMCID: PMC4139181 DOI: 10.1021/ac501937d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A novel MALDI-FTICR imaging mass
spectrometry (MALDI-IMS) workflow
is described for on-tissue detection, spatial localization, and structural
confirmation of low abundance bioactive ceramides and other sphingolipids.
Increasingly, altered or elevated levels of sphingolipids, sphingolipid
metabolites, and sphingolipid metabolizing enzymes have been associated
with a variety of disorders such as diabetes, obesity, lysosomal storage
disorders, and cancer. Ceramide, which serves as a metabolic hub in
sphingolipid metabolism, has been linked to cancer signaling pathways
and to metabolic regulation with involvement in autophagy, cell-cycle
arrest, senescence, and apoptosis. Using kidney tissues from a new
Farber disease mouse model in which ceramides of all acyl chain lengths
and other sphingolipid metabolites accumulate in tissues, specific
ceramides and sphingomyelins were identified by on-tissue isolation
and fragmentation, coupled with an on-tissue digestion by ceramidase
or sphingomyelinase. Multiple glycosphingolipid species were also
detected. The newly generated library of sphingolipid ions was then
applied to MALDI-IMS of human lung cancer tissues. Multiple tumor
specific ceramide and sphingomyelin species were detected and confirmed
by on-tissue enzyme digests and structural confirmation. High-resolution
MALDI-IMS in combination with novel on-tissue ceramidase and sphingomyelinase
enzyme digestions makes it now possible to rapidly visualize the distribution
of bioactive ceramides and sphingomyelin in tissues.
Collapse
Affiliation(s)
- E Ellen Jones
- Department of Cell and Molecular Pharmacology and MUSC Proteomics Center, Medical University of South Carolina , 173 Ashley Avenue, Charleston, South Carolina 29425, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Zigdon H, Meshcheriakova A, Futerman AH. From sheep to mice to cells: Tools for the study of the sphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1189-99. [DOI: 10.1016/j.bbalip.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
68
|
Kornhuber J, Müller CP, Becker KA, Reichel M, Gulbins E. The ceramide system as a novel antidepressant target. Trends Pharmacol Sci 2014; 35:293-304. [PMID: 24793541 DOI: 10.1016/j.tips.2014.04.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 01/01/2023]
Abstract
Major depression is a systems disorder which impairs not only central nervous system aspects of mood and behavior but also peripheral organ systems. Current views on the pathogenesis and treatment of depression are predominantly based on proteins and transmitters and thus are difficult to reconcile central with peripheral pathomechanisms. Recent research showed that there is also a lipid-based pathway involved in the pathology of depression, which is activated by psychosocial stress, oxidative stress, or inflammation. Inducible dysfunction of the ceramide pathway, which is abundant in the brain as well as in peripheral organs, may account for mood disorder, behavioral symptoms, and further promote inflammation and oxidative stress in peripheral systems. As such, the lipid ceramide pathway may provide the missing link between brain dysfunction and somatic symptoms of depression. Pharmacological interventions that reduce ceramide abundance also show antidepressant action and may promise a better treatment of major depression.
Collapse
Affiliation(s)
- Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
69
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
70
|
Sands MS. Farber disease: understanding a fatal childhood disorder and dissecting ceramide biology. EMBO Mol Med 2013; 5:799-801. [PMID: 23666771 PMCID: PMC3779442 DOI: 10.1002/emmm.201302781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mark S Sands
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|