51
|
Tao YC, Chen EQ. Clinical application of stem cell in patients with end-stage liver disease: progress and challenges. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:564. [PMID: 32775365 PMCID: PMC7347777 DOI: 10.21037/atm.2020.03.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
End-stage liver disease (ESLD) is life-threatening disease worldwide, and patients with ESLD should be referred to liver transplantation (LT). However, the use of LT is limited by the lacking liver source, high cost and organ rejection. Thus, other alternative options have been explored. Stem cell therapy may be a potential alternative for ESLD treatment. With the potential of self-renewal and differentiation, both hepatic and extrahepatic stem cells have attracted a lot of attention. Among them, multipotent stem cells are most widely studies owing to their characteristics. Multipotent stem cells mainly consist of two subpopulations: hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Accumulating evidences have proved that either bone marrow (BM)-derived HSCs mobilized by granulocyte colony-stimulating factor or MSCs transplantation can improve the biochemical indicators of patients with ESLD. However, there are some challenges to be resolved before stem cells widely used in clinic, including the best stem cell source, the optimal route for stem cells transplantation, and the dose and frequency of stem cell injected. The purpose of this review is to discuss the potential of stem cell in liver diseases, particularly, the clinical progress and challenges of multipotent stem cells in the field of ESLD.
Collapse
Affiliation(s)
- Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
52
|
Zhang S, Yang Y, Fan L, Zhang F, Li L. The clinical application of mesenchymal stem cells in liver disease: the current situation and potential future. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:565. [PMID: 32775366 PMCID: PMC7347776 DOI: 10.21037/atm.2020.03.218] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver disease is a major health issue which present poor clinical treatment performance. Cirrhosis and liver failure are common clinical manifestations of liver diseases. Liver transplantation is recognized as the ultimate and most efficient therapy to the end stage of liver disease. But it was limited by the shortage of honor organs and high cost. Nowadays, stem cell therapy gained more and more attention due to its attractive efficacy in treating liver disease especially in cirrhosis during the clinical trials. Mesenchymal stem cell (MSC) can be differentiated into hepatocytes, promote liver regeneration, inhibit liver fibrosis and induce liver apoptosis, particularly via paracrine mechanisms. This review will highlight recent clinical applications of MSC, providing the available evidence and discussing some unsolved questions in treating liver disease.
Collapse
Affiliation(s)
- Sainan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linxiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
53
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
54
|
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci 2020; 16:893-903. [PMID: 32071558 PMCID: PMC7019139 DOI: 10.7150/ijbs.39725] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The liver is sensitive to pathogen-induced acute or chronic liver injury, and liver transplantation (LT) is the only effective strategy for end-stage liver diseases. However, the clinical application is limited by a shortage of liver organs, immunological rejection and high cost. Mesenchymal stromal cell (MSC)-based therapy has gradually become a hot topic for promoting liver regeneration and repairing liver injury in various liver diseases, since MSCs are reported to migrate toward injured tissues, undergo hepatogenic differentiation, inhibit inflammatory factor release and enhance the proliferation of liver cells in vivo. MSCs exert immunoregulatory effects through cell-cell contact and the secretion of anti-inflammatory factors to inhibit liver inflammation and promote liver regeneration. In addition, MSCs are reported to effectively inhibit the activation of cells of the innate immune system, including macrophages, natural killer (NK) cells, dendritic cells (DCs), monocytes and other immune cells, and inhibit the activation of cells of the adaptive immune system, including T lymphocytes, B lymphocytes and subsets of T cells or B cells. In the current review, we mainly focus on the potential effects and mechanisms of MSCs in inhibiting the activation of immune cells to attenuate liver injury in models or patients with acute liver failure (ALF), nonalcoholic fatty liver disease (NAFLD), and liver fibrosis and in patients or models after LT. We highlight that MSC transplantation may replace general therapies for eliminating acute or chronic liver injury in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Zhongwen Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
55
|
Sai B, Dai Y, Fan S, Wang F, Wang L, Li Z, Tang J, Wang L, Zhang X, Zheng L, Chen F, Li G, Xiang J. Cancer-educated mesenchymal stem cells promote the survival of cancer cells at primary and distant metastatic sites via the expansion of bone marrow-derived-PMN-MDSCs. Cell Death Dis 2019; 10:941. [PMID: 31819035 PMCID: PMC6901580 DOI: 10.1038/s41419-019-2149-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that can differentiate into a variety of cell types. BMSCs are chemotactically guided towards the cancer cells and contribute to the formation of a cancer microenvironment. The homing of BMSCs was affected by various factors. Disseminated tumour cells (DTCs) in distant organs, especially in the bone marrow, are the source of cancer metastasis and cancer relapse. DTC survival is also determined by the microenvironment. Here we aim to elucidate how cancer-educated BMSCs promote the survival of cancer cells at primary tumour sites and distant sites. We highlight the dynamic change by identifying different gene expression signatures in intratumoral BMSCs and in BMSCs that move back in the bone marrow. Intratumoral BMSCs acquire high mobility and displayed immunosuppressive effects. Intratumoral BMSCs that ultimately home to the bone marrow exhibit a strong immunosuppressive function. Cancer-educated BMSCs promote the survival of lung cancer cells via expansion of MDSCs in bone marrow, primary tumour sites and metastatic sites. These Ly6G+ MDSCs suppress proliferation of T cells. CXCL5, nitric oxide and GM-CSF produced by cancer-educated BMSCs contribute to the formation of malignant microenvironments. Treatment with CXCL5 antibody, the iNOS inhibitor 1400w and GM-CSF antibody reduced MDSC expansion in the bone marrow, primary tumour sites and metastatic sites, and promoted the efficiency of PD-L1 antibody. Our study reveals that cancer-educated BMSCs are the component of the niche for primary lung cancer cells and DTCs, and that they can be the target for immunotherapy.
Collapse
Affiliation(s)
- Buqing Sai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Yafei Dai
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Fan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Lujuan Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xina Zhang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Leliang Zheng
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Fei Chen
- Department of Spinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China
| | - Juanjuan Xiang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, 410013, China.
| |
Collapse
|
56
|
McCarthy SD, Horgan E, Ali A, Masterson C, Laffey JG, MacLoughlin R, O'Toole D. Nebulized Mesenchymal Stem Cell Derived Conditioned Medium Retains Antibacterial Properties Against Clinical Pathogen Isolates. J Aerosol Med Pulm Drug Deliv 2019; 33:140-152. [PMID: 31730399 DOI: 10.1089/jamp.2019.1542] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) have demonstrated promise in pathogenic acute respiratory distress syndrome models and are advancing to clinical efficacy testing. Besides immunomodulatory effects, MSC derived conditioned medium (CM) has direct antibacterial effects, possibly through LL-37 and related secreted peptide activity. We investigated MSC-CM compatibility with vibrating mesh technology, allowing direct delivery to the infected lung. Methods: MSC-CM from bone marrow (BM) and umbilical cord (UC) MSCs were passed through the commercially available Aerogen Solo nebulizer. Known colony forming units of Escherichia coli, Staphylococcus aureus, and multidrug resistant Klebsiella pneumoniae clinical isolates were added to MSC-CM in an orbital shaker and antibacterial capacity assessed through OD600 spectrophotometry. To exclude the possible effects of medium depletion on bacteria proliferation, MSC-CM was concentrated with a 3000 Da cutoff filter, diluted with fresh media, and retested against inoculum. Enzyme-linked immunosorbent assay was used to quantify levels of antimicrobial peptides (AMPs) and IL-8 present at pre- and postnebulization. Results: Both BM and UC MSC-CM inhibited proliferation of all pathogens, and this ability was retained after nebulization. Concentrating and reconstituting CM did not affect antibacterial properties. Interestingly, LL-37 protein did not appear to survive nebulization, although other secreted AMPs and an unrelated protein, IL-8, were largely intact. Conclusion: MSC-CM is a potent antimicrobial agent and is compatible with vibrating mesh nebulization delivery. The mechanism is through a secreted factor that is over 3000 Da in size, although it does not appear to rely solely on previously identified peptides such as LL-37, hepcidin, or lipocalin-2.
