51
|
D'Souza M, Van Munster CEP, Dorn JF, Dorier A, Kamm CP, Steinheimer S, Dahlke F, Uitdehaag BMJ, Kappos L, Johnson M. Autoencoder as a New Method for Maintaining Data Privacy While Analyzing Videos of Patients With Motor Dysfunction: Proof-of-Concept Study. J Med Internet Res 2020; 22:e16669. [PMID: 32191621 PMCID: PMC7244995 DOI: 10.2196/16669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background In chronic neurological diseases, especially in multiple sclerosis (MS), clinical assessment of motor dysfunction is crucial to monitor the disease in patients. Traditional scales are not sensitive enough to detect slight changes. Video recordings of patient performance are more accurate and increase the reliability of severity ratings. When these recordings are automated, quantitative disability assessments by machine learning algorithms can be created. Creation of these algorithms involves non–health care professionals, which is a challenge for maintaining data privacy. However, autoencoders can address this issue. Objective The aim of this proof-of-concept study was to test whether coded frame vectors of autoencoders contain relevant information for analyzing videos of the motor performance of patients with MS. Methods In this study, 20 pre-rated videos of patients performing the finger-to-nose test were recorded. An autoencoder created encoded frame vectors from the original videos and decoded the videos again. The original and decoded videos were shown to 10 neurologists at an academic MS center in Basel, Switzerland. The neurologists tested whether the 200 videos were human-readable after decoding and rated the severity grade of each original and decoded video according to the Neurostatus-Expanded Disability Status Scale definitions of limb ataxia. Furthermore, the neurologists tested whether ratings were equivalent between the original and decoded videos. Results In total, 172 of 200 (86.0%) videos were of sufficient quality to be ratable. The intrarater agreement between the original and decoded videos was 0.317 (Cohen weighted kappa). The average difference in the ratings between the original and decoded videos was 0.26, in which the original videos were rated as more severe. The interrater agreement between the original videos was 0.459 and that between the decoded videos was 0.302. The agreement was higher when no deficits or very severe deficits were present. Conclusions The vast majority of videos (172/200, 86.0%) decoded by the autoencoder contained clinically relevant information and had fair intrarater agreement with the original videos. Autoencoders are a potential method for enabling the use of patient videos while preserving data privacy, especially when non–health-care professionals are involved.
Collapse
Affiliation(s)
- Marcus D'Souza
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Caspar E P Van Munster
- Department of Neurology, Multiple Sclerosis Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | - Christian P Kamm
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland.,Department of Neurology, Inselspital, University of Bern, Bern, Switzerland
| | - Saskia Steinheimer
- Department of Neurology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Bernard M J Uitdehaag
- Department of Neurology, Multiple Sclerosis Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | | |
Collapse
|
52
|
Su C, Xu Z, Pathak J, Wang F. Deep learning in mental health outcome research: a scoping review. Transl Psychiatry 2020; 10:116. [PMID: 32532967 PMCID: PMC7293215 DOI: 10.1038/s41398-020-0780-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Mental illnesses, such as depression, are highly prevalent and have been shown to impact an individual's physical health. Recently, artificial intelligence (AI) methods have been introduced to assist mental health providers, including psychiatrists and psychologists, for decision-making based on patients' historical data (e.g., medical records, behavioral data, social media usage, etc.). Deep learning (DL), as one of the most recent generation of AI technologies, has demonstrated superior performance in many real-world applications ranging from computer vision to healthcare. The goal of this study is to review existing research on applications of DL algorithms in mental health outcome research. Specifically, we first briefly overview the state-of-the-art DL techniques. Then we review the literature relevant to DL applications in mental health outcomes. According to the application scenarios, we categorize these relevant articles into four groups: diagnosis and prognosis based on clinical data, analysis of genetics and genomics data for understanding mental health conditions, vocal and visual expression data analysis for disease detection, and estimation of risk of mental illness using social media data. Finally, we discuss challenges in using DL algorithms to improve our understanding of mental health conditions and suggest several promising directions for their applications in improving mental health diagnosis and treatment.
