51
|
Handa H, Sasaki Y, Hattori H, Alkebsi L, Kasamatsu T, Saitoh T, Mitsui T, Yokohama A, Tsukamoto N, Matsumoto M, Murakami H. Recurrent alterations of the WW domain containing oxidoreductase gene spanning the common fragile site FRA16D in multiple myeloma and monoclonal gammopathy of undetermined significance. Oncol Lett 2017; 14:4372-4378. [PMID: 28943951 DOI: 10.3892/ol.2017.6672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
The putative tumor suppressor gene WW domain containing oxidoreductase (WWOX) spans a common fragile site (CFS) on chromosome 16q23.3. CFSs are regions of profound genomic instability and sites for genomic deletions in cancer cells. Therefore, WWOX is structurally altered in diverse nonhematological cancer types. However, the function of WWOX in hematological tumor types, including multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS) remains unclear. WWOX expression and methylation in patients with MM, MGUS, or noninvasive lymphoma (control) were analyzed using reverse transcription- and methylation specific-polymerase chain reaction analysis. Variant WWOX transcripts were detected in 65 and 50% of patients with MM and MGUS, respectively, compared with 10% of controls. WWOX expression was higher in patients with MM, and WWOX promoter methylation was detected in 35% of patients with MM compared with 5% of patients with MGUS and 4% of controls. WWOX promoter methylation was significantly associated with shorter overall survival time of patients, in particular those with MM who were never treated with novel agents. Genomic alterations, including deletions and promoter methylation that affect WWOX expression occur early and may be involved in the pathogenesis, progression, and prognosis of MM.
Collapse
Affiliation(s)
- Hiroshi Handa
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yoshiko Sasaki
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hikaru Hattori
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lobna Alkebsi
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tetsuhiro Kasamatsu
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takayuki Saitoh
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takeki Mitsui
- Department of Medicine and Clinical Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Akihiko Yokohama
- Blood Transfusion Service, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Norifumi Tsukamoto
- Oncology Center, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma 377-0280, Japan
| | - Hirokazu Murakami
- Department of Laboratory Science, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
52
|
Shvartsur A, Givechian KB, Garban H, Bonavida B. Overexpression of RKIP and its cross-talk with several regulatory gene products in multiple myeloma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:62. [PMID: 28476134 PMCID: PMC5420138 DOI: 10.1186/s13046-017-0535-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a clonal plasma-cell neoplastic disorder arising from an indolent premalignant disease known as monoclonal gammopathy of undetermined significance (MGUS). MM is a biologically complex heterogeneous disease reflected by its variable clinical responses of patients receiving the same treatment. Therefore, a molecular identification of stage-specific biomarkers will support a more individualized precise diagnostic/prognostic approach, an effective therapeutic regime, and will assist in the identification of novel therapeutic molecular targets. The metastatic suppressor/anti-resistance factor Raf-1 kinase inhibitor protein (RKIP) is poorly expressed in the majority of cancers and is often almost absent in metastatic tumors. RKIP inhibits the Raf/MEK/ERK1/2 and the NF-κB pathways. Whereby all tumors examined exhibited low levels of RKIP, in contrast, our recent findings demonstrated that RKIP is overexpressed primarily in its inactive phosphorylated form in MM cell lines and patient-derived tumor tissues. The underlying mechanism of RKIP overexpression in MM, in contrast to other tumors, is not known. We examined transcriptomic datasets on Oncomine platform (Life Technologies) for the co-expression of RKIP and other gene products in both pre-MM and MM. The transcription of several gene products was found to be either commonly overexpressed (i.e., RKIP, Bcl-2, and DR5) or underexpressed (i.e., Bcl-6 and TNFR2) in both pre-MM and MM. Noteworthy, a significant inverse correlation of differentially expressed pro-apoptotic genes was observed in pre-MM: overexpression of Fas and TNF-α and underexpression of YY1 versus expression of anti-apoptotic genes in MM: overexpression of YY1 and underexpression of Fas and TNF-α. Based on the analysis on mRNA levels and reported studies on protein levels of the above various genes, we have constructed various schemes that illustrate the possible cross-talks between RKIP (active/inactive) and the identified gene products that underlie the mechanism of RKIP overexpression in MM. Clearly, such cross-talks would need to be experimentally validated in both MM cell lines and patient-derived tumor tissues. If validated, the differential molecular signatures between pre-MM and MM might lead to a more precise diagnosis/prognosis of the disease and disease stages and will also identify novel molecular therapeutic targets for pre-MM and MM.
Collapse
Affiliation(s)
- Anna Shvartsur
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kevin B Givechian
- Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences at the University of Southern California, Los Angeles, CA, 90089, USA
| | - Hermes Garban
- California NanoSystems Institute (CnSI), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
53
|
Sagawa M, Ohguchi H, Harada T, Samur MK, Tai YT, Munshi NC, Kizaki M, Hideshima T, Anderson KC. Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) as a Novel Therapeutic Target in Multiple Myeloma. Clin Cancer Res 2017; 23:5225-5237. [PMID: 28442502 DOI: 10.1158/1078-0432.ccr-17-0263] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/17/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To investigate the biological and clinical significance of ribonucleotide reductase (RR) in multiple myeloma.Experimental Design: We assessed the impact of RR expression on patient outcome in multiple myeloma. We then characterized the effect of genetic and pharmacologic inhibition of ribonucleotide reductase catalytic subunit M1 (RRM1) on multiple myeloma growth and survival using siRNA and clofarabine, respectively, in both in vitro and in vivo mouse xenograft models.Results: Newly diagnosed multiple myeloma patients with higher RRM1 expression have shortened survival. Knockdown of RRM1 triggered significant growth inhibition and apoptosis in multiple myeloma cells, even in the context of the bone marrow microenvironment. Gene expression profiling showed upregulation of DNA damage response genes and p53-regulated genes after RRM1 knockdown. Immunoblot and qRT-PCR analysis confirmed that γ-H2A.X, ATM, ATR, Chk1, Chk2, RAD51, 53BP1, BRCA1, and BRCA2 were upregulated/activated. Moreover, immunoblots showed that p53, p21, Noxa, and Puma were activated in p53 wild-type multiple myeloma cells. Clofarabine, a purine nucleoside analogue that inhibits RRM1, induced growth arrest and apoptosis in p53 wild-type cell lines. Although clofarabine did not induce cell death in p53-mutant cells, it did trigger synergistic toxicity in combination with DNA-damaging agent melphalan. Finally, we demonstrated that tumor growth of RRM1-knockdown multiple myeloma cells was significantly reduced in a murine human multiple myeloma cell xenograft model.Conclusions: Our results therefore demonstrate that RRM1 is a novel therapeutic target in multiple myeloma in the preclinical setting and provide the basis for clinical evaluation of RRM1 inhibitor, alone or in combination with DNA-damaging agents, to improve patient outcome in multiple myeloma. Clin Cancer Res; 23(17); 5225-37. ©2017 AACR.
Collapse
Affiliation(s)
- Morihiko Sagawa
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Hiroto Ohguchi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takeshi Harada
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts
| | - Yu-Tzu Tai
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,West Roxbury Division, VA Boston Healthcare System, West Roxbury, Massachusetts
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
54
|
Lee HL, Cheng HL, Liu YF, Chou MC, Yang SF, Chou YE. Functional genetic variant of WW domain-containing oxidoreductase (WWOX) gene is associated with hepatocellular carcinoma risk. PLoS One 2017; 12:e0176141. [PMID: 28426730 PMCID: PMC5398630 DOI: 10.1371/journal.pone.0176141] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Human WW domain-containing oxidoreductase (WWOX) gene has been identified as a tumor suppressor gene in multiple cancers. We hypothesize that genetic variations in WWOX are associated with HCC risk. METHODOLOGY/PRINCIPAL FINDINGS Five single-nucleotide polymorphisms (SNPs) of the WWOX gene were evaluated from 708 normal controls and 354 patients with HCC. We identified a significant association between a WWOX single nucleotide polymorphism (SNP), rs73569323, and decreased risk of HCC. After adjustment for potential confounders, patients with at least one T allele at rs11545028 of WWOX may have a significantly smaller tumor size, reduced levels of α-fetoprotein and alanine aminotransferase (ALT). Moreover, the A allele at SNP rs12918952 in WWOX conferred higher risk of vascular invasion. Additional in silico analysis also suggests that WWOX rs12918952 polymorphism tends to affect WWOX expression, which in turn contributes to tumor vascular invasion. CONCLUSIONS In conclusion, genetic variations in WWOX may be a significant predictor of early HCC occurrence and a reliable biomarker for disease progression.