Collapse
Affiliation(s)
- Sean D McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Elizabeth Horgan
- Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Areeba Ali
- Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Claire Masterson
- Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ronan MacLoughlin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.,Aerogen Ltd., Dangan, Galway.,School of Pharmacy, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
57
|
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif 2019; 53:e12712. [PMID: 31730279 PMCID: PMC6985662 DOI: 10.1111/cpr.12712] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be derived from various adult tissues with multipotent and self‐renewal abilities. The characteristics of presenting no major ethical concerns, having low immunogenicity and possessing immune modulation functions make MSCs promising candidates for stem cell therapies. MSCs could promote inflammation when the immune system is underactivated and restrain inflammation when the immune system is overactivated to avoid self‐overattack. These cells express many immune suppressors to switch them from a pro‐inflammatory phenotype to an anti‐inflammatory phenotype, resulting in immune effector cell suppression and immune suppressor cell activation. We would discuss the mechanisms governing the immune modulation function of these cells in this review, especially the immune‐suppressive effects of MSCs.
Collapse
Affiliation(s)
- Wei Jiang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianyong Xu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Anatomy, Histology & Developmental Biology, Health Science Center, Shenzhen University, Shenzhen, China.,Department of Immunology, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
58
|
Xu J, Pei S, Wang Y, Liu J, Qian Y, Huang M, Zhang Y, Xiao Y. Tpl2 Protects Against Fulminant Hepatitis Through Mobilization of Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:1980. [PMID: 31481966 PMCID: PMC6710335 DOI: 10.3389/fimmu.2019.01980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) in the liver microenvironment protects against the inflammation-induced liver injury in fulminant hepatitis (FH). However, the molecular mechanism through which MDSC is recruited into the inflamed liver remain elusive. Here we identified a protein kinase Tpl2 as a critical mediator of MDSC recruitment into liver during the pathogenesis of Propionibacterium acnes/LPS-induced FH. Loss of Tpl2 dramatically suppressed MDSC mobilization into liver, leading to exaggerated local inflammation and increased FH-induced mortality. Mechanistically, although the protective effect of Tpl2 for FH-induced mortality was dependent on the presence of MDSC, Tpl2 neither directly targeted myeloid cells nor T cells to regulate FH pathogenesis, but functioned in hepatocytes to mediate the induction of MDSC-attracting chemokine CXCL1 and CXCL2 through modulating IL-25 (also known as IL-17E) signaling. As a consequence, increased MDSC in the inflamed liver specifically restrained the local proliferation of infiltrated pathogenic CD4+ T cells, and thus protected against the inflammation-induced acute liver failure. Together, our findings established Tpl2 as a critical mediator of MDSC recruitment and highlighted the therapeutic potential of Tpl2 for the treatment of FH.
Collapse
Affiliation(s)
- Jing Xu
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junli Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanyun Zhang
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
59
|
Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med (Berl) 2019; 97:1065-1084. [DOI: 10.1007/s00109-019-01804-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/28/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
|
60
|
In focus in HCB. Histochem Cell Biol 2019; 151:199-200. [PMID: 30778674 DOI: 10.1007/s00418-019-01773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
61
|
Li Y, Zhang D, Xu L, Dong L, Zheng J, Lin Y, Huang J, Zhang Y, Tao Y, Zang X, Li D, Du M. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16:908-920. [PMID: 30778166 DOI: 10.1038/s41423-019-0204-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are pluripotent cells with immunomodulatory properties, have been considered good candidates for the therapy of several immune disorders, such as inflammatory bowel diseases, concanavalin A-induced liver injury, and graft-versus-host disease. The embryo is a natural allograft to the maternal immune system. A successful pregnancy depends on the timely extinction of the inflammatory response induced by embryo implantation, followed by the switch to a tolerant immune microenvironment in both the uterus and the system. Excessive infiltration of immune cells and serious inflammatory responses are triggers for embryo rejection, which results in miscarriage. Here, we demonstrated that adoptive transfer of MSCs could prevent fetal loss in a lipopolysaccharide (LPS)-induced abortion model and immune response-mediated spontaneous abortion model. The immunosuppressive MSCs alleviated excessive inflammation by inhibiting CD4 + T cell proliferation and promoting the decidual macrophage switch to M2 in a tumor necrosis factor-stimulated gene-6 (TSG-6)-dependent manner. Cell-to-cell contact with proinflammatory macrophages increased the TSG-6 production by the MSCs, thereby enhancing the suppressive regulation of T cells and macrophages. Moreover, proinflammatory macrophages in contact with the MSCs upregulated the expression of CD200 on the stem cells and facilitated the reprogramming of macrophages towards an anti-inflammatory skew through the interaction of CD200 with CD200R on proinflammatory macrophages. Therefore, the results demonstrate that a TSG-6-mediated paracrine effect, reinforced by cell-to-cell contact between MSCs and proinflammatory macrophages, is involved in the mechanism of MSC-mediated abortion relief through the induction of immune tolerance. Our study also indicates the potential application of MSCs in clinical recurrent miscarriages.
Collapse
Affiliation(s)
- Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Di Zhang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lin Dong
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ji Zheng
- Department of Immunology, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yikong Lin
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jiefang Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanyun Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Tao
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
62
|
Huang J, Zhao X, Wang J, Cheng Y, Wu Q, Wang B, Zhao F, Meng L, Zhang Y, Jin M, Xu H. Distinct roles of Dlk1 isoforms in bi-potential differentiation of hepatic stem cells. Stem Cell Res Ther 2019; 10:31. [PMID: 30646961 PMCID: PMC6334473 DOI: 10.1186/s13287-019-1131-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fully understanding the developmental process of hepatic stem cells (HSCs) and the mechanisms of their committed differentiation is essential for optimizing the generation of functional hepatocytes for cell therapy in liver disease. Delta-like 1 homolog (Dlk1), primarily the membrane-bound form (Dlk1M), is generally used as a surface marker for fetal hepatic stem cell isolation, while its soluble form (Dlk1S) and the functional roles of different Dlk1 isoforms in HSC differentiation remain to be investigated. METHODS Hepatic spheroid-derived cells (HSDCs) were isolated from E12.5 mouse livers to obtain Dlk1+ and Dlk1-subpopulations. Colony formation, BrdU staining, and CCK8 assays were used to evaluate the cell proliferation capacity, and hepatic/cholangiocytic differentiation and osteogenesis/adipogenesis were used to assess the multipotency of the two subpopulations. Transformation of Dlk1+ cells into Dlk1- cells was detected by FACS, and the expression of Dlk1 isoforms were measured by western blot. The distinct roles and regulatory mechanisms of Dlk1 isoforms in HSC differentiation were investigated by overexpressing Dlk1M. RESULTS HSDCs were capable of differentiating into liver and mesenchymal lineages, comprising Dlk1+ and Dlk1- subpopulations. Dlk1+ cells expressed both Dlk1M and Dlk1S and lost expression of Dlk1M during passaging, thus transforming into Dlk1- cells, which still contained Dlk1S. Dlk1- cells maintained a self-renewal ability similar to that of Dlk1+ cells, but their capacity to differentiate into cholangiocytes was obviously enhanced. Forced expression of Dlk1M in Dlk1- cells restored their ability to differentiate into hepatocytes, with an attenuated ability to differentiate into cholangiocytes, suggesting a functional role of Dlk1 in regulating HSC differentiation in addition to acting as a biomarker. Further experiments illustrated that the regulation of committed HSC differentiation by Dlk1 was mediated by the AKT and MAPK signaling pathways. In addition, bFGF was found to serve as an important inducement for the loss of Dlk1M from Dlk1+ cells, and autophagy might be involved. CONCLUSIONS Overall, our study uncovered the differential expression and regulatory roles of Dlk1 isoforms in the commitment of HSC differentiation and suggested that Dlk1 functions as a key regulator that instructs cell differentiation rather than only as a marker of HSCs. Thus, our findings expand the current understanding of the differential regulation of bi-potential HSC differentiation and provide a fine-tuning target for cell therapy in liver disease.