Collapse
Affiliation(s)
- Chang Su
- grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY USA
| | - Zhenxing Xu
- grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY USA
| | - Jyotishman Pathak
- grid.5386.8000000041936877XDepartment of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY USA
| | - Fei Wang
- Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
53
|
Scarpazza C, Ha M, Baecker L, Garcia-Dias R, Pinaya WHL, Vieira S, Mechelli A. Translating research findings into clinical practice: a systematic and critical review of neuroimaging-based clinical tools for brain disorders. Transl Psychiatry 2020; 10:107. [PMID: 32313006 PMCID: PMC7170931 DOI: 10.1038/s41398-020-0798-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
A pivotal aim of psychiatric and neurological research is to promote the translation of the findings into clinical practice to improve diagnostic and prognostic assessment of individual patients. Structural neuroimaging holds much promise, with neuroanatomical measures accounting for up to 40% of the variance in clinical outcome. Building on these findings, a number of imaging-based clinical tools have been developed to make diagnostic and prognostic inferences about individual patients from their structural Magnetic Resonance Imaging scans. This systematic review describes and compares the technical characteristics of the available tools, with the aim to assess their translational potential into real-world clinical settings. The results reveal that a total of eight tools. All of these were specifically developed for neurological disorders, and as such are not suitable for application to psychiatric disorders. Furthermore, most of the tools were trained and validated in a single dataset, which can result in poor generalizability, or using a small number of individuals, which can cause overoptimistic results. In addition, all of the tools rely on two strategies to detect brain abnormalities in single individuals, one based on univariate comparison, and the other based on multivariate machine-learning algorithms. We discuss current barriers to the adoption of these tools in clinical practice and propose a checklist of pivotal characteristics that should be included in an "ideal" neuroimaging-based clinical tool for brain disorders.
Collapse
Affiliation(s)
- C Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK.
- Department of General Psychology, University of Padova, Padova, Italy.
| | - M Ha
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - L Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - R Garcia-Dias
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - W H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - S Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| | - A Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College, London, UK
| |
Collapse
|
54
|
Chang YW, Tsai SJ, Wu YF, Yang AC. Development of an Al-Based Web Diagnostic System for Phenotyping Psychiatric Disorders. Front Psychiatry 2020; 11:542394. [PMID: 33250789 PMCID: PMC7674487 DOI: 10.3389/fpsyt.2020.542394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Artificial intelligence (AI)-based medical diagnostic applications are on the rise. Our recent study has suggested an explainable deep neural network (EDNN) framework for identifying key structural deficits related to the pathology of schizophrenia. Here, we presented an AI-based web diagnostic system for schizophrenia under the EDNN framework with three-dimensional (3D) visualization of subjects' neuroimaging dataset. Methods: This AI-based web diagnostic system consisted of a web server and a neuroimaging diagnostic database. The web server deployed the EDNN algorithm under the Node.js environment. Feature selection and network model building were performed on the dataset obtained from two hundred schizophrenic patients and healthy controls in the Taiwan Aging and Mental Illness (TAMI) cohort. We included an independent cohort with 88 schizophrenic patients and 44 healthy controls recruited at Tri-Service General Hospital Beitou Branch for validation purposes. Results: Our AI-based web diagnostic system achieved 84.00% accuracy (89.47% sensitivity, 80.62% specificity) for gray matter (GM) and 90.22% accuracy (89.21% sensitivity, 91.23% specificity) for white matter (WM) on the TAMI cohort. For the Beitou cohort as an unseen test set, the model achieved 77.27 and 70.45% accuracy for GM and WM. Furthermore, it achieved 85.50 and 88.20% accuracy after model retraining to mitigate the effects of drift on the predictive capability. Moreover, our system visualized the identified voxels in brain atrophy in a 3D manner with patients' structural image, optimizing the evaluation process of the diagnostic results. Discussion: Together, our approach under the EDNN framework demonstrated the potential future direction of making a schizophrenia diagnosis based on structural brain imaging data. Our deep learning model is explainable, arguing for the accuracy of the key information related to the pathology of schizophrenia when using the AI-based web assessment platform. The rationale of this approach is in accordance with the Research Domain Criteria suggested by the National Institute of Mental Health.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yung-Fu Wu
- Department of Psychiatry, Beitou Branch, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Albert C Yang
- Institute of Brain Science and Digital Medicine Center, National Yang-Ming University, Taipei, Taiwan.,Brain Medicine Center, Tao-Yuan Psychiatric Center, Tao-Yuan, Taiwan
| |
Collapse
|
55
|
Sha Z, Wager TD, Mechelli A, He Y. Common Dysfunction of Large-Scale Neurocognitive Networks Across Psychiatric Disorders. Biol Psychiatry 2019; 85:379-388. [PMID: 30612699 DOI: 10.1016/j.biopsych.2018.11.011] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/08/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cognitive dysfunction is one of the most prominent characteristics of psychiatric disorders. Currently, the neural correlates of cognitive dysfunction across psychiatric disorders are poorly understood. The aim of this study was to investigate functional connectivity and structural perturbations across psychiatric diagnoses in three neurocognitive networks of interest: the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). METHODS We performed meta-analyses of resting-state functional magnetic resonance imaging whole-brain seed-based functional connectivity in 8298 patients (involving eight disorders) and 8165 healthy control subjects and a voxel-based morphometry analysis of structural magnetic resonance imaging data in 14,027 patients (involving eight disorders) and 14,504 healthy control subjects. To aid the interpretation of the results, we examined neurocognitive function in 776 healthy participants from the Human Connectome Project. RESULTS We found that the three neurocognitive networks of interest were characterized by shared alterations of functional connectivity architecture across psychiatric disorders. More specifically, hypoconnectivity was expressed between the DMN and ventral SN and between the SN and FPN, whereas hyperconnectivity was evident between the DMN and FPN and between the DMN and dorsal SN. This pattern of network alterations was associated with gray matter reductions in patients and was localized in regions that subserve general cognitive performance. CONCLUSIONS This study is the first to provide meta-analytic evidence of common alterations of functional connectivity within and between neurocognitive networks. The findings suggest a shared mechanism of network interactions that may associate with the generalized cognitive deficits observed in psychiatric disorders.