Collapse
Affiliation(s)
- Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
55
|
Kruse C, Eiken P, Vestergaard P. Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporos Int 2017; 28:819-832. [PMID: 27848006 DOI: 10.1007/s00198-016-3828-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED Clustering analysis can identify subgroups of patients based on similarities of traits. From data on 10,775 subjects, we document nine patient clusters of different fracture risks. Differences emerged after age 60 and treatment compliance differed by hip and lumbar spine bone mineral density profiles. INTRODUCTION The purposes of this study were to establish and quantify patient clusters of high, average and low fracture risk using an unsupervised machine learning algorithm. METHODS Regional and national Danish patient data on dual-energy X-ray absorptiometry (DXA) scans, medication reimbursement, primary healthcare sector use and comorbidity of female subjects were combined. Standardized variable means, Euclidean distances and Ward's D2 method of hierarchical agglomerative clustering (HAC), were used to form the clustering object. K number of clusters was selected with the lowest cluster containing less than 250 subjects. Clusters were identified as high, average or low fracture risk based on bone mineral density (BMD) characteristics. Cluster-based descriptive statistics and relative Z-scores for variable means were computed. RESULTS Ten thousand seven hundred seventy-five women were included in this study. Nine (k = 9) clusters were identified. Four clusters (n = 2886) were identified based on low to very low BMD with differences in comorbidity, anthropometrics and future bisphosphonate compliance. Two clusters of younger subjects (n = 1058, mean ages 30 and 51 years) were identified as low fracture risk with high to very high BMD. A mean age of 60 years was the earliest that allowed for separation of high-risk clusters. DXA scan results could identify high-risk subjects with different antiresorptive treatment compliance levels based on similarities and differences in lumbar spine and hip region BMD. CONCLUSIONS Unsupervised HAC presents a novel technology to improve patient characteristics in bone disease beyond traditional T-score-based diagnosis. Technological and validation limitations need to be overcome to improve its use in internal medicine. Current DXA scan indication guidelines could be further improved by clustering algorithms.
Collapse
Affiliation(s)
- C Kruse
- Department of Endocrinology, Aalborg University Hospital, Hobrovej 19, 9100, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark.
| | - P Eiken
- Department of Cardiology, Nephrology and Endocrinology, Nordsjaellands Hospital, Hilleroed, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Vestergaard
- Department of Endocrinology, Aalborg University Hospital, Hobrovej 19, 9100, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
56
|
Agarwal P, Alzrigat M, Párraga AA, Enroth S, Singh U, Ungerstedt J, Österborg A, Brown PJ, Ma A, Jin J, Nilsson K, Öberg F, Kalushkova A, Jernberg-Wiklund H. Genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in multiple myeloma reveals the importance of Polycomb gene targeting and highlights EZH2 as a potential therapeutic target. Oncotarget 2017; 7:6809-23. [PMID: 26755663 PMCID: PMC4872750 DOI: 10.18632/oncotarget.6843] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/29/2015] [Indexed: 02/02/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohammad Alzrigat
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stefan Enroth
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Umashankar Singh
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Johanna Ungerstedt
- Department of Medicine, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institute Huddinge, Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Anqi Ma
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Departments of Structural and Chemical Biology, Oncological Sciences, and Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik Öberg
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
57
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
58
|
Mittermayr S, Lê GN, Clarke C, Millán Martín S, Larkin AM, O’Gorman P, Bones J. Polyclonal Immunoglobulin G N-Glycosylation in the Pathogenesis of Plasma Cell Disorders. J Proteome Res 2016; 16:748-762. [DOI: 10.1021/acs.jproteome.6b00768] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefan Mittermayr
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Giao N. Lê
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
- Department
of Haematology, Mater Misericordiae University Hospital, Dublin D07 R2WY, Ireland
- National
Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland
| | - Colin Clarke
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Silvia Millán Martín
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| | - Anne-Marie Larkin
- National
Institute for Cellular Biotechnology, Dublin City University, Dublin D09 NR58, Ireland
| | - Peter O’Gorman
- Department
of Haematology, Mater Misericordiae University Hospital, Dublin D07 R2WY, Ireland
| | - Jonathan Bones
- NIBRT−The
National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock Co., Dublin A94 X099, Ireland
| |
Collapse
|
59
|
The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia 2016; 31:1570-1581. [PMID: 27890927 DOI: 10.1038/leu.2016.358] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
Despite therapeutic advances, multiple myeloma (MM) remains an incurable disease, predominantly because of the development of drug resistance. The activator protein-1 (AP-1) transcription factor family has been implicated in a multitude of physiologic processes and tumorigenesis; however, its role in MM is largely unknown. Here we demonstrate specific and rapid induction of the AP-1 family member JunB in MM cells when co-cultured with bone marrow stromal cells. Supporting a functional key role of JunB in MM pathogenesis, knockdown of JUNB significantly inhibited in vitro MM cell proliferation and survival. Consistently, induced silencing of JUNB markedly decreased tumor growth in a murine MM model of the microenvironment. Subsequent gene expression profiling revealed a role for genes associated with apoptosis, DNA replication and metabolism in driving the JunB-mediated phenotype in MM cells. Importantly, knockdown of JUNB restored the response to dexamethasone in dexamethasone-resistant MM cells. Moreover, 4-hydroxytamoxifen-induced activation of a JunB-ER fusion protein protected dexamethasone-sensitive MM cells against dexamethasone- and bortezomib-induced cytotoxicity. In summary, our results demonstrate for the first time a specific role for AP-1/JunB in MM cell proliferation, survival and drug resistance, thereby strongly supporting that this transcription factor is a promising new therapeutic target in MM.
Collapse
|
60
|
Sherbenou DW, Aftab BT, Su Y, Behrens CR, Wiita A, Logan AC, Acosta-Alvear D, Hann BC, Walter P, Shuman MA, Wu X, Atkinson JP, Wolf JL, Martin TG, Liu B. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J Clin Invest 2016; 126:4640-4653. [PMID: 27841764 DOI: 10.1172/jci85856] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/06/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma is incurable by standard approaches because of inevitable relapse and development of treatment resistance in all patients. In our prior work, we identified a panel of macropinocytosing human monoclonal antibodies against CD46, a negative regulator of the innate immune system, and constructed antibody-drug conjugates (ADCs). In this report, we show that an anti-CD46 ADC (CD46-ADC) potently inhibited proliferation in myeloma cell lines with little effect on normal cells. CD46-ADC also potently eliminated myeloma growth in orthometastatic xenograft models. In primary myeloma cells derived from bone marrow aspirates, CD46-ADC induced apoptosis and cell death, but did not affect the viability of nontumor mononuclear cells. It is of clinical interest that the CD46 gene resides on chromosome 1q, which undergoes genomic amplification in the majority of relapsed myeloma patients. We found that the cell surface expression level of CD46 was markedly higher in patient myeloma cells with 1q gain than in those with normal 1q copy number. Thus, genomic amplification of CD46 may serve as a surrogate for target amplification that could allow patient stratification for tailored CD46-targeted therapy. Overall, these findings indicate that CD46 is a promising target for antibody-based treatment of multiple myeloma, especially in patients with gain of chromosome 1q.
Collapse
|
61
|
Gocke CB, McMillan R, Wang Q, Begum A, Penchev VR, Ali SA, Borrello I, Huff CA, Matsui W. IQGAP1 Scaffold-MAP Kinase Interactions Enhance Multiple Myeloma Clonogenic Growth and Self-Renewal. Mol Cancer Ther 2016; 15:2733-2739. [PMID: 27573425 DOI: 10.1158/1535-7163.mct-16-0323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022]
Abstract
Despite improved outcomes in newly diagnosed multiple myeloma, virtually all patients relapse and ultimately develop drug-resistant disease. Aberrant RAS/MAPK signaling is activated in the majority of relapsed/refractory multiple myeloma patients, but its biological consequences are not fully understood. Self-renewal, as defined by the long-term maintenance of clonogenic growth, is essential for disease relapse, and we examined the role of RAS/MAPK activation on multiple myeloma self-renewal by targeting IQ motif-containing GTPase-activating protein 1 (IQGAP1), an intracellular scaffold protein required for mutant RAS signaling. We found that loss of IQGAP1 expression decreased MAPK signaling, cell-cycle progression, and tumor colony formation. Similarly, a peptide mimicking the WW domain of IQGAP1 that interacts with ERK inhibited the clonogenic growth and self-renewal of multiple myeloma cell lines and primary clinical specimens in vitro as well as tumor-initiating cell frequency in immunodeficient mice. During multiple myeloma progression, self-renewal may be enhanced by aberrant RAS/MAPK signaling and inhibited by targeting IQGAP1. Mol Cancer Ther; 15(11); 2733-9. ©2016 AACR.
Collapse
Affiliation(s)
- Christian B Gocke
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ross McMillan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiuju Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vesselin R Penchev
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Syed A Ali
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ivan Borrello
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol Ann Huff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Matsui
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
62
|
Lionetti M, Barbieri M, Todoerti K, Agnelli L, Marzorati S, Fabris S, Ciceri G, Galletti S, Milesi G, Manzoni M, Mazzoni M, Greco A, Tonon G, Musto P, Baldini L, Neri A. Molecular spectrum of BRAF, NRAS and KRAS gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget 2016; 6:24205-17. [PMID: 26090869 PMCID: PMC4695180 DOI: 10.18632/oncotarget.4434] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/31/2015] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a clinically and genetically heterogeneous plasma cell (PC) malignancy. Whole-exome sequencing has identified therapeutically targetable mutations such as those in the mitogen-activated protein kinase (MAPK) pathway, which are the most prevalent MM mutations. We used deep sequencing to screen 167 representative patients with PC dyscrasias [132 with MM, 24 with primary PC leukemia (pPCL) and 11 with secondary PC leukemia (sPCL)] for mutations in BRAF, NRAS and KRAS, which were respectively found in 12%, 23.9% and 29.3% of cases. Overall, the MAPK pathway was affected in 57.5% of the patients (63.6% of those with sPCL, 59.8% of those with MM, and 41.7% of those with pPCL). The majority of BRAF variants were comparably expressed at transcript level. Additionally, gene expression profiling indicated the MAPK pathway is activated in mutated patients. Finally, we found that vemurafenib inhibition of BRAF activation in mutated U266 cells affected the expression of genes known to be associated with MM. Our data confirm and extend previous published evidence that MAPK pathway activation is recurrent in myeloma; the finding that it is mediated by BRAF mutations in a significant fraction of patients has potentially immediate clinical implications.