Collapse
Affiliation(s)
- Jiefang Huang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaonan Zhao
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yiji Cheng
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiong Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bei Wang
- Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fang Zhao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China.,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lijun Meng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China
| | - Yanyun Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Min Jin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215025, China. .,Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
63
|
Shi B, Qi J, Yao G, Feng R, Zhang Z, Wang D, Chen C, Tang X, Lu L, Chen W, Sun L. Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Res Ther 2018; 9:308. [PMID: 30409219 PMCID: PMC6225717 DOI: 10.1186/s13287-018-1023-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/01/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been demonstrated to be effective in treating autoimmune diseases including Sjögren’s syndrome (SS). We aim to compare the effects of MSC transplantation (MSCT) and the role of serum interleukin-12 (IL-12) in SS. Methods IL-12 levels were measured by ELISA. IL-12 mRNA transcripts in dendritic cells (DCs) were determined by RT-PCR. After co-culturing with MSCs, IL-12 mRNA transcripts in mouse and human DCs were detected. Non-obese diabetic (NOD) mice received MSCT, recombinant IL-12, or anti-IL-12 mAb treatment, respectively. Then, salivary flow rates, histopathology of salivary glands, and splenic lymphocyte subsets were examined in these mice. Results IL-12 levels in the serum were significantly increased in SS patients and positively correlated with the EULAR 2010 Sjögren’s syndrome disease activity index. DCs from SS patients produced more IL-12 than those from the control. Likewise, IL-12 treatment in NOD mice significantly decreased salivary flow rates and promoted lymphocyte infiltration in salivary glands. IL-12 antibodies downregulated Th1, Th17, and Tfh cell. MSCT enhanced salivary flow rates and decreased lymphocyte infiltrations in salivary glands of NOD mice. MSCT downregulated Th17 and Tfh cells but upregulated regulatory T cells. MSCT reduced IL-12 productions in both SS patients and mice. Conclusion Our results indicate that MSCs ameliorate SS possibly via suppressing IL-12 production in DCs and that IL-12 could be a potential therapeutic target of SS. Trial registration NTC00953485. Registered June 2009. Electronic supplementary material The online version of this article (10.1186/s13287-018-1023-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bingyu Shi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingjing Qi
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ruihai Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhuoya Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Liwei Lu
- Department of Pathology and Center of Infection and Immunology, University of Hong Kong, Hong Kong, China
| | - Wanjun Chen
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
64
|
Selim SA, El-Baset SAA, Kattaia AAA, Askar EM, Elkader EA. Bone marrow-derived mesenchymal stem cells ameliorate liver injury in a rat model of sepsis by activating Nrf2 signaling. Histochem Cell Biol 2018; 151:249-262. [PMID: 30250973 DOI: 10.1007/s00418-018-1731-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Sepsis is a fatal condition that leads to serious systemic inflammation and multiple organ dysfunction syndromes. This study was designed to investigate the possible therapeutic effect of bone marrow-derived mesenchymal stem cells (BMSCs) on sepsis-induced liver injury. We also aimed to examine the role of Nrf2 activation in modulating the response to sepsis following BMSCs treatment. Twenty-four adult male albino rats were assigned to: control, lipopolysaccharide (LPS) and LPS-stem cell groups. Liver samples were processed for light and electron microscope examinations. Immunohistochemical localization of BAX, proliferating cell nuclear antigen and nuclear factor-erythroid 2-related factor 2 (Nrf2) was carried out. Liver homogenates were prepared for assessment of reduced glutathione, glutathione peroxidase, tumor necrosis factor-alpha and interleukin-6 and also real-time PCR analysis of Nrf2 expression. BMSCs treatment improved the histopathological changes of the liver, enhanced tissue regeneration and decreased apoptosis following sepsis. We reported highly significant enhancement in Nrf2 expressions at mRNA and protein levels in the LPS-stem cell group compared with the LPS group. The up regulation of Nrf2 was probably implicated in decreasing inflammatory cytokine levels and counteracting oxidative stress induced by sepsis. Thus, BMSCs therapies could be a viable approach to treat sepsis-induced liver damage by activating Nrf2 signaling.
Collapse
Affiliation(s)
- Sally A Selim
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Samia A Abd El-Baset
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Asmaa A A Kattaia
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt.
| | - Eman M Askar
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Koliat Al Tob Street, Zagazig, Ash Sharqia Governorate, 44519, Egypt
| | - Eman Abd Elkader
- Department of Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
65
|
Ma T, Wang X, Jiao Y, Wang H, Qi Y, Gong H, Zhang L, Jiang D. Interleukin 17 (IL-17)-Induced Mesenchymal Stem Cells Prolong the Survival of Allogeneic Skin Grafts. Ann Transplant 2018; 23:615-621. [PMID: 30166501 PMCID: PMC6248056 DOI: 10.12659/aot.909381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential of self-renewal and multi-differentiation and have a wide application prospect in organ transplantation for the effect of inducing immune tolerance. It has found that interleukin 17 (IL-17) could enhance the inhibition effect of MSCs on T cell proliferation and increase the immunosuppressive effect of MSCs. In this study, we aimed to investigate the effect of IL-17-induced MSCs on allograft survival time after transplantation. MATERIAL AND METHODS BMSCs were characterized by differential staining. The allogenic skin transplantations were performed and the BMSCs pre-treated by IL-17 were injected. To assess the immunosuppressive function of IL-17-induced BMSCs, the morphology of the grafts, the homing ability of the BMSCs, and the survival time of the grafts were analyzed. RESULTS BMSCs from BALB/c have multidirectional differentiation potential to differentiate into osteogenic, chondrogenic, and adipogenic lineage cells. IL-17-induced BMSCs prolonged the survival time of allogeneic skin grafts dramatically. We found that there were more labeled MSCs in the skin grafts, and the Treg subpopulations percentage, IL-10, and TGF-β were significantly increased, while the IFN-γ level was decreased compared to the control group and MSCs group. In conclusion, IL-17 can enhance the homing ability of MSCs and regulate the immunosuppressive function of MSC. CONCLUSIONS Our data demonstrate that IL-17 plays the crucial role in MSC homing behaviors and promotes immunosuppression of MSCs during transplantation procedures, suggesting that IL-17-pre-treated MSCs have potential to prolong graft survival and reduce transplant rejection.