Collapse
Affiliation(s)
- Zhiqiang Sha
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado; Institute of Cognitive Science, University of Colorado, Boulder, Colorado
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
56
|
de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C, De Fazio P. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat 2019; 15:1605-1627. [PMID: 31354276 PMCID: PMC6590624 DOI: 10.2147/ndt.s202418] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Diagnosis of schizophrenia (SCZ) is made exclusively clinically, since specific biomarkers that can predict the disease accurately remain unknown. Machine learning (ML) represents a promising approach that could support clinicians in the diagnosis of mental disorders. OBJECTIVES A systematic review, according to the PRISMA statement, was conducted to evaluate its accuracy to distinguish SCZ patients from healthy controls. METHODS We systematically searched PubMed, Embase, MEDLINE, PsychINFO and the Cochrane Library through December 2018 using generic terms for ML techniques and SCZ without language or time restriction. Thirty-five studies were included in this review: eight of them used structural neuroimaging, twenty-six used functional neuroimaging and one both, with a minimum accuracy >60% (most of them 75-90%). Sensitivity, Specificity and accuracy were extracted from each publication or obtained directly from authors. RESULTS Support vector machine, the most frequent technique, if associated with other ML techniques achieved accuracy close to 100%. The prefrontal and temporal cortices appeared to be the most useful brain regions for the diagnosis of SCZ. ML analysis can efficiently detect significantly altered brain connectivity in patients with SCZ (eg, default mode network, visual network, sensorimotor network, frontoparietal network and salience network). CONCLUSION The greater accuracy demonstrated by these predictive models and the new models resulting from the integration of multiple ML techniques will be increasingly decisive for early diagnosis and evaluation of the treatment response and to establish the prognosis of patients with SCZ. To achieve a real benefit for patients, the future challenge is to reach an accurate diagnosis not only through clinical evaluation but also with the aid of ML algorithms.
Collapse
Affiliation(s)
- Renato de Filippis
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Elvira Anna Carbone
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Raffaele Gaetano
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Antonella Bruni
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Valentina Pugliese
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Pasquale De Fazio
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
57
|
Pinaya WHL, Mechelli A, Sato JR. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large-scale multi-sample study. Hum Brain Mapp 2018; 40:944-954. [PMID: 30311316 PMCID: PMC6492107 DOI: 10.1002/hbm.24423] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022] Open
Abstract
Machine learning is becoming an increasingly popular approach for investigating spatially distributed and subtle neuroanatomical alterations in brain-based disorders. However, some machine learning models have been criticized for requiring a large number of cases in each experimental group, and for resembling a "black box" that provides little or no insight into the nature of the data. In this article, we propose an alternative conceptual and practical approach for investigating brain-based disorders which aim to overcome these limitations. We used an artificial neural network known as "deep autoencoder" to create a normative model using structural magnetic resonance imaging data from 1,113 healthy people. We then used this model to estimate total and regional neuroanatomical deviation in individual patients with schizophrenia and autism spectrum disorder using two independent data sets (n = 263). We report that the model was able to generate different values of total neuroanatomical deviation for each disease under investigation relative to their control group (p < .005). Furthermore, the model revealed distinct patterns of neuroanatomical deviations for the two diseases, consistent with the existing neuroimaging literature. We conclude that the deep autoencoder provides a flexible and promising framework for assessing total and regional neuroanatomical deviations in neuropsychiatric populations.
Collapse
Affiliation(s)
- Walter H L Pinaya
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.,Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - João R Sato
- Center of Mathematics, Computing, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|