54
|
Umat C, Mukari SZMS, Nordin N, A/L Annamalay T, Othman BF. Mainstream school readiness skills of a group of young cochlear implant users. Int J Pediatr Otorhinolaryngol 2018; 107:69-74. [PMID: 29501315 DOI: 10.1016/j.ijporl.2018.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The aims of the study were to compare the mainstream school readiness skills of young cochlear implant (CI) users to that of a group of normal hearing (NH) children and assessed the inter-rater agreement between parents and teachers on school readiness skills of the CI children. METHODS A total of 11 parents and 8 teachers of the 6-year old CI children participated and rated the children using the School Readiness Scale to Year One. Data from 207 6-year old NH children from five states in Malaysia were also collected using the same scale which has nine domains. Results from the NH children were categorized into the 25th and 75th percentile scores to be the reference cut-offs for below average (below the 25th percentile), average (25th to 75th percentile) and above average (above 75th percentile). RESULTS The school readiness skills of the CI children were lower than the NH group as rated by teachers especially in the civic and language and communication domains. Comparisons between parents' and teachers' ratings for 8 CI children indicated that teachers tended to rate the CI children's school readiness poorer than that of parents especially in the academic domain. Intra-class correlation analysis revealed poor inter-rater agreement. CONCLUSIONS The results suggest that our CI children, generally, need an intervention 'bridging' program to improve their school readiness skills. Parents and teachers had different views on the readiness of the CI children at school entry level.
Collapse
Affiliation(s)
- Cila Umat
- Audiology Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia; Institute of Ear Hearing & Speech, Universiti Kebangsaan Malaysia, Jalan Temerloh, 53200, Kuala Lumpur, Malaysia.
| | | | - Norbaya Nordin
- Audiology Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Tiagarajan A/L Annamalay
- Institute of Ear Hearing & Speech, Universiti Kebangsaan Malaysia, Jalan Temerloh, 53200, Kuala Lumpur, Malaysia
| | - Basyariatul Fathi Othman
- Institute of Ear Hearing & Speech, Universiti Kebangsaan Malaysia, Jalan Temerloh, 53200, Kuala Lumpur, Malaysia
| |
Collapse
|
55
|
Sun J, Liu Z, Rolls ET, Chen Q, Yao Y, Yang W, Wei D, Zhang Q, Zhang J, Feng J, Qiu J. Verbal Creativity Correlates with the Temporal Variability of Brain Networks During the Resting State. Cereb Cortex 2018; 29:1047-1058. [DOI: 10.1093/cercor/bhy010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/07/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Jiangzhou Sun
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Zhaowen Liu
- School of Computer Science and Technology, Xidian University, Xi’an, Shanxi, PR China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, UK
- Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Ye Yao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Qinglin Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
- Department of Computer Science, University of Warwick, Coventry, UK
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, PR China
- Shanghai Center for Mathematical Sciences, Shanghai, PR China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China
- School of Psychology, Southwest University (SWU), Chongqing, China
| |
Collapse
|
56
|
Sohn WS, Lee TY, Kwak S, Yoon YB, Kwon JS. Higher extrinsic and lower intrinsic connectivity in resting state networks for professional Baduk (Go) players. Brain Behav 2017; 7:e00853. [PMID: 29299380 PMCID: PMC5745240 DOI: 10.1002/brb3.853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Dedication and training to a profession results in a certain level of expertise. This expertise, like any other skill obtained in our lifetime, is encoded in the brain and may be reflected in our brain's connectome. This property can be observed by mapping resting state connectivity. In this study, we examine the differences in resting state functional connectivity in four major networks between professional "Baduk" (Go) players and normal subjects. METHODS Resting state fMRI scans were acquired for professional "Baduk" (Go) players and normal controls. Major resting state networks were identified using independent component analysis and compared between the two groups. Networks which were compared include the default mode network, the left and right fronto-parietal network, and the salience network. RESULTS We found that normal subjects showed increased connectivity within certain areas of each target network. Professional players, however, showed higher connectivity to regions outside the traditional regions of each given network. Close examination of these regions revealed that regions shown to have higher connectivity in professional players have been revealed to be relevant in expertise for board games. CONCLUSION The findings in this study suggest that continuous training results in greater integration between regions and networks, which are necessary for high-level performance. The differences observed in our study between normal controls and professional players also shed light on the difference in brain connectivity which can arise through lifestyle and specialization in a specific field.
Collapse
Affiliation(s)
- William S Sohn
- Institute of Human Behavioral Medicine SNU-MRC Seoul Korea
| | - Tae Young Lee
- Department of Psychiatry Seoul National University College of Medicine Seoul Korea
| | - Seoyeon Kwak
- Department of Brain and Cognitive Sciences Seoul National University Seoul Korea
| | - Youngwoo Bryan Yoon
- Institute of Human Behavioral Medicine SNU-MRC Seoul Korea.,Department of Brain and Cognitive Sciences Seoul National University Seoul Korea
| | - Jun Soo Kwon
- Institute of Human Behavioral Medicine SNU-MRC Seoul Korea.,Department of Psychiatry Seoul National University College of Medicine Seoul Korea.,Department of Brain and Cognitive Sciences Seoul National University Seoul Korea
| |
Collapse
|
57
|
Premi E, Grassi M, van Swieten J, Galimberti D, Graff C, Masellis M, Tartaglia C, Tagliavini F, Rowe JB, Laforce R, Finger E, Frisoni GB, de Mendonça A, Sorbi S, Gazzina S, Cosseddu M, Archetti S, Gasparotti R, Manes M, Alberici A, Cardoso MJ, Bocchetta M, Cash DM, Ourselin S, Padovani A, Rohrer JD, Borroni B. Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain 2017; 140:1784-1791. [PMID: 28460069 PMCID: PMC5445253 DOI: 10.1093/brain/awx103] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/04/2017] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the slope of the correlation between education and grey matter volume (P = 0.007). Together, these results indicate that brain atrophy in presymptomatic carriers of common frontotemporal dementia mutations is affected by both genetic and environmental factors such that TMEM106B enhances the benefit of cognitive reserve on brain structure. These findings should be considered in evaluating outcomes in future disease-modifying trials, and support the search for protective mechanisms in people at risk of dementia that might facilitate new therapeutic strategies.
Collapse
Affiliation(s)
- Enrico Premi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Italy
| | - John van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Caroline Graff
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogenetics, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Mario Masellis
- LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carmela Tartaglia
- Toronto Western Hospital, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON, Canada
| | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
| | - Giovanni B Frisoni
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) "Don Gnocchi", Florence, Italy
| | - Stefano Gazzina
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maura Cosseddu
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Department of Laboratories, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | | | - Marta Manes
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonella Alberici
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Manuel J Cardoso
- Dementia Research Centre, UCL Institute of Neurology, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | | | - David M Cash
- Dementia Research Centre, UCL Institute of Neurology, London, UK.,Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Sebastian Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Computer Science, UCL, London, UK
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | |
Collapse
|
60
|
Peters SK, Dunlop K, Downar J. Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment. Front Syst Neurosci 2016; 10:104. [PMID: 28082874 PMCID: PMC5187454 DOI: 10.3389/fnsys.2016.00104] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network’s associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN’s cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Sarah K Peters
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Katharine Dunlop
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of TorontoToronto, ON, Canada; Krembil Research Institute, University Health NetworkToronto, ON, Canada; Department of Psychiatry, University of TorontoToronto, ON, Canada; MRI-Guided rTMS Clinic, University Health NetworkToronto, ON, Canada
| |
Collapse
|