Collapse
Affiliation(s)
- Tengxiao Ma
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Plastic Surgery, Henan Provincial People's Hospital, Zhengzhou, Henan, China (mainland)
| | - Xiao Wang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Ya Jiao
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Haitao Wang
- School of Medicine, Shandong University, Jinan, Shandong, China (mainland).,Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Yongjun Qi
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Hongmin Gong
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| | - Longxiao Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Duyin Jiang
- Department of Emergency and Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China (mainland).,School of Medicine, Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
66
|
Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9:227. [PMID: 30143052 PMCID: PMC6109312 DOI: 10.1186/s13287-018-0972-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a life-threatening clinical syndrome characterized by rapid development of hepatocellular necrosis leading to high mortality and resource costs. Numerous treatment strategies for acute liver failure simply prevent complications and decelerate disease progression. The only curative treatment for acute liver failure is liver transplantation, but there are many restrictions on the application of liver transplantation. In recent years, a growing number of studies have shown that stem cells can effectively treat acute liver failure. Several types of stem cells have been used to study liver diseases; mesenchymal stem cells are most commonly used because they are easy to obtain and present no ethical problems. The aims of this article are to review the current knowledge regarding therapeutic mechanisms of mesenchymal stem cells in acute liver failure, to discuss recent advancements in preclinical and clinical studies in the treatment of mesenchymal stem cells, and to summarize the methodological improvement of mesenchymal stem cell transplantation in treating liver failure.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bing Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
67
|
Ding Y, Liu P, Chen ZL, Zhang SJ, Wang YQ, Cai X, Luo L, Zhou X, Zhao L. Emodin Attenuates Lipopolysaccharide-Induced Acute Liver Injury via Inhibiting the TLR4 Signaling Pathway in vitro and in vivo. Front Pharmacol 2018; 9:962. [PMID: 30186181 PMCID: PMC6113398 DOI: 10.3389/fphar.2018.00962] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
Aims: Emodin is an anthraquinone with potential anti-inflammatory properties. However, the possible molecular mechanisms and protective effects of emodin are not clear. The objective of this study was to investigate the possible molecular mechanisms and protective effects of emodin on lipopolysaccharide (LPS)-induced acute liver injury (ALI) via the Toll-like receptor 4 (TLR4) signaling pathway in the Raw264.7 cell line and in Balb/c mice. Methods: This study established an inflammatory cellular model and induced an ALI animal model. TLR4 was overexpressed by lentivirus and downregulated by small interfering RNA (siRNA) technology. The mRNA and protein levels of TLR4 and downstream molecules were detected in cells and liver tissue. The tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 levels in supernatant and serum were determined by ELISA. The distribution and expression of mannose receptor C type 1 (CD206) and arginase 1 (ARG1) in the liver were tested by immunofluorescence. Mouse liver function and histopathological observations were assessed. Results: Administration of emodin reduced the protein and/or mRNA levels of TLR4 and its downstream molecules following LPS challenge in Raw264.7 cells and in an animal model. Additionally, emodin suppressed the expression of TNF-α and IL-6 in cell culture supernatant and serum. The inhibitory effect of emodin was also confirmed in RAW264.7 cells, in which TLR4 was overexpressed or knocked down. Additionally, ARG1 and CD206 were elevated in the emodin groups. Emodin also decreased serum ALT and AST levels and alleviated the liver histopathological damage induced by LPS. Conclusion: Emodin showed excellent hepatoprotective effects against LPS-induced ALI, possibly by inhibiting TLR4 signaling pathways.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Liu
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhi-Lin Chen
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jun Zhang
- National and Local Joint Engineering Research Center for High-throughput Drug Screening Technology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei University, Wuhan, China
| | - You-Qin Wang
- Graduate School of Jinzhou Medical University, Department of Pediatrics, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xin Cai
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Luo
- School of Clinical Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuan Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
68
|
Jin Y, Wang J, Li H, Gao S, Shi R, Yang D, Wang X, Wang X, Zhu L, Wang X, Chen C, Ning K, Gao Z, Xu J, Fu Q. Extracellular Vesicles Secreted by Human Adipose-derived Stem Cells (hASCs) Improve Survival Rate of Rats with Acute Liver Failure by Releasing lncRNA H19. EBioMedicine 2018; 34:231-242. [PMID: 30077720 PMCID: PMC6116414 DOI: 10.1016/j.ebiom.2018.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
It has previously been reported that human adipose-derived stem cells (hASCs) can promote the regeneration of damaged tissues in rats with liver failure through a ‘paracrine effect’. Here we demonstrate a therapeutic effect of hASCs derived Extracellular Vesicles (EVs) on rat models with acute liver failure, as shown by the improvement of the survival rate by >70% compared to controls. Gene sequencing of rat liver revealed an increase in human long-chain non-coding RNA (lncRNA) H19 after hASC-derived EVs transplantation. When the H19 coding sequence was silenced in hASCs and EVs were then collected for treatment of rats with liver failure, we saw a decrease in the survival rate to 40%, compared to treatment with EVs generated from non-silenced hASCs. These data indicate that lncRNA H19 may be a potential therapeutic target for the treatment of liver failure.
Collapse
Affiliation(s)
- Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China.
| | - Junyi Wang
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Hongchao Li
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Shane Gao
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Rongfeng Shi
- Department of Interventional & Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China
| | - Danjing Yang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xianli Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Xi Wang
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China
| | - Liang Zhu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China
| | - Xiaojin Wang
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Chengwei Chen
- Shanghai Liver Diseases Research Center, The 85th Hospital of PLA, Shanghai 200235, PR China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Zhengliang Gao
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Jinshan, Shanghai 201508, PR China.
| |
Collapse
|
69
|
Liang H, Huang K, Su T, Li Z, Hu S, Dinh PU, Wrona EA, Shao C, Qiao L, Vandergriff AC, Hensley MT, Cores J, Allen T, Zhang H, Zeng Q, Xing J, Freytes DO, Shen D, Yu Z, Cheng K. Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure. ACS NANO 2018; 12:6536-6544. [PMID: 29943967 PMCID: PMC6373867 DOI: 10.1021/acsnano.8b00553] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acute liver failure is a critical condition characterized by global hepatocyte death and often time needs a liver transplantation. Such treatment is largely limited by donor organ shortage. Stem cell therapy offers a promising option to patients with acute liver failure. Yet, therapeutic efficacy and feasibility are hindered by delivery route and storage instability of live cell products. We fabricated a nanoparticle that carries the beneficial regenerative factors from mesenchymal stem cells and further coated it with the membranes of red blood cells to increase blood stability. Unlike uncoated nanoparticles, these particles promote liver cell proliferation in vitro and have lower internalization by macrophage cells. After intravenous delivery, these artificial stem cell analogs are able to remain in the liver and mitigate carbon tetrachloride-induced liver failure in a mouse model, as gauged by histology and liver function test. Our technology provides an innovative and off-the-shelf strategy to treat liver failure.
Collapse
Affiliation(s)
- Hongxia Liang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Analytical Chemistry Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Emily A. Wrona
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Chen Shao
- Department of Pathology, China-Japan Friendship Hospital, Peking 100029, China
| | - Li Qiao
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Adam C. Vandergriff
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - M. Taylor Hensley
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Tyler Allen
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Hongyu Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qinglei Zeng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jiyuan Xing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
| | - Deliang Shen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zujiang Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Corresponding Authors:,
| | - Ke Cheng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering and Comparative Medicine Institute, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina 27599 and 27607, United States
- Corresponding Authors:,
| |
Collapse
|
70
|
Wang X, Wang S, Zhou Y, Obulkasim H, Zhang ZH, Dai B, Zhu W, Shi XL. BM‑MSCs protect against liver ischemia/reperfusion injury via HO‑1 mediated autophagy. Mol Med Rep 2018; 18:2253-2262. [PMID: 29956785 DOI: 10.3892/mmr.2018.9207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is considered to be a contributing factor in liver injury following major hepatic resection or liver transplantation. Bone marrow mesenchymal stem cells (BM‑MSCs) have the potential to protect against liver I/R injury; however, the precise mechanisms have not been completely elucidated. Autophagy serves an important role in protecting against various injuries, including I/R injury. The present study aimed to determine the role of autophagy and its potential regulatory mechanism in BM‑MSC‑mediated protection against liver I/R injury in rats. The results demonstrated that BM‑MSCs mitigated I/R injury and enhanced autophagy in vivo. In addition, inhibition of autophagy by 3‑methyladenine reversed the positive effects of BM‑MSCs. Furthermore, heme oxygenase‑1 (HO‑1) expression was promoted by BM‑MSCs. Using zinc protoporphyrin IX to inhibit HO‑1 demonstrated that HO‑1 was important for the promotion of autophagy. In conclusion, the present study revealed that BM‑MSCs protected against liver I/R injury via the promotion of HO‑1‑mediated autophagy.