Collapse
Affiliation(s)
- Marta Lionetti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marzia Barbieri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Agnelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Simona Marzorati
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gabriella Ciceri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Serena Galletti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Manzoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mara Mazzoni
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Angela Greco
- Molecular Mechanism Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Potenza, Italy
| | - Luca Baldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonino Neri
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
63
|
A compendium of DIS3 mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget 2016; 6:26129-41. [PMID: 26305418 PMCID: PMC4694891 DOI: 10.18632/oncotarget.4674] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
DIS3 is a catalytic subunit of the human exosome complex, containing exonucleolytic (RNB) and endonucleolytic (PIN) domains, recently found mutated in multiple myeloma (MM), a clinically and genetically heterogeneous form of plasma cell (PC) dyscrasia. We analyzed by next-generation sequencing (NGS) the DIS3 PIN and RNB domains in purified bone marrow PCs from 164 representative patients, including 130 cases with MM, 24 with primary PC leukemia and 10 with secondary PC leukemia. DIS3 mutations were found respectively in 18.5%, 25% and 30% of cases. Identified variants were predominantly missense mutations localized in the RNB domain, and were often detected at low allele frequency. DIS3 mutations were preferentially carried by IGH-translocated/nonhyperdiploid patients. Sequential analysis at diagnosis and relapse in a subset of cases highlighted some instances of increasing DIS3 mutation burden during disease progression. NGS also revealed that the majority of DIS3 variants in mutated cases were comparably detectable at transcriptional level. Furthermore, gene expression profiling analysis in DIS3-mutated patients identified a transcriptional signature suggestive for impaired RNA exosome function. In conclusion, these data further support the pathological relevance of DIS3 mutations in plasma cell dyscrasias and suggest that DIS3 may represent a potential tumor suppressor gene in such disorders.
Collapse
|
64
|
Jeong AL, Han S, Lee S, Su Park J, Lu Y, Yu S, Li J, Chun KH, Mills GB, Yang Y. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep 2016; 6:27391. [PMID: 27272709 PMCID: PMC4895347 DOI: 10.1038/srep27391] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/17/2016] [Indexed: 01/20/2023] Open
Abstract
Mutation of PPP2R1A has been observed at high frequency in endometrial serous carcinomas but at low frequency in ovarian clear cell carcinoma. However, the biological role of mutation of PPP2R1A in ovarian and endometrial cancer progression remains unclear. In this study, we found that PPP2R1A expression is elevated in high-grade primary tumor patients with papillary serous tumors of the ovary. To determine whether increased levels or mutation of PPP2R1A might contribute to cancer progression, the effects of overexpression or mutation of PPP2R1A on cell proliferation, migration, and PP2A phosphatase activity were investigated using ovarian and endometrial cancer cell lines. Among the mutations, PPP2R1A-W257G enhanced cell migration in vitro through activating SRC-JNK-c-Jun pathway. Overexpression of wild type (WT) PPP2R1A increased its binding ability with B56 regulatory subunits, whereas PPP2R1A-mutations lost the ability to bind to most B56 subunits except B56δ. Total PP2A activity and PPP2R1A-associated PP2Ac activity were significantly increased in cells overexpressing PPP2R1A-WT. In addition, overexpression of PPP2R1A-WT increased cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ae Lee Jeong
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sora Han
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Sunyi Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jeong Su Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuangxing Yu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jane Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
65
|
Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 2016; 30:2351-2363. [PMID: 27311934 DOI: 10.1038/leu.2016.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.
Collapse
|
66
|
Mikhail FM, Heerema NA, Rao KW, Burnside RD, Cherry AM, Cooley LD. Section E6.1-6.4 of the ACMG technical standards and guidelines: chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. Genet Med 2016; 18:635-42. [PMID: 27124785 DOI: 10.1038/gim.2016.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
DISCLAIMER These American College of Medical Genetics and Genomics standards and guidelines are developed primarily as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, the clinical laboratory geneticist should apply his or her own professional judgment to the specific circumstances presented by the individual patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these standards and guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cytogenetic analyses of hematological neoplasms are performed to detect and characterize clonal chromosomal abnormalities that have important diagnostic, prognostic, and therapeutic implications. At the time of diagnosis, cytogenetic abnormalities assist in the diagnosis of such disorders and can provide important prognostic information. At the time of relapse, cytogenetic analysis can be used to confirm recurrence of the original neoplasm, detect clonal disease evolution, or uncover a new unrelated neoplastic process. This section deals specifically with the standards and guidelines applicable to chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. This updated Section E6.1-6.4 has been incorporated into and supersedes the previous Section E6 in Section E: Clinical Cytogenetics of the 2009 Edition (Revised 01/2010), American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories.Genet Med 18 6, 635-642.
Collapse
Affiliation(s)
- Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nyla A Heerema
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Kathleen W Rao
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Pathology, University of North Carolina, Chapel Hill, North Carolina, USA.,Deceased
| | - Rachel D Burnside
- Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, North Carolina, USA
| | - Athena M Cherry
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Linda D Cooley
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, University of Missouri Kansas City Medical School, Kansas City, Missouri, USA
| |
Collapse
|
67
|
Generation of a novel, multi-stage, progressive, and transplantable model of plasma cell neoplasms. Sci Rep 2016; 6:22760. [PMID: 26961797 PMCID: PMC4785351 DOI: 10.1038/srep22760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/04/2016] [Indexed: 11/08/2022] Open
Abstract
Multiple myeloma is a plasma cell neoplasm with an extremely variable clinical
course. Animal models are needed to better understand its pathophysiology and for
preclinical testing of potential therapeutic agents. Hematopoietic cells expressing
the hypermorphic Rad50s allele show hematopoietic
failure, which can be mitigated by the lack of a transcription factor, Mef/Elf4.
However, we find that 70% of
Mef−/−Rad50s/s
mice die from multiple myeloma or other plasma cell neoplasms. These mice initially
show an abnormal plasma cell proliferation and monoclonal protein production, and
then develop anemia and a decreased bone mineral density. Tumor cells can be
serially transplanted and according to array CGH and whole exome sequencing, the
pathogenesis of plasma cell neoplasms in these mice is not linked to activation of a
specific oncogene, or inactivation of a specific tumor suppressor. This model
recapitulates the systemic manifestations of human plasma cell neoplasms, and
implicates cooperativity between the Rad50s and
Mef/Elf4 pathways in initiating myelomagenic mutations that promote plasma cell
transformation.
Collapse
|
68
|
Mysore VS, Szablowski J, Dervan PB, Frost PJ. A DNA-binding Molecule Targeting the Adaptive Hypoxic Response in Multiple Myeloma Has Potent Antitumor Activity. Mol Cancer Res 2016; 14:253-66. [PMID: 26801054 DOI: 10.1158/1541-7786.mcr-15-0361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Multiple myeloma is incurable and invariably becomes resistant to chemotherapy. Although the mechanisms remain unclear, hypoxic conditions in the bone marrow have been implicated in contributing to multiple myeloma progression, angiogenesis, and resistance to chemotherapy. These effects occur via adaptive cellular responses mediated by hypoxia-inducible transcription factors (HIF), and targeting HIFs can have anticancer effects in both solid and hematologic malignancies. Here, it was found that in most myeloma cell lines tested, HIF1α, but not HIF2α expression was oxygen dependent, and this could be explained by the differential expression of the regulatory prolyl hydroxylase isoforms. The anti-multiple myeloma effects of a sequence-specific DNA-binding pyrrole-imidazole (Py-Im) polyamide (HIF-PA), which disrupts the HIF heterodimer from binding to its cognate DNA sequences, were also investigated. HIF-PA is cell permeable, localizes to the nuclei, and binds specific regions of DNA with an affinity comparable with that of HIFs. Most of the multiple myeloma cells were resistant to hypoxia-mediated apoptosis, and HIF-PA treatment could overcome this resistance in vitro. Using xenograft models, it was determined that HIF-PA significantly decreased tumor volume and increased hypoxic and apoptotic regions within solid tumor nodules and the growth of myeloma cells engrafted in the bone marrow. This provides a rationale for targeting the adaptive cellular hypoxic response of the O2-dependent activation of HIFα using polyamides. IMPLICATIONS Py-Im polyamides target and disrupt the adaptive hypoxic responses in multiple myeloma cells that may have clinical significance as a therapeutic strategy to treat myeloma engrafted in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Veena S Mysore
- Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California. University of California, Los Angeles, Los Angeles, California
| | - Jerzy Szablowski
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Peter B Dervan
- Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Patrick J Frost
- Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, California. University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
69
|
Song J, Shao H. SNP Array in Hematopoietic Neoplasms: A Review. MICROARRAYS 2015; 5:microarrays5010001. [PMID: 27600067 PMCID: PMC5003446 DOI: 10.3390/microarrays5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/13/2015] [Accepted: 12/14/2015] [Indexed: 12/03/2022]
Abstract
Cytogenetic analysis is essential for the diagnosis and prognosis of hematopoietic neoplasms in current clinical practice. Many hematopoietic malignancies are characterized by structural chromosomal abnormalities such as specific translocations, inversions, deletions and/or numerical abnormalities that can be identified by karyotype analysis or fluorescence in situ hybridization (FISH) studies. Single nucleotide polymorphism (SNP) arrays offer high-resolution identification of copy number variants (CNVs) and acquired copy-neutral loss of heterozygosity (LOH)/uniparental disomy (UPD) that are usually not identifiable by conventional cytogenetic analysis and FISH studies. As a result, SNP arrays have been increasingly applied to hematopoietic neoplasms to search for clinically-significant genetic abnormalities. A large numbers of CNVs and UPDs have been identified in a variety of hematopoietic neoplasms. CNVs detected by SNP array in some hematopoietic neoplasms are of prognostic significance. A few specific genes in the affected regions have been implicated in the pathogenesis and may be the targets for specific therapeutic agents in the future. In this review, we summarize the current findings of application of SNP arrays in a variety of hematopoietic malignancies with an emphasis on the clinically significant genetic variants.