Collapse
Affiliation(s)
- Xun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Halmurat Obulkasim
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
71
|
Gu Y, Wei W, Cheng Y, Wan B, Ding X, Wang H, Zhang Y, Jin M. A pivotal role of BEX1 in liver progenitor cell expansion in mice. Stem Cell Res Ther 2018; 9:164. [PMID: 29907129 PMCID: PMC6002993 DOI: 10.1186/s13287-018-0905-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023] Open
Abstract
Background The activation and expansion of bipotent liver progenitor cells (LPCs) are indispensable for liver regeneration after severe or chronic liver injury. However, the underlying molecular mechanisms regulating LPCs and LPC-mediated liver regeneration remain elusive. Methods Hepatic brain-expressed X-linked 1 (BEX1) expression was evaluated using microarray screening, real-time polymerase chain reaction, immunoblotting and immunofluorescence. LPC activation and liver injury were studied following a choline-deficient, ethionine-supplemented (CDE) diet in wild-type (WT) and Bex1−/− mice. Proliferation, apoptosis, colony formation and hepatic differentiation were examined in LPCs from WT and Bex1−/− mice. Peroxisome proliferator-activated receptor gamma was detected in Bex1-deficient LPCs and mouse livers, and was silenced to analyse the expansion of LPCs from WT and Bex1−/− mice. Results Hepatic BEX1 expression was increased during CDE diet-induced liver injury and was highly elevated primarily in LPCs. Bex1−/− mice fed a CDE diet displayed impaired LPC expansion and liver regeneration. Bex1 deficiency inhibited LPC proliferation and enhanced LPC apoptosis in vitro. Additionally, Bex1 deficiency inhibited the colony formation of LPCs but had no effect on their hepatic differentiation. Mechanistically, BEX1 inhibited peroxisome proliferator-activated receptor gamma to promote LPC expansion. Conclusion Our findings indicate that BEX1 plays a pivotal role in LPC activation and expansion during liver regeneration, potentially providing novel targets for liver regeneration and chronic liver disease therapies. Electronic supplementary material The online version of this article (10.1186/s13287-018-0905-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuting Gu
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Wei
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yiji Cheng
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Bing Wan
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Xinyuan Ding
- Department of Pharmacy, the Affiliated Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yanyun Zhang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Min Jin
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
72
|
Li SS, Yang M, Chen YP, Tang XY, Zhang SG, Ni SL, Yang NB, Lu MQ. Dendritic cells with increased expression of suppressor of cytokine signaling 1(SOCS1) gene ameliorate lipopolysaccharide/d-galactosamine-induced acute liver failure. Mol Immunol 2018; 101:10-18. [PMID: 29852455 DOI: 10.1016/j.molimm.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/18/2018] [Accepted: 05/22/2018] [Indexed: 01/20/2023]
Abstract
Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Min Yang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Yong-Ping Chen
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Xin-Yue Tang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Sheng-Guo Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Shun-Lan Ni
- Department of Infectious Disease, Central Hospital of Jinhua City, Jinhua, 321000, Zhejiang, PR China
| | - Nai-Bin Yang
- Department of Infectious Disease, First Hospital of Ningbo City, Ningbo, 315000, Zhejiang, PR China
| | - Ming-Qin Lu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Hepatology, Institute of Hepatology, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| |
Collapse
|
73
|
Gu Y, Ding X, Huang J, Xue M, Zhang J, Wang Q, Yu H, Wang Y, Zhao F, Wang H, Jin M, Wu Y, Zhang Y. The deubiquitinating enzyme UCHL1 negatively regulates the immunosuppressive capacity and survival of multipotent mesenchymal stromal cells. Cell Death Dis 2018; 9:459. [PMID: 29686406 PMCID: PMC5913136 DOI: 10.1038/s41419-018-0532-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
It is known that proinflammatory cytokines empower multipotent mesenchymal stromal cells (MSCs) the immunosuppressive capacity to treat various inflammatory diseases. Nevertheless, how the proinflammatory cytokines modulate the immunosuppressive capacity of MSCs is poorly understood. In the present study, we identified that the deubiquitinating enzyme ubiquitin C-terminal hydrolase 1 (UCHL1) was upregulated in MSCs upon stimulation of proinflammatory cytokines IFN-γ plus TNF-α. Interestingly, through intervening UCHL1 by shRNA knockdown or its inhibitor LDN57444 or overexpression, we found that UCHL1 played a critical role in suppressing cytokines-induced inducible nitric oxide synthase expression in murine MSCs and indoleamine 2,3-dioxygenase expression in human MSCs, thereby restrained their immunosuppressive capacity. This effect of UCHL1 was attributed to the negative role in regulating NF-κB and STAT1 signaling, as exhibited by promoting NF-κB and STAT1 activation upon inhibition of UCHL1. Besides, inhibition of UCHL1 suppressed cytokines-induced MSC apoptosis via upregulation of Bcl-2. As a consequence, UCHL1-inhibited MSCs effectively alleviated concanavalin A-induced inflammatory liver injury. Therefore, our study demonstrates a novel role of UCHL1 in regulating the immunosuppressive capacity and survival of MSCs, which further affects their immunotherapy for inflammatory diseases.
Collapse
Affiliation(s)
- Yuting Gu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiefang Huang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingxing Xue
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongshuang Yu
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Wang
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Fang Zhao
- Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Hui Wang
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Jin
- Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China. .,Pediatric Institute of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| |
Collapse
|
74
|
Aging-associated oxidative stress inhibits liver progenitor cell activation in mice. Aging (Albany NY) 2018; 9:1359-1374. [PMID: 28458256 PMCID: PMC5472737 DOI: 10.18632/aging.101232] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 12/28/2022]
Abstract
Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.
Collapse
|
75
|
Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y. Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res 2018; 48:E194-E202. [PMID: 28833919 DOI: 10.1111/hepr.12969] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022]
Abstract
AIM Recently, the benefit of mesenchymal stem cells (MSCs) as a cell-based therapy for acute liver failure (ALF) has gained much attention, although the mechanism of action of MSCs in the treatment of ALF remains elusive. Pyroptosis is a novel form of programmed cell death with an intense inflammatory response. The aim of the present study was to explore the soluble cytokines secreted by MSCs and their therapeutic effects through inhibiting pyroptosis in ALF. METHODS Mesenchymal stem cells obtained from C57BL/6 mice were isolated and cultured according to an established protocol. The MSCs were transplanted into mice with D-galactosamine (D-Gal)-induced ALF. Liver function, survival rate, histology, and inflammatory factors were determined. Exogenous recombinant rat interleukin (IL)-10, ShIL-RNA, and MCC950 (NLRP3 inhibitor) were given to the mice to explore the therapeutic mechanism of MSCs. Statistical analyses were carried out with spss version 19.0, and all data were analyzed by independent-samples t-test. RESULTS Injection of IL-10 or MSC transplantation ameliorated D-Gal-induced increase in alanine aminotransferase, aspartate aminotransferase, total bilirubin, NH3, and inflammatory cytokines. Blockage of IL-10 confirmed the therapeutic significance of this cytokine. CONCLUSION Pyroptosis was inhibited after IL-10 infusion and inhibition of NLRP3 by MCC950 reversed liver dysfunction.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hucheng Ma
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
76
|
Bai M, Zhang L, Fu B, Bai J, Zhang Y, Cai G, Bai X, Feng Z, Sun S, Chen X. IL-17A improves the efficacy of mesenchymal stem cells in ischemic-reperfusion renal injury by increasing Treg percentages by the COX-2/PGE2 pathway. Kidney Int 2017; 93:814-825. [PMID: 29132705 DOI: 10.1016/j.kint.2017.08.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are effective for the management of experimental ischemia-reperfusion acute kidney injury (IRI-AKI). Immune modulation is one of the important mechanisms of MSCs treatment. Interleukin-17A (IL-17A) pretreated MSCs are more immunosuppressive with minimal changes in immunogenicity in vitro. Here, we demonstrated that administration of IL-17A-pretreated MSCs resulted in significantly lower acute tubular necrosis scores, serum creatinine, and BUN of mice with IRI-AKI, compared with the administration of MSCs. Of the co-cultured splenocytes, IL-17A-pretreated MSCs significantly increased the percentages of CD4+Foxp3+ Tregs and decreased concanavalin A-induced T cell proliferation. Furthermore, mice with IRI-AKI that underwent IL-17A-pretreated MSC therapy had significantly lower serum IL-6, TNF-α, and IFN-γ levels, a higher serum IL-10 level, and higher spleen and kidney Treg percentages than the mice that underwent MSCs treatment. Additionally, the depletion of Tregs by PC61 (anti-CD25 antibody) reversed the enhanced treatment efficacy of the IL-17A-pretreatedMSCs on mice with IRI-AKI. Additionally, IL-17A upregulated COX-2 expression and increased PGE2 production. The blockage of COX-2 by celecoxib reversed the benefit of IL-pretreated 17A-MSCs on the serum PGE2 concentration, spleen and kidney Tregs percentages, serum creatinine and BUN levels, renal acute tubular necrosis scores, and serum IL-6, TNF-α, IFN-γ, and IL-10 levels of IRI-pretreated mice with AKI, compared with MSCs. Thus, our results suggest that IL-17A pretreatment enhances the efficacy of MSCs on mice with IRI-AKI by increasing the Treg percentages through the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Ming Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China; Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Li Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Bo Fu
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Jiuxu Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Guangyan Cai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Xueyuan Bai
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Zhe Feng
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China.
| | - Xiangmei Chen
- State Key Laboratory of Kidney Disease, Department of Nephrology, Chinese PLA General Hospital and Military Medical Postgraduate College, Beijing, China.
| |
Collapse
|
77
|
Gazdic M, Arsenijevic A, Markovic BS, Volarevic A, Dimova I, Djonov V, Arsenijevic N, Stojkovic M, Volarevic V. Mesenchymal Stem Cell-Dependent Modulation of Liver Diseases. Int J Biol Sci 2017; 13:1109-1117. [PMID: 29104502 PMCID: PMC5666326 DOI: 10.7150/ijbs.20240] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
Acute liver failure and cirrhosis display sequential and overlapping severe pathogenic processes that include inflammation, hepatocyte necrosis, and fibrosis, carrying a high mortality rate. Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells with immunonodulatory characteristics. MSCs are considered to act through multiple mechanisms to coordinate a dynamic, integrated response to liver inflammation and fibrosis, which prevents the progressive distortion of hepatic architecture. Accordingly, MSCs as well as their products have been investigated as a novel therapeutic approach for the treatment of inflammatory and fibrotic liver diseases. In this review, we highlight the current findings on the MSC-based modulation of liver inflammation and fibrosis, and the possible use of MSCs in the therapy of immune-mediated liver pathology. We briefly describe the cellular and molecular mechanisms involved in MSC-dependent modulation of cytokine production, phenotype and function of liver infiltrated inflammatory cells and compare effects of engrafted MSCs versus MSC-generated conditioned medium (MSC-CM) in the therapy of acute liver injury. In order to elucidate therapeutic potential of MSCs and their products in modulation of chronic liver inflammation and fibrosis, we present the current findings regarding pathogenic role of immune cells in liver fibrosis and describe mechanisms involved in MSC-dependent modulation of chronic liver inflammation with the brief overview of on-going and already published clinical trials that used MSCs for the treatment of immune mediated chronic liver diseases. The accumulating evidence shows that MSCs had a significant beneficial effect in the treatment of immune-mediated liver diseases.
Collapse
Affiliation(s)
- Marina Gazdic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics
| | - Aleksandar Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Bojana Simovic Markovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ana Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Ivanka Dimova
- Department of medical genetics, Medical University Sofia, Sofia, Bulgaria
| | | | - Nebojsa Arsenijevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| | - Miodrag Stojkovic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Genetics.,Spebo Medical, Leskovac, Serbia
| | - Vladislav Volarevic
- University of Kragujevac, Serbia, Faculty of Medical Sciences, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research
| |
Collapse
|
78
|
Yu J, Zhang W, Qian H, Tang H, Lin W, Lu B. SOCS1 regulates hepatic regenerative response and provides prognostic makers for acute obstructive cholangitis. Sci Rep 2017; 7:9482. [PMID: 28842621 PMCID: PMC5573403 DOI: 10.1038/s41598-017-09865-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022] Open
Abstract
Acute obstructive cholangitis (AOC) is a common and severe infectious diseases that occurs in an obstructed biliary system. The suppressors of cytokine signaling (SOCS) family include well-known negative regulators of cytokine receptor signaling. However, few studies have been conducted to determine their function in AOC. In this study, we showed that SOCS1 expression aberrantly changed and was associated with AOC prognosis in rat models. Decreased SOCS1 expression enhances regenerative response after biliary drainage (BD) resulting from AOC by upregulating hepatocyte growth factor (HGF) signaling. To detect SOCS1 expression in the liver less invasively and to predict the prognosis for AOC after BD, miR-221 and miR-222 were investigated. Ectopic SOCS1 expression indirectly decreases miR-221/222 expression through Met in vitro. An inverse correlation between SOCS1 expression and miR-221/222 expression in liver tissue or in serum was verified in rats. Serum from AOC patients showed that lower expression of circulating miR-221/222 after endoscopic nasobiliary drainage was associated with delayed restoration of liver function. Our results showed that SOCS1 regulates hepatic regenerative response, and indirectly detecting downstream molecules, such as miR-221/222, may provide prognostic makers for AOC.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguang Zhang
- Department of Molecular Medicine and Clinical Laboratory, Shaoxing Second Hospital, Shaoxing, China
| | - Hongwei Qian
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Haijun Tang
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Weiguo Lin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Baochun Lu
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China.
| |
Collapse
|
79
|
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74:2345-2360. [PMID: 28214990 PMCID: PMC11107583 DOI: 10.1007/s00018-017-2473-5] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/24/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
In addition to being multi-potent, mesenchymal stem cells (MSCs) possess immunomodulatory functions that have been investigated as potential treatments in various immune disorders. MSCs can robustly interact with cells of the innate and adaptive immune systems, either through direct cell-cell contact or through their secretome. In this review, we discuss current findings regarding the interplay between MSCs and different immune cell subsets. We also draw attention to the mechanisms involved.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
80
|
Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med 2017; 49:e346. [PMID: 28620221 PMCID: PMC5519012 DOI: 10.1038/emm.2017.63] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
The administration of mesenchymal stem cells (MSCs) as a therapy for liver disease holds great promise. MSCs can differentiate into hepatocytes, reduce liver inflammation, promote hepatic regeneration and secrete protective cytokines. However, the risks of iatrogenic tumor formation, cellular rejection and infusional toxicity in MSC transplantation remain unresolved. Accumulating evidence now suggests that a novel cell-free therapy, MSC-secreted exosomes, might constitute a compelling alternative because of their advantages over the corresponding MSCs. They are smaller and less complex than their parent cells and, thus, easier to produce and store, they are devoid of viable cells, and they present no risk of tumor formation. Moreover, they are less immunogenic than their parent cells because of their lower content in membrane-bound proteins. This paper reviews the biogenesis of MSC exosomes and their physiological functions, and highlights the specific biochemical potential of MSC-derived exosomes in restoring tissue homeostasis. In addition, we summarize the recent advances in the role of exosomes in MSC therapy for various liver diseases, including liver fibrosis, acute liver injury and hepatocellular carcinoma. This paper also discusses the potential challenges and strategies in the use of exosome-based therapies for liver disease in the future.