Collapse
Affiliation(s)
- Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
| |
Collapse
|
70
|
Barbieri M, Manzoni M, Fabris S, Ciceri G, Todoerti K, Simeon V, Musto P, Cortelezzi A, Baldini L, Neri A, Lionetti M. Compendium ofFAM46Cgene mutations in plasma cell dyscrasias. Br J Haematol 2015; 174:642-5. [DOI: 10.1111/bjh.13793] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marzia Barbieri
- Haematology Unit; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan Italy
| | - Martina Manzoni
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Sonia Fabris
- Haematology Unit; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan Italy
| | - Gabriella Ciceri
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Katia Todoerti
- Laboratory of Pre-Clinical and Translational Research; IRCCS-CROB; Referral Cancer Centre of Basilicata; Rionero in Vulture (PZ) Italy
| | - Vittorio Simeon
- Laboratory of Pre-Clinical and Translational Research; IRCCS-CROB; Referral Cancer Centre of Basilicata; Rionero in Vulture (PZ) Italy
| | - Pellegrino Musto
- Laboratory of Pre-Clinical and Translational Research; IRCCS-CROB; Referral Cancer Centre of Basilicata; Rionero in Vulture (PZ) Italy
| | - Agostino Cortelezzi
- Haematology Unit; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan Italy
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Luca Baldini
- Haematology Unit; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan Italy
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Antonino Neri
- Haematology Unit; Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico; Milan Italy
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| | - Marta Lionetti
- Department of Clinical Sciences and Community Health; University of Milan; Milan Italy
| |
Collapse
|
71
|
Noll JE, Vandyke K, Hewett DR, Mrozik KM, Bala RJ, Williams SA, Kok CH, Zannettino AC. PTTG1 expression is associated with hyperproliferative disease and poor prognosis in multiple myeloma. J Hematol Oncol 2015; 8:106. [PMID: 26445238 PMCID: PMC4595141 DOI: 10.1186/s13045-015-0209-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023] Open
Abstract
Background Multiple myeloma (MM) is an incurable haematological malignancy characterised by the clonal proliferation of malignant plasma cells within the bone marrow. We have previously identified pituitary tumour transforming gene 1 (Pttg1) as a gene that is significantly upregulated in the haematopoietic compartment of the myeloma-susceptible C57BL/KaLwRij mouse strain, when compared with the myeloma-resistant C57BL/6 mouse. Over-expression of PTTG1 has previously been associated with malignant progression and an enhanced proliferative capacity in solid tumours. Methods In this study, we investigated PTTG1 gene and protein expression in MM plasma cells from newly diagnosed MM patients. Gene expression profiling was used to identify gene signatures associated with high PTTG1 expression in MM patients. Additionally, we investigated the effect of short hairpin ribonucleic acid (shRNA)-mediated PTTG1 knockdown on the proliferation of the murine myeloma plasma cell line 5TGM1 in vitro and in vivo. Results PTTG1 was found to be over-expressed in 36–70 % of MM patients, relative to normal controls, with high PTTG1 expression being associated with poor patient outcomes (hazard ratio 2.49; 95 % CI 1.28 to 4.86; p = 0.0075; log-rank test). In addition, patients with high PTTG1 expression exhibited increased expression of cell proliferation-associated genes including CCNB1, CCNB2, CDK1, AURKA, BIRC5 and DEPDC1. Knockdown of Pttg1 in 5TGM1 cells decreased cellular proliferation, without affecting cell cycle distribution or viability, and decreased expression of Ccnb1, Birc5 and Depdc1 in vitro. Notably, Pttg1 knockdown significantly reduced MM tumour development in vivo, with an 83.2 % reduction in tumour burden at 4 weeks (p < 0.0001, two-way ANOVA). Conclusions This study supports a role for increased PTTG1 expression in augmenting tumour development in a subset of MM patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0209-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline E Noll
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Kate Vandyke
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,SA Pathology, Adelaide, Australia.
| | - Duncan R Hewett
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Rachel J Bala
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Sharon A Williams
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia.
| | - Chung H Kok
- Leukaemia Research Group, Cancer Theme, SAHMRI, Adelaide, Australia.
| | - Andrew Cw Zannettino
- Myeloma Research Laboratory, Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide and Cancer Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. .,Discipline of Physiology, School of Medicine, Faculty of Health Sciences, University of Adelaide, Cancer Theme, Level 5 South, SAHMRI, PO Box 11060, Adelaide, SA, 5001, Australia.
| |
Collapse
|
72
|
Zhang K, Xu Z, Sun Z. Identification of the key genes connected with plasma cells of multiple myeloma using expression profiles. Onco Targets Ther 2015; 8:1795-803. [PMID: 26229487 PMCID: PMC4516193 DOI: 10.2147/ott.s80075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective To uncover the potential regulatory mechanisms of the relevant genes that contribute to the prognosis and prevention of multiple myeloma (MM). Methods Microarray data (GSE13591) were downloaded, including five plasma cell samples from normal donors and 133 plasma cell samples from MM patients. Differentially expressed genes (DEGs) were identified by Student’s t-test. Functional enrichment analysis was performed for DEGs using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Transcription factors and tumor-associated genes were also explored by mapping genes in the TRANSFAC, the tumor suppressor gene (TSGene), and tumor-associated gene (TAG) databases. A protein–protein interaction (PPI) network and PPI subnetworks were constructed by Cytoscape software using the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results A total of 63 DEGs (42 downregulated, 21 upregulated) were identified. Functional enrichment analysis showed that HLA-DRB1 and VCAM1 might be involved in the positive regulation of immune system processes, and HLA-DRB1 might be related to the intestinal immune network for IgA production pathway. The genes CEBPD, JUND, and ATF3 were identified as transcription factors. The top ten nodal genes in the PPI network were revealed including HLA-DRB1, VCAM1, and TFRC. In addition, genes in the PPI subnetwork, such as HLA-DRB1 and VCAM1, were enriched in the cell adhesion molecules pathway, whereas CD4 and TFRC were both enriched in the hematopoietic cell pathway. Conclusion Several crucial genes correlated to MM were identified, including CD4, HLA-DRB1, TFRC, and VCAM1, which might exert their roles in MM progression via immune-mediated pathways. There might be certain regulatory correlations between HLA-DRB1, CD4, and TFRC.
Collapse
Affiliation(s)
- Kefeng Zhang
- Spinal Surgery, Jining No 1 People's Hospital, Jining, People's Republic of China
| | - Zhongyang Xu
- Spinal Surgery, Jining No 1 People's Hospital, Jining, People's Republic of China
| | - Zhaoyun Sun
- Department of Orthopedics, The People's Hospital of Laiwu City, Laiwu, Shandong Province, People's Republic of China
| |
Collapse
|
73
|
Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, Sorino C, Ponzoni M, Bossi G, Federico V, La Rosa F, Ricciardi MR, Lesma E, De Meo PD, Castrignanò T, Petrucci MT, Pisani F, Chesi M, Bergsagel PL, Floridi A, Tonon G, Passananti C, Blandino G, Fanciulli M. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J 2015; 34:1214-30. [PMID: 25770584 DOI: 10.15252/embj.201489920] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/16/2015] [Indexed: 01/13/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che-1, a RNA polymerase II-binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che-1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress-induced autophagy. Strikingly, Che-1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.
Collapse
Affiliation(s)
- Agata Desantis
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Tiziana Bruno
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria Catena
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Nicola
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Translational Oncogenomic Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Iezzi
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Cristina Sorino
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Maurilio Ponzoni
- Pathology and Myeloma Units, Molecular Oncology Division, San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Bossi
- Molecular Oncogenesis Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Federico
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Francesca La Rosa
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Rosaria Ricciardi
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Elena Lesma
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, "Sapienza" University, Rome, Italy
| | - Francesco Pisani
- Hematology Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Comprehensive Cancer Center, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Aristide Floridi
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Molecular Oncology Division, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Passananti
- Institute of Molecular Biology and Pathology, CNR Department of Molecular Medicine "Sapienza" University, Rome, Italy
| | - Giovanni Blandino
- Translational Oncogenomic Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- Epigenetics Laboratory, Molecular Medicine Area Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
74
|
Cheong CM, Chow AWS, Fitter S, Hewett DR, Martin SK, Williams SA, To LB, Zannettino ACW, Vandyke K. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo. Exp Cell Res 2015; 332:24-38. [PMID: 25637218 DOI: 10.1016/j.yexcr.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. METHODS We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. RESULTS TSPAN7 was found to be highly expressed at the RNA and protein level in CD138(+) MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. CONCLUSION These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients.
Collapse
Affiliation(s)
- Chee Man Cheong
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - Annie W S Chow
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia
| | - Sally K Martin
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia
| | - Sharon A Williams
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - L Bik To
- Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia; Centre for Cancer Biology and Hanson Institute, SA Pathology, Adelaide 5000, SA, Australia; Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide 5000SA, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia.
| |
Collapse
|
75
|
Bonavida B, Kaufhold S. Prognostic significance of YY1 protein expression and mRNA levels by bioinformatics analysis in human cancers: a therapeutic target. Pharmacol Ther 2015; 150:149-68. [PMID: 25619146 DOI: 10.1016/j.pharmthera.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/15/2015] [Indexed: 01/22/2023]
Abstract
Conventional therapeutic treatments for various cancers include chemotherapy, radiotherapy, hormonal therapy and immunotherapy. While such therapies have resulted in clinical responses, they were coupled with non-tumor specificity, toxicity and resistance in a large subset of the treated patients. During the last decade, novel approaches based on scientific knowledge on the biology of cancer were exploited and led to the development of novel targeted therapies, such as specific chemical inhibitors and immune-based therapies. Although these targeted therapies resulted in better responses and less toxicity, there still remains the problem of the inherent or acquired resistance. Hence, current studies are seeking additional novel therapeutic targets that can overcome several mechanisms of resistance. The transcription factor Yin Yang 1 (YY1) is a ubiquitous protein expressed in normal and cancer tissues, though the expression level is much higher in a large number of cancers; hence, YY1 has been considered as a potential novel prognostic biomarker and therapeutic target. YY1 has been reported to be involved in the regulation of drug/immune resistance and also in the regulation of EMT. Several excellent reviews have been published on YY1 and cancer (see below), and, thus, this review will update recently published reports as well as report on the analysis of bioinformatics datasets for YY1 in various cancers and the relationship between reported protein expression and mRNA levels. The potential clinical significance of YY1 is discussed.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States.
| | - Samantha Kaufhold
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
76
|
Candido S, Maestro R, Polesel J, Catania A, Maira F, Signorelli SS, McCubrey JA, Libra M. Roles of neutrophil gelatinase-associated lipocalin (NGAL) in human cancer. Oncotarget 2015; 5:1576-94. [PMID: 24742531 PMCID: PMC4039233 DOI: 10.18632/oncotarget.1738] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer remains one of the major cause of death in the Western world. Although, it has been demonstrated that new therapies can improve the outcome of cancer patients, still many patients relapse after treatment. Therefore, there is a need to identify novel factors involved in cancer development and/or progression. Recently, neutrophil gelatinase-associated lipocalin (NGAL) has been suggested as a key player in different cancer types. Its oncogenic effect may be related to the complex NGAL/MMP-9. In the present study, NGAL was analyzed at both transcript and protein levels in different cancer types by analysing 38 public available microarray datasets and the Human Protein Atlas tool. NGAL transcripts were significantly higher in the majority of solid tumors compared to the relative normal tissues for every dataset analyzed. Furthermore, concordance of NGAL at both mRNA and protein levels was observed for 6 cancer types including bladder, colorectal, liver, lung, ovarian, and pancreatic. All metastatic tumors showed a decrease of NGAL expression when compared to matched primary lesions. According to these results, NGAL is a candidate marker for tumor growth in a fraction of solid tumors. Further investigations are required to elucidate the function of NGAL in tumor development and metastatic processes.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Bio-medical Sciences, Section of Pathology and Oncology, Laboratory of Translational Oncology and Functional Genomics, University of Catania, Catania, (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
77
|
CSNK1α1 mediates malignant plasma cell survival. Leukemia 2014; 29:474-82. [PMID: 24962017 DOI: 10.1038/leu.2014.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
Abstract
Here we report that targeting casein kinase 1-α1 (CSNK1α1) is a potential novel treatment strategy in multiple myeloma (MM) therapy distinct from proteasome inhibition. CSNK1α1 is expressed in all the tested MM cell lines and patient MM cells, and is not altered during bortezomib-triggered cytotoxicity. Inhibition of CSNK1α1 kinase activity in MM cells with targeted therapy D4476 or small hairpin RNAs triggers cell G0/G1-phase arrest, prolonged G2/M phase and apoptosis. D4476 also induced cytotoxicity in bortezomib-resistant MM cells and enhanced bortezomib-triggered cytotoxicity. CSNK1α1 signaling pathways include CDKN1B, P53 and FADD; gene signatures involved included interferon-α, tumor necrosis factor-α and LIN9. In addition, reduction of Csnk1α1 prevents cMYC/KRAS12V transformation of BaF3 cells independent of interleukin-3. Impartially, reducing Csnk1α1 prevented development of cMYC/KRAS12V-induced plasmacytomas in mice, suggesting that CSNK1α1 may be involved in MM initiation and progression. Our data suggest that targeting CSNK1α1, alone or combined with bortezomib, is a potential novel therapeutic strategy in MM. Moreover, inhibition of CSNK1α1 may prevent the progression of monoclonal gammopathy of undetermined significance to MM.
Collapse
|
78
|
Aldaz CM, Ferguson BW, Abba MC. WWOX at the crossroads of cancer, metabolic syndrome related traits and CNS pathologies. Biochim Biophys Acta Rev Cancer 2014; 1846:188-200. [PMID: 24932569 DOI: 10.1016/j.bbcan.2014.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023]
Abstract
WWOX was cloned as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. Deletions affecting WWOX accompanied by loss of expression are frequent in various epithelial cancers. Translocations and deletions affecting WWOX are also common in multiple myeloma and are associated with worse prognosis. Metanalysis of gene expression datasets demonstrates that low WWOX expression is significantly associated with shorter relapse-free survival in ovarian and breast cancer patients. Although somatic mutations affecting WWOX are not frequent, analysis of TCGA tumor datasets led to identifying 44 novel mutations in various tumor types. The highest frequencies of mutations were found in head and neck cancers and uterine and gastric adenocarcinomas. Mouse models of gene ablation led us to conclude that Wwox does not behave as a highly penetrant, classical tumor suppressor gene since its deletion is not tumorigenic in most models and its role is more likely to be of relevance in tumor progression rather than in initiation. Analysis of signaling pathways associated with WWOX expression confirmed previous in vivo and in vitro observations linking WWOX function with the TGFβ/SMAD and WNT signaling pathways and with specific metabolic processes. Supporting these conclusions recently we demonstrated that indeed WWOX behaves as a modulator of TGFβ/SMAD signaling by binding and sequestering SMAD3 in the cytoplasmic compartment. As a consequence progressive loss of WWOX expression in advanced breast cancer would contribute to the pro-metastatic effects resulting from TGFβ/SMAD3 hyperactive signaling in breast cancer. Recently, GWAS and resequencing studies have linked the WWOX locus with familial dyslipidemias and metabolic syndrome related traits. Indeed, gene expression studies in liver conditional KO mice confirmed an association between WWOX expression and lipid metabolism. Finally, very recently the first human pedigrees with probands carrying homozygous germline loss of function WWOX mutations have been identified. These patients are characterized by severe CNS related pathology that includes epilepsy, ataxia and mental retardation. In summary, WWOX is a highly conserved and tightly regulated gene throughout evolution and when defective or deregulated the consequences are important and deleterious as demonstrated by its association not only with poor prognosis in cancer but also with other important human pathologies such as metabolic syndrome and CNS related pathologic conditions.
Collapse
Affiliation(s)
- C Marcelo Aldaz
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA.
| | - Brent W Ferguson
- Department of Molecular Carcinogenesis, Science Park, The University of Texas M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Martin C Abba
- CINIBA, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
79
|
Yu K, Fan J, Ding X, Li C, Wang J, Xiang Y, Wang QS. Association study of a functional copy number variation in theWWOXgene with risk of gliomas among Chinese people. Int J Cancer 2014; 135:1687-91. [PMID: 24585490 DOI: 10.1002/ijc.28815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Ke Yu
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Jin Fan
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Xin Ding
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - CongYang Li
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Jun Wang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Yang Xiang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| | - Qing Song Wang
- Department of Neurology; Chengdu Military General Hospital; Chengdu China
| |
Collapse
|
80
|
Ivyna Bong PN, Ng CC, Lam KY, Megat Baharuddin PJN, Chang KM, Zakaria Z. Identification of novel pathogenic copy number aberrations in multiple myeloma: the Malaysian context. Mol Cytogenet 2014; 7:24. [PMID: 24690091 PMCID: PMC4021726 DOI: 10.1186/1755-8166-7-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Background Multiple myeloma is an incurable disease. Little is known about the genetic and molecular mechanisms governing the pathogenesis of multiple myeloma. The risk of multiple myeloma predispositions varies among different ethnicities. More than 50% of myeloma cases showed normal karyotypes with conventional cytogenetic analysis due to the low mitotic activity and content of plasma cells in the bone marrow. In the present study, high resolution array comparative genomic hybridization technique was used to identify copy number aberrations in 63 multiple myeloma patients of Malaysia. Results Copy number aberrations were identified in 100% of patients analyzed (n = 63). Common chromosomal gains were detected at regions 1q, 2q, 3p, 3q, 4q, 5q, 6q, 8q, 9q, 10q, 11q, 13q, 14q, 15q, 21q and Xq while common chromosomal losses were identified at regions 3q and 14q. There were a total of 25 and 5 genes localized within the regions of copy number gains and losses, respectively (>30% penetrance). The LYST, CLK1, ACSL1 and NFKBIA are genes localized within the copy number aberration regions and they represent novel information that has never been previously described in multiple myeloma patients. Conclusions In general, due to the differences in genetic background, dietary and lifestyle practices of Malaysian compared to the Caucasian population, these chromosomal alterations might be unique for Asian MM patients. Genes identified in this study could be potential molecular therapeutic targets for the treatment and management of patients with multiple myeloma.