Collapse
Affiliation(s)
- Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
81
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
82
|
Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC, Shi XL. Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther 2017; 8:70. [PMID: 28320485 PMCID: PMC5359839 DOI: 10.1186/s13287-017-0524-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/07/2017] [Accepted: 02/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been studied for the treatment of acute liver failure (ALF) for several years. MSCs may exert their effect via complex paracrine mechanisms. Heme oxygenase (HO) 1, a rate-limiting enzyme in heme metabolism, exerts a wide range of anti-inflammatory, anti-apoptotic and immunoregulatory effects in a variety of diseases. However, the relationship between MSCs and HO-1 in the treatment of ALF is still unclear. We investigated the preventive and therapeutic potential of intravenously administered BMSCs. METHODS Bone marrow-derived mesenchymal stem cells (BMSCs) obtained from Sprague-Dawley rats were isolated and cultured. We employed BMSCs, hemin (a HO-1 inducer) and zinc protoporphyrin (ZnPP, the HO-1 activity inhibitor) in D-galactosamine (D-Gal)/lipopolysaccharides (LPS)-induced ALF rats. Rats were sacrificed at days 1, 3, 5, and 7 post-transfusion, respectively. Blood samples and liver tissues were collected. Hepatic injury, HO-1 activity, chemokines, inflammatory cytokines, the number and oxidative activity of neutrophils, ki67, and TUNEL-positive cells were evaluated. RESULTS HO-1 induction or BMSCs transplantation attenuated D-galactosamine/lipopolysaccharide-induced increases in alanine aminotransferase, aspartate aminotransferase, total bilirubin (TBIL), ammonia, and inflammatory cytokines. Treatment with hemin or BMSCs also inhibited neutrophil infiltration, oxidative activity, and hepatocyte apoptosis. The protective effect of BMSCs was partially neutralized by ZnPP, suggesting the key role of HO-1 in the process. CONCLUSIONS These findings may correlate with inhibition of nuclear factor-κ B activation. BMSCs ameliorated ALF by increasing the HO-1 expression, which reduced PMN infiltration and function, and played an important anti-inflammatory and anti-apoptotic role. Proposed mechanism by which BMSCs reduce inflammation, neutrophil activation, and hepatocyte apoptosis and promote hepatocyte proliferation via HO-1. BMSCs increase HO-1 expression in liver via Nrf2. HO-1 protects against LPS/D-Gal-induced ALF by inhibiting neutrophil infiltration and inflammatory burst, and hepatocyte apoptosis and necrosis. HO-1 also promotes hepatocyte proliferation.
Collapse
Affiliation(s)
- Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Hu-Cheng Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
83
|
Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function. Stem Cells Int 2017; 2017:2389753. [PMID: 28250776 PMCID: PMC5303870 DOI: 10.1155/2017/2389753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.
Collapse
|
84
|
Zhao X, Shi X, Zhang Z, Ma H, Yuan X, Ding Y. Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats. Clin Res Hepatol Gastroenterol 2016; 40:730-738. [PMID: 27637473 DOI: 10.1016/j.clinre.2016.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/19/2016] [Accepted: 04/19/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND The imbalance of immunity is an important pathogenesis of acute liver failure (ALF). Neutrophils are the hallmark of acute inflammation, which have an essential role in immune regulation. Mesenchymal stem cell (MSC) transplantation is a promising therapy in ALF treatment. Recent studies indicated a considerable connection between MSCs and neutrophils in immune regulation. AIM To investigate changes in neutrophils in ALF rats after MSC transplantation, and to explore the therapeutic effect and mechanism of the combined treatment with MSC transplantation and neutrophil depletion in ALF. METHODS We employed monotherapy and the combination therapy with MSCs and anti-PMN serum in D-galactosamine (D-GalN)/lipopolysaccharides (LPS)-induced ALF rats. Rats were sacrificed at 6, 12 and 24h, respectively. Blood samples and liver tissues were collected. Hepatic injury, inflammatory cytokines (TNF-α, IL-1β and IL-10), chemokines (CXCL1 and CXCL2), the number and activity of neutrophils and animal survival were assessed at fixed times. RESULTS MSC transplantation can effectively improve the liver function of ALF rats and reduce the number and activity of neutrophils in both peripheral blood and liver. Compared with MSC transplantation alone, anti-PMN treatment and co-treatment had a better result in diminishing neutrophils. The co-treatment also exhibited a better therapeutical effect in ALF rats compared with monotherapy. In this process, the expressions of inflammatory cytokines in the liver were consistent with liver function. CONCLUSIONS The regulation of the neutrophil-related microenvironment is affected in D-GalN/LPS-induced ALF rats after MSC transplantation. The combined treatment with MSC transplantation and neutrophil depletion may have a better therapeutic effect in ALF rats.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Zhiheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Hucheng Ma
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Xianwen Yuan
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321, Zhongshan Road, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
85
|
Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 2016. [DOI: 2778867410.1186/s13287-016-0416-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD) is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs) have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive.
Methods
In this study, we established an arterialized mouse non-heart-beating (NHB) liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion.
Results
MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation.
Conclusion
Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.
Collapse
|
86
|
Tian Y, Wang J, Wang W, Ding Y, Sun Z, Zhang Q, Wang Y, Xie H, Yan S, Zheng S. Mesenchymal stem cells improve mouse non-heart-beating liver graft survival by inhibiting Kupffer cell apoptosis via TLR4-ERK1/2-Fas/FasL-caspase3 pathway regulation. Stem Cell Res Ther 2016; 7:157. [PMID: 27788674 PMCID: PMC5084468 DOI: 10.1186/s13287-016-0416-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/20/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Liver transplantation is the optimal treatment option for end-stage liver disease, but organ shortages dramatically restrict its application. Donation after cardiac death (DCD) is an alternative approach that may expand the donor pool, but it faces challenges such as graft dysfunction, early graft loss, and cholangiopathy. Moreover, DCD liver grafts are no longer eligible for transplantation after their warm ischaemic time exceeds 30 min. Mesenchymal stem cells (MSCs) have been proposed as a promising therapy for treatment of certain liver diseases, but the role of MSCs in DCD liver graft function remains elusive. METHODS In this study, we established an arterialized mouse non-heart-beating (NHB) liver transplantation model, and compared survival rates, cytokine and chemokine expression, histology, and the results of in vitro co-culture experiments in animals with or without MSC infusion. RESULTS MSCs markedly ameliorated NHB liver graft injury and improved survival post-transplantation. Additionally, MSCs suppressed Kupffer cell apoptosis, Th1/Th17 immune responses, chemokine expression, and inflammatory cell infiltration. In vitro, PGE2 secreted by MSCs inhibited Kupffer cell apoptosis via TLR4-ERK1/2-caspase3 pathway regulation. CONCLUSION Our study uncovers a protective role for MSCs and elucidates the underlying immunomodulatory mechanism in an NHB liver transplantation model. Our results suggest that MSCs are uniquely positioned for use in future clinical studies owing to their ability to protect DCD liver grafts, particularly in patients for whom DCD organs are not an option according to current criteria.
Collapse
Affiliation(s)
- Yang Tian
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Jingcheng Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Wei Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Yuan Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongquan Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiyi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China.,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China
| | - Sheng Yan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang Province, China. .,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Diagnosis Treatment of Infectious Diseases, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
87
|
Ma OKF, Chan KH. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells 2016; 8:268-78. [PMID: 27679683 PMCID: PMC5031888 DOI: 10.4252/wjsc.v8.i9.268] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/15/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.