Collapse
Affiliation(s)
- Pau Ni Ivyna Bong
- Hematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
81
|
Díaz de la Guardia R, Catalina P, Panero J, Elosua C, Pulgarin A, López MB, Ayllón V, Ligero G, Slavutsky I, Leone PE. Expression profile of telomere-associated genes in multiple myeloma. J Cell Mol Med 2014; 16:3009-21. [PMID: 22947336 PMCID: PMC4393729 DOI: 10.1111/j.1582-4934.2012.01628.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
To further contribute to the understanding of multiple myeloma, we have focused our research interests on the mechanisms by which tumour plasma cells have a higher survival rate than normal plasma cells. In this article, we study the expression profile of genes involved in the regulation and protection of telomere length, telomerase activity and apoptosis in samples from patients with monoclonal gammopathy of undetermined significance, smouldering multiple myeloma, multiple myeloma (MM) and plasma cell leukaemia (PCL), as well as several human myeloma cell lines (HMCLs). Using conventional cytogenetic and fluorescence in situ hybridization studies, we identified a high number of telomeric associations (TAs). Moreover, telomere length measurements by terminal restriction fragment (TRF) assay showed a shorter mean TRF peak value, with a consistent correlation with the number of TAs. Using gene expression arrays and quantitative PCR we identified the hTERT gene together with 16 other genes directly involved in telomere length maintenance: HSPA9, KRAS, RB1, members of the Small nucleolar ribonucleoproteins family, A/B subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins, and 14-3-3 family. The expression levels of these genes were even higher than those in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), which have unlimited proliferation capacity. In conclusion, the gene signature suggests that MM tumour cells are able to maintain stable short telomere lengths without exceeding the short critical length, allowing cell divisions to continue. We propose that this could be a mechanism contributing to MM tumour cells expansion in the bone marrow (BM).
Collapse
Affiliation(s)
- Rafael Díaz de la Guardia
- Andalusian Public Health System Biobank, Centro de Investigación Biomédica, Consejería de Salud-Universidad de Granada, Granada, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
An G, Xu Y, Shi L, Shizhen Z, Deng S, Xie Z, Sui W, Zhan F, Qiu L. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica 2013; 99:353-9. [PMID: 24213147 DOI: 10.3324/haematol.2013.088211] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chromosome 1q21 aberrations have not been yet been made part of routine clinical tests and their effect in multiple myeloma is still under investigation. The prognostic value of copy number variation and percentage of plasma cells involved have remained unclear. In the present study, we analyzed the prognostic value of 1q21 in a series of 290 cases of newly diagnosed multiple myeloma treated in a prospective, non-randomized clinical trial (BDH 2008/02). We found that incidence of 1q21 aberration increased at relapse, but its copy numbers and proportion of cells involved did not change. Gains of 1q21 had no impact on survival in patients receiving thalidomide-based treatment but conferred a significantly inferior prognosis in patients under bortezomib-based chemotherapy and was an independent adverse prognostic factor for progression free survival (HR 3.831; 95%CI: 2.125-6.907; P<0.001) and overall survival (HR 3.245; 95%CI: 1.555-6.773; P=0.002). Strikingly, our results showed that the copy number variation and clone size harboring 1q21 gains carried no additional prognostic value and patients with 1q21 gains did not benefit significantly from regimens incorporating bortezomib. Our results indicate that three copies of 1q21 and 20% of plasma cells with this abnormality were enough to confer bortezomib resistance. Therefore, chromosome 1q21 gains should be considered a high-risk feature in multiple myeloma receiving bortezomib therapy.
Collapse
|
83
|
Verdelli D, Nobili L, Todoerti K, Mosca L, Fabris S, D'Anca M, Pellegrino E, Piva R, Inghirami G, Capelli C, Introna M, Baldini L, Chiaramonte R, Lombardi L, Neri A. Molecular events underlying interleukin-6 independence in a subclone of the CMA-03 multiple myeloma cell line. Genes Chromosomes Cancer 2013; 53:154-67. [PMID: 24327544 DOI: 10.1002/gcc.22127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/08/2022] Open
Abstract
We explored the molecular mechanisms involved in the establishement of CMA-03/06, an IL-6-independent variant of the multiple myeloma cell line CMA-03 previously generated in our Institution. CMA-03/06 cells grow in the absence of IL-6 with a doubling time comparable with that of CMA-03 cells; neither the addition of IL6 (IL-6) to the culture medium nor co-culture with multipotent mesenchymal stromal cells increases the proliferation rate, although they maintain the responsiveness to IL-6 stimulation as demonstrated by STAT1, STAT3, and STAT5 induction. IL-6 independence of CMA-03/06 cells is not apparently due to the development of an autocrine IL-6 loop, nor to the observed moderate constitutive activation of STAT5 and STAT3, since STAT3 silencing does not affect cell viability or proliferation. When compared to the parental cell line, CMA-03/06 cells showed an activated pattern of the NF-κB pathway. This finding is supported by gene expression profiling (GEP) analysis identifying an appreciable fraction of modulated genes (28/308) in the CMA-03/06 subclone reported to be involved in this pathway. Furthermore, although more resistant to apoptotic stimuli compared to the parental cell line, CMA-03/06 cells display a higher sensibility to NF-κB inhibition induced by bortezomib. Finally, GEP analysis suggests an involvement of a number of cytokines, which might contribute to IL-6 independence of CMA-03/06 by stimulating growth and antiapoptotic processes. In conclusion, the parental cell-line CMA-03 and its variant CMA-03/06 represent a suitable model to further investigate molecular mechanisms involved in the IL-6-independent growth of myeloma cells.
Collapse
Affiliation(s)
- Donata Verdelli
- Department of Clinical Sciences and Community Health, University of Milano and Hematology-CTMO, Fondazione Cà Granda, IRCCS Policlinico, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Samur MK, Shah PK, Wang X, Minvielle S, Magrangeas F, Avet-Loiseau H, Munshi NC, Li C. The shaping and functional consequences of the dosage effect landscape in multiple myeloma. BMC Genomics 2013; 14:672. [PMID: 24088394 PMCID: PMC3907079 DOI: 10.1186/1471-2164-14-672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 09/30/2013] [Indexed: 02/06/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignant proliferation of plasma B cells. Based on recurrent aneuploidy such as copy number alterations (CNAs), myeloma is divided into two subtypes with different CNA patterns and patient survival outcomes. How aneuploidy events arise, and whether they contribute to cancer cell evolution are actively studied. The large amount of transcriptomic changes resultant of CNAs (dosage effect) pose big challenges for identifying functional consequences of CNAs in myeloma in terms of specific driver genes and pathways. In this study, we hypothesize that gene-wise dosage effect varies as a result from complex regulatory networks that translate the impact of CNAs to gene expression, and studying this variation can provide insights into functional effects of CNAs. Results We propose gene-wise dosage effect score and genome-wide karyotype plot as tools to measure and visualize concordant copy number and expression changes across cancer samples. We find that dosage effect in myeloma is widespread yet variable, and it is correlated with gene expression level and CNA frequencies in different chromosomes. Our analysis suggests that despite the enrichment of differentially expressed genes between hyperdiploid MM and non-hyperdiploid MM in the trisomy chromosomes, the chromosomal proportion of dosage sensitive genes is higher in the non-trisomy chromosomes. Dosage-sensitive genes are enriched by genes with protein translation and localization functions, and dosage resistant genes are enriched by apoptosis genes. These results point to future studies on differential dosage sensitivity and resistance of pro- and anti-proliferation pathways and their variation across patients as therapeutic targets and prognosis markers. Conclusions Our findings support the hypothesis that recurrent CNAs in myeloma are selected by their functional consequences. The novel dosage effect score defined in this work will facilitate integration of copy number and expression data for identifying driver genes in cancer genomics studies. The accompanying R code is available at http://www.canevolve.org/dosageEffect/.
Collapse
Affiliation(s)
- Mehmet K Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhang G, He P, Gaedcke J, Ghadimi BM, Ried T, Yfantis HG, Lee DH, Hanna N, Alexander HR, Hussain SP. FOXL1, a novel candidate tumor suppressor, inhibits tumor aggressiveness and predicts outcome in human pancreatic cancer. Cancer Res 2013; 73:5416-25. [PMID: 23801748 DOI: 10.1158/0008-5472.can-13-0362] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The forkhead box L1 (FOXL1) transcription factor regulates epithelial proliferation and development of gastrointestinal tract and has been implicated in gastrointestinal tumorigenesis in mouse models. However, the role of FOXL1 in pancreatic cancer development and progression remains to be elucidated. Here, we report that higher expression of FOXL1 is significantly associated with better clinical outcome in human pancreatic ductal adenocarcinoma (PDAC). A lower FOXL1 expression is correlated with metastasis and advanced pathologic stage of pancreatic cancer. Mechanistic analyses showed that overexpression of FOXL1 induces apoptosis and inhibits proliferation and invasion in pancreatic cancer cells, whereas silencing of FOXL1 by siRNA inhibits apoptosis and enhances tumor cell growth and invasion. Furthermore, FOXL1 overexpression significantly suppressed the growth of tumor xenografts in nude mice. FOXL1 promoted apoptosis partly through the induction of TNF-related apoptosis-inducing ligand (TRAIL) in pancreatic cancer cells. In addition, FOXL1 suppressed the transcription of zinc finger E-box-binding homeobox 1 (ZEB1), an activator of epithelial-mesenchymal transition, and the negative regulation of ZEB1 contributed to the inhibitory effect of FOXL1 on tumor cell invasion. Taken together, our findings suggest that FOXL1 expression is a candidate predictor of clinical outcome in patients with resected PDAC and it plays an inhibitory role in pancreatic tumor progression.
Collapse
Affiliation(s)
- Geng Zhang
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, Center for Cancer Research and Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther 2013; 13 Suppl 1:S125-37. [PMID: 23692413 DOI: 10.1517/14712598.2013.796356] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Increasing evidence indicates that non-coding RNAs (ncRNAs) are aberrantly expressed and/or functionally deregulated in hematological malignancies, including multiple myeloma. Harnessing these abnormalities by either replacing or inhibiting ncRNAs is emerging as novel therapeutic option. AREAS COVERED We review the recent remarkable advancement in the understanding of the biological functions of human ncRNAs in multiple myeloma, including the biogenesis, the mechanisms of expression, the relevance as biomarkers, and mostly, the therapeutic potential. Special emphasis is given to microRNAs, the best characterized class of ncRNAs. EXPERT OPINION An improved understanding of the role of ncRNAs in multiple myeloma would provide valuable information about key cancer-promoting pathways and might be highly useful for diagnostic and prognostic assessments. This knowledge might also lead to advancement in the management of multiple myeloma through the development of novel personalized ncRNA-based therapies.
Collapse
Affiliation(s)
- Nicola Amodio
- Magna Graecia University and T. Campanella Cancer Center, Department of Experimental and Clinical Medicine, Medical Oncology Unit, Viale Europa, 88100 Catanzaro, Italy
| | | | | | | | | |
Collapse
|
87
|
Agnelli L, Tassone P, Neri A. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing. Expert Opin Biol Ther 2013; 13 Suppl 1:S55-68. [PMID: 23614397 DOI: 10.1517/14712598.2013.793305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. AREAS COVERED Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. EXPERT OPINION High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.
Collapse
Affiliation(s)
- Luca Agnelli
- University of Milan, Department of Clinical Sciences and Community Health, F. Sforza, 35 - 20122 Milan, Italy
| | | | | |
Collapse
|
88
|
Todoerti K, Agnelli L, Fabris S, Lionetti M, Tuana G, Mosca L, Lombardi L, Grieco V, Bianchino G, D'Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Omede' P, Tassone P, Boccadoro M, Palumbo A, Neri A, Musto P. Transcriptional Characterization of a Prospective Series of Primary Plasma Cell Leukemia Revealed Signatures Associated with Tumor Progression and Poorer Outcome. Clin Cancer Res 2013; 19:3247-58. [DOI: 10.1158/1078-0432.ccr-12-3461] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Yang L, Liu B, Huang B, Deng J, Li H, Yu B, Qiu F, Cheng M, Wang H, Yang R, Yang X, Zhou Y, Lu J. A functional copy number variation in the WWOX gene is associated with lung cancer risk in Chinese. Hum Mol Genet 2013; 22:1886-94. [DOI: 10.1093/hmg/ddt019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
90
|
Fabris S, Mosca L, Cutrona G, Lionetti M, Agnelli L, Ciceri G, Barbieri M, Maura F, Matis S, Colombo M, Gentile M, Recchia AG, Anna Pesce E, Di Raimondo F, Musolino C, Gobbi M, Di Renzo N, Mauro FR, Brugiatelli M, Ilariucci F, Lipari MG, Angrilli F, Consoli U, Fragasso A, Molica S, Festini G, Vincelli I, Cortelezzi A, Federico M, Morabito F, Ferrarini M, Neri A. Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia. Am J Hematol 2013; 88:24-31. [PMID: 23044996 DOI: 10.1002/ajh.23340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/03/2012] [Accepted: 09/05/2012] [Indexed: 12/17/2022]
Abstract
Recent studies have described chromosome 2p gain as a recurrent lesion in chronic lymphocytic leukemia (CLL). We investigated the 2p gain and its relationship with common prognostic biomarkers in a prospective series of 69 clinical monoclonal B-cell lymphocytosis (cMBL) and 218 early stage (Binet A) CLL patients. The 2p gain was detected by FISH in 17 patients (6%, 16 CLL, and 1 cMBL) and further characterized by single nucleotide polymorphism-array. Overall, unfavorable cytogenetic deletions, i.e., del(11)(q23) and del(17)(p13) (P = 0.002), were significantly more frequent in 2p gain cases, as well as unmutated status of IGHV (P < 1 × 10(-4) ) and CD38 (P < 1 × 10(-4) ) and ZAP-70 positive expression (P = 0.003). Furthermore, 2p gain patients had significantly higher utilization of stereotyped B-cell receptors compared with 2p negative patients (P = 0.009), and the incidence of stereotyped subset #1 in 2p gain patients was significantly higher than that found in the remaining CLLs (P = 0.031). Transcriptional profiling analysis identified several genes significantly upregulated in 2p gain CLLs, most of which mapped to 2p. Among these, NCOA1 and ROCK2 are known for their involvement in tumor progression in several human cancers, whereas among those located in different chromosomes, CAV1 at 7q31.1 has been recently identified to play a critical role in CLL progression. Thus, 2p gain can be present since the early stages of the disease, particularly in those cases characterized by other poor prognosis markers. The finding of genes upregulated in the cells with 2p gain provides new insights to define the pathogenic role of this lesion.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 2/metabolism
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 7/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphocytosis/diagnosis
- Lymphocytosis/genetics
- Lymphocytosis/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Staging
- Prognosis
- Prospective Studies
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Sonia Fabris
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano e Ematologia 1 CTMO, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mosca L, Musto P, Todoerti K, Barbieri M, Agnelli L, Fabris S, Tuana G, Lionetti M, Bonaparte E, Sirchia SM, Grieco V, Bianchino G, D'Auria F, Statuto T, Mazzoccoli C, De Luca L, Petrucci MT, Morabito F, Offidani M, Di Raimondo F, Falcone A, Caravita T, Omedè P, Boccadoro M, Palumbo A, Neri A. Genome-wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. Am J Hematol 2013; 88:16-23. [PMID: 23044976 DOI: 10.1002/ajh.23339] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 02/02/2023]
Abstract
Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p (35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A gene, belonging to a family of putative tumor suppressors and found to be significantly down-regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell dyscrasia and the mechanisms of tumor progression in MM.
Collapse
Affiliation(s)
- Laura Mosca
- Department of Clinical Sciences and Community Health, University of Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ronchetti D, Todoerti K, Tuana G, Agnelli L, Mosca L, Lionetti M, Fabris S, Colapietro P, Miozzo M, Ferrarini M, Tassone P, Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2012. [PMID: 23178508 PMCID: PMC3511933 DOI: 10.1038/bcj.2012.41] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may have a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM) by profiling purified malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCLs) and 4 normal controls. Overall, a global sno/scaRNAs downregulation was found in MMs and, even more, in sPCLs compared with normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the translocation/cyclin D4 (TC4) MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by an imprinting center at 15q11, which, however, resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information to the bio-molecular complexity of plasma cell dyscrasias.
Collapse
Affiliation(s)
- D Ronchetti
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Identification of unbalanced genome copy number abnormalities in patients with multiple myeloma by single-nucleotide polymorphism genotyping microarray analysis. Int J Hematol 2012; 96:492-500. [PMID: 22972171 DOI: 10.1007/s12185-012-1171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
Abstract
Single-nucleotide polymorphism genotyping microarray (SNP array) analysis provides detailed information on chromosomal copy number aberrations. To obtain detailed information on genomic abnormalities related to pathogenesis or prognosis of multiple myeloma (MM), we performed 250K SNP array analysis in 39 MM patients and 11 cell lines. We identified an accumulation of deletions and uniparental disomies at 22q12.1. Among the hyperdiploid MM cases, chromosomal imbalance at this locus was associated with poor prognosis. On sequencing, we also found a mutation in the seizure-related 6 homolog (mouse)-like (SEZ6L) gene located at ch.22q12.1 in an MM cell line, NOP1. We further found isolated deletions in 17 genes, five of which are known tumor suppressor genes. Of these, deletion of protein tyrosine phosphatase, receptor type D (PTPRD) was found in three samples, including two patients. Consistent with previous reports, non-hyperdiploid MM, deletion of 13q (del13q) and gain of 1q in non-hyperdiploid MMs were predictive of poor prognosis (p = 0.039, p = 0.049, and p = 0.013, respectively). However, our analysis revealed that unless accompanied by gain of 1q, the prognosis of non-hyperdiploid MM was as good as that of hyperdiploid MM. Thus, SNP array analysis provides significant information useful to understanding the pathogenesis and prognosis of MM.