Collapse
Affiliation(s)
- Oscar Ka-Fai Ma
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Koon Ho Chan
- Oscar Ka-Fai Ma, Koon Ho Chan, Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
88
|
Miao CM, Jiang XW, He K, Li PZ, Liu ZJ, Cao D, Ou ZB, Gong JP, Liu CA, Cheng Y. Bone marrow stromal cells attenuate LPS-induced mouse acute liver injury via the prostaglandin E 2-dependent repression of the NLRP3 inflammasome in Kupffer cells. Immunol Lett 2016; 179:102-113. [PMID: 27666012 DOI: 10.1016/j.imlet.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 12/18/2022]
Abstract
The nucleotide-binding and oligomerization domain-like receptor 3 (NLRP3) inflammasome participates in the pathogenesis of acute liver injury during sepsis. Bone marrow mesenchymal stem cells (BMSCs) attenuate sepsis through prostaglandin E 2 (PGE2) by increasing the interleukin-10 (IL-10) production of macrophages; moreover, NLRP3 inflammasome assembly is effectively regulated by IL-10 during infection. Whether BMSCs have an effect on the activation of the NLRP3 inflammasome and its underlying mechanism is unclear. Administering of BMSCs to mice or KCs after LPS stimulating have improved liver function and reduced activation of NLRP3 inflammasome in KCs. The beneficial effect of BMSCs was enhanced by over-expression of PGE2 and eliminated by silence of PGE2. Additionally, The IL-10 levels in the serum and supernatant were increased by given BMSCs and further increase by PGE2 over-expressed BMSCs, but decreased markedly by PGE2 silenced BMSCs. Furthermore, extracellular signal-regulated kinase 1 (ERK1) inhibitor reduced IL-10 production in KCs and blocked the inhibitory effect of PGE2 on the activation of the NLRP3 inflammasome. Our data reveal a novel mechanism of BMSC-mediated suppression of the activation of KCs through the secretion of PGE2 by BMSCs, which promotes KCs to secrete IL-10, leading to the inhibition of the NLRP3 inflammasome in KCs.
Collapse
Affiliation(s)
- Chun-Mu Miao
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Wei Jiang
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kun He
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei-Zhi Li
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zuo-Jin Liu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ding Cao
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Bing Ou
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Ping Gong
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang-An Liu
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yao Cheng
- Chongqing Key Laboratory of Hepatobiliary Surgery and Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
89
|
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation. J Immunol Res 2016; 2016:7121580. [PMID: 27529074 PMCID: PMC4978836 DOI: 10.1155/2016/7121580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/08/2023] Open
Abstract
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.
Collapse
|
90
|
Hu J, Wang Y, Gong H, Yu C, Guo C, Wang F, Yan S, Xu H. Long term effect and safety of Wharton's jelly-derived mesenchymal stem cells on type 2 diabetes. Exp Ther Med 2016; 12:1857-1866. [PMID: 27588104 DOI: 10.3892/etm.2016.3544] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular therapies offer novel opportunities for the treatment of type 2 diabetes mellitus (T2DM). The present study evaluated the long-term efficacy and safety of infusion of Wharton's jelly-derived mesenchymal stem cells (WJ-MSC) on T2DM. A total of 61 patients with T2DM were randomly divided into two groups on the basis of basal therapy; patients in group I were administered WJ-MSC intravenous infusion twice, with a four-week interval, and patients in group II were treated with normal saline as control. During the 36-month follow-up period, the occurrence of any adverse effects and the results of clinical and laboratory examinations were recorded and evaluated. The lack of acute or chronic adverse effects in group I was consistent with group II.. Blood glucose, glycosylated hemoglobin, C-peptide, homeostasis model assessment of pancreatic islet β-cell function and incidence of diabetic complications in group I were significantly improved, as compared with group II during the 36-month follow-up. The results of the present study demonstrated that infusion of WJ-MSC improved the function of islet β-cells and reduced the incidence of diabetic complications, although the precise mechanisms are yet to be elucidated. The infusion of WJ-MSC may be an effective option for the treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yangang Wang
- Stem Cell Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Huimin Gong
- Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao, Shandong 266000, P.R. China
| | - Chundong Yu
- Department of Clinical Laboratory, Women and Children's Hospital of Qingdao, Shandong 266034, P.R. China
| | - Caihong Guo
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Fang Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shengli Yan
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongmei Xu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
91
|
Liu WH, Ren LN, Wang T, Navarro-Alvarez N, Tang LJ. The Involving Roles of Intrahepatic and Extrahepatic Stem/Progenitor Cells (SPCs) to Liver Regeneration. Int J Biol Sci 2016; 12:954-63. [PMID: 27489499 PMCID: PMC4971734 DOI: 10.7150/ijbs.15715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Liver regeneration is usually attributed to mature hepatocytes, which possess a remarkable potential to proliferate under mild to moderate injury. However, when the liver is severely damaged or hepatocyte proliferation is greatly inhibited, liver stem/progenitor cells (LSPCs) will contribute to the liver regeneration process. LSPCs in the developing liver have been extensively characterized, however, their contributing role to liver regeneration has not been completely understood. In addition to the restoration of the liver parenchymal tissue by hepatocytes or/and LSPCs, or in some cases bone marrow (BM) derived cells, such as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), the wound healing after injury in terms of angiopoiesis by liver sinusoidal endothelial cells (LSECs) or/and sinusoidal endothelial progenitor cells (SEPCs) is another important aspect taking place during regeneration. To conclude, liver regeneration can be mainly divided into three distinct restoring levels according to the cause and severity of injury: hepatocyte dominant regeneration, LSPCs mediated regeneration, extrahepatic stem cells participative regeneration. In this review, we focus on the recent findings of liver regeneration, especially on those related to stem/progenitor cells (SPCs)-mediated regeneration and their potential clinical applications and challenges.
Collapse
Affiliation(s)
- Wei-Hui Liu
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Li-Na Ren
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Tao Wang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Nalu Navarro-Alvarez
- 2. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-Jun Tang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| |
Collapse
|
92
|
GU YAJUN, LI TAO, DING YANLING, SUN LINGXIAN, TU TAO, ZHU WEI, HU JIABO, SUN XIAOCHUN. Changes in mesenchymal stem cells following long-term culture in vitro. Mol Med Rep 2016; 13:5207-15. [DOI: 10.3892/mmr.2016.5169] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
|
93
|
Mesenchymal Stem/Stromal Cells in Liver Fibrosis: Recent Findings, Old/New Caveats and Future Perspectives. Stem Cell Rev Rep 2016; 11:586-97. [PMID: 25820543 DOI: 10.1007/s12015-015-9585-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) are progenitors which share plastic-adherence capacity and cell surface markers but have different properties according to their cell and tissue sources and to culture conditions applied. Many recent publications suggest that MSCs can differentiate into hepatic-like cells, which can be a consequence of either a positive selection of rare in vivo pluripotent cells or of the original plasticity of some cells contributing to MSC cultures. A possible role of MSCs in hereditary transmission of obesity and/or diabetes as well as properties of MSCs regarding immunomodulation, cell fusion and exosome release capacities are discussed according to recent literature. Limitations in methods used to track MSCs in vivo especially in the context of liver cirrhosis are addressed as well as strategies explored to enhance their migratory, survival and proliferation properties, which are known to be relevant for their future clinical use. Current knowledge regarding mechanisms involved in liver cirrhosis amelioration mediated by naïve and genetically modified MSCs as well as the effects of applying preconditioning and combined strategies to improve their therapeutic effects are evaluated. Finally, first reports of GMP guidelines and biosafety issues in MSCs applications are discussed.
Collapse
|
94
|
Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation. Stem