Collapse
|
94
|
Stevens-Kroef M, Weghuis DO, Croockewit S, Derksen L, Hooijer J, Elidrissi-Zaynoun N, Siepman A, Simons A, Kessel AGV. High detection rate of clinically relevant genomic abnormalities in plasma cells enriched from patients with multiple myeloma. Genes Chromosomes Cancer 2012; 51:997-1006. [PMID: 22833442 DOI: 10.1002/gcc.21982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/13/2012] [Indexed: 11/12/2022] Open
Abstract
Multiple myeloma is a heterogeneous disease, which is characterized by the occurrence of specific genomic abnormalities that are both of diagnostic and prognostic relevance. Since the detection of these abnormalities through molecular-genetic techniques is hampered by the overall low percentage of plasma cells present in primary bone marrow aspirates, we assessed the efficacy of these techniques in enriched plasma cell fractions from 61 multiple myeloma patients. Using interphase FISH, genomic abnormalities could be detected in 96% of the enriched samples as compared to 61% in the cultured whole bone marrow samples. We also found that microarray-based genomic profiling of enriched plasma samples facilitates the detection of additional, possibly clinically relevant, genomic abnormalities. We conclude that the genomic delineation of enriched plasma cells from multiple myeloma patients results in a significantly increased detection rate of clinically relevant genomic abnormalities. In order to facilitate molecular-genetic data interpretation, we recommend morphological assessment of plasma cell purity after enrichment.
Collapse
Affiliation(s)
- Marian Stevens-Kroef
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Huang D, Qiu F, Yang L, Li Y, Cheng M, Wang H, Ma G, Wang Y, Hu M, Ji W, Zhou Y, Lu J. The polymorphisms and haplotypes of WWOX gene are associated with the risk of lung cancer in southern and eastern Chinese populations. Mol Carcinog 2012; 52 Suppl 1:E19-27. [PMID: 22693020 DOI: 10.1002/mc.21934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 05/08/2012] [Accepted: 05/18/2012] [Indexed: 12/18/2022]
Abstract
The WW domain-containing oxidoreductase (WWOX) gene is an identified tumor suppressor gene, of which several single nucleotide polymorphisms have been reported to contribute to cancer susceptibility. We hypothesized that genetic variations in WWOX are associated with lung cancer risk. In two independent case-control studies conducted in southern and eastern Chinese, we genotyped five tagSNPs of WWOX gene (rs10220974C > T, rs3764340C > G, rs12918952G > A, rs383362G > T, and rs12828G > A) in 1,559 lung cancer cases and 1,679 controls. Logistic regression analysis showed that two tagSNPs (rs3764340C > G; rs383362G > T) were significantly associated with lung cancer risk in dominant model (rs3764340C > G, GC/GG vs. CC: adjust OR = 1.35, 95% CI = 1.11-1.65; rs383362G > T, TG + TT vs. GG: adjust OR = 1.33, 95% CI = 1.14-1.55). The haplotype analysis further shown that the haplotype "G-T" was associated with the highest increased risk of lung cancer (OR = 2.20; 95% CI = 1.43-3.37). After combined these two loci, the number of the risk genotypes was associated with increased cancer risk in a dose-response manner (Ptrend = 3.16 × 10(-6) ). In addition, a gene-based association analysis by using VEGAS software suggested the WWOX as a susceptible gene for lung cancer (P = 0.009). However, for rs10220974C > T, rs12918952G > A, and rs12828G > A, no significant association was observed for lung cancer risk. Taken together, our data suggested that genetic variants in WWOX may be genetic biomarkers for susceptibility to lung cancer.
Collapse
Affiliation(s)
- Dongsheng Huang
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China; Guangzhou Chest Hospital, Guangzhou, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Simons A, Sikkema-Raddatz B, de Leeuw N, Konrad NC, Hastings RJ, Schoumans J. Genome-wide arrays in routine diagnostics of hematological malignancies. Hum Mutat 2012; 33:941-8. [PMID: 22488943 DOI: 10.1002/humu.22057] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 02/03/2012] [Indexed: 11/10/2022]
Abstract
Over the last three decades, cytogenetic analysis of malignancies has become an integral part of disease evaluation and prediction of prognosis or responsiveness to therapy. In most diagnostic laboratories, conventional karyotyping, in conjunction with targeted fluorescence in situ hybridization analysis, is routinely performed to detect recurrent aberrations with prognostic implications. However, the genetic complexity of cancer cells requires a sensitive genome-wide analysis, enabling the detection of small genomic changes in a mixed cell population, as well as of regions of homozygosity. The advent of comprehensive high-resolution genomic tools, such as molecular karyotyping using comparative genomic hybridization or single-nucleotide polymorphism microarrays, has overcome many of the limitations of traditional cytogenetic techniques and has been used to study complex genomic lesions in, for example, leukemia. The clinical impact of the genomic copy-number and copy-neutral alterations identified by microarray technologies is growing rapidly and genome-wide array analysis is evolving into a diagnostic tool, to better identify high-risk patients and predict patients' outcomes from their genomic profiles. Here, we review the added clinical value of an array-based genome-wide screen in leukemia, and discuss the technical challenges and an interpretation workflow in applying arrays in the acquired cytogenetic diagnostic setting.
Collapse
Affiliation(s)
- Annet Simons
- Laboratory of Tumor Genetics, Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | |
Collapse
|
97
|
Sato-Otsubo A, Sanada M, Ogawa S. Single-nucleotide polymorphism array karyotyping in clinical practice: where, when, and how? Semin Oncol 2012; 39:13-25. [PMID: 22289488 DOI: 10.1053/j.seminoncol.2011.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-nucleotide polymorphism array (SNP-A) karyotyping is a new technology that has enabled genome-wide detection of genetic lesions in human cancers, including hematopoietic neoplasms. Taking advantage of very large numbers of allele-specific probes synthesized on microarrays at high density, copy number alterations as well as allelic imbalances can be sensitively detected in a genome-wide manner at unprecedented resolutions. Most importantly, SNP-A karyotyping represents the only platform currently available for genome-scale detection of copy neutral loss of heterozygosity (CN-LOH) or uniparental disomy (UPD), which is widely observed in cancer genomes. Although not applicable to detection of balanced translocations, which are commonly found in hematopoietic malignancies, SNP-A karyotyping technology complements and even outperforms conventional metaphase karyotyping, potentially allowing for more accurate genetic diagnosis of hematopoietic neoplasms in clinical practice. Here, we review the current status of SNP-A karyotyping and its application to hematopoietic neoplasms.
Collapse
Affiliation(s)
- Aiko Sato-Otsubo
- Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
98
|
|
99
|
Johnson SK, Heuck CJ, Albino AP, Qu P, Zhang Q, Barlogie B, Shaughnessy JD. The use of molecular-based risk stratification and pharmacogenomics for outcome prediction and personalized therapeutic management of multiple myeloma. Int J Hematol 2011; 94:321-333. [PMID: 22002477 DOI: 10.1007/s12185-011-0948-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Despite improvement in therapeutic efficacy, multiple myeloma (MM) remains incurable with a median survival of approximately 10 years. Gene-expression profiling (GEP) can be used to elucidate the molecular basis for resistance to chemotherapy through global assessment of molecular alterations that exist at diagnosis, after therapeutic treatment and that evolve during tumor progression. Unique GEP signatures associated with recurrent chromosomal translocations and ploidy changes have defined molecular classes with differing clinical features and outcomes. When compared to other stratification systems the GEP70 test remained a significant predictor of outcome, reduced the number of patients classified with a poor prognosis, and identified patients at increased risk of relapse despite their standard clinico-pathologic and genetic findings. GEP studies of serial samples showed that risk increases over time, with relapsed disease showing GEP shifts toward a signature of poor outcomes. GEP signatures of myeloma cells after therapy were prognostic for event-free and overall survival and thus may be used to identify novel strategies for overcoming drug resistance. This brief review will focus on the use of GEP of MM to define high-risk myeloma, and elucidate underlying mechanisms that are beginning to change clinical decision-making and inform drug design.
Collapse
Affiliation(s)
- Sarah K Johnson
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christoph J Heuck
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | | | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - John D Shaughnessy
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA. .,Donna D and Donald M Lambert Laboratory for Myeloma Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
100
|
Agnelli L, Forcato M, Ferrari F, Tuana G, Todoerti K, Walker BA, Morgan GJ, Lombardi L, Bicciato S, Neri A. The reconstruction of transcriptional networks reveals critical genes with implications for clinical outcome of multiple myeloma. Clin Cancer Res 2011; 17:7402-12. [PMID: 21890453 DOI: 10.1158/1078-0432.ccr-11-0596] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The combined use of microarray technologies and bioinformatics analysis has improved our understanding of biological complexity of multiple myeloma (MM). In contrast, the application of the same technology in the attempt to predict clinical outcome has been less successful with the identification of heterogeneous molecular signatures. Herein, we have reconstructed gene regulatory networks in a panel of 1,883 samples from MM patients derived from publicly available gene expression sets, to allow the identification of robust and reproducible signatures associated with poor prognosis across independent data sets. EXPERIMENTAL DESIGN Gene regulatory networks were reconstructed by using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) and microarray data from seven MM data sets. Critical analysis of network components was applied to identify genes playing an essential role in transcriptional networks, which are conserved between data sets. RESULTS Network critical analysis revealed that (i) CCND1 and CCND2 were the most critical genes; (ii) CCND2, AIF1, and BLNK had the largest number of connections shared among the data sets; (iii) robust gene signatures with prognostic power were derived from the most critical transcripts and from shared primary neighbors of the most connected nodes. Specifically, a critical-gene model, comprising FAM53B, KIF21B, WHSC1, and TMPO, and a neighbor-gene model, comprising BLNK shared neighbors CSGALNACT1 and SLC7A7, predicted survival in all data sets with follow-up information. CONCLUSIONS The reconstruction of gene regulatory networks in a large panel of MM tumors defined robust and reproducible signatures with prognostic importance, and may lead to identify novel molecular mechanisms central to MM biology.
Collapse
Affiliation(s)
- Luca Agnelli
- Department of Medical Sciences, University of Milan and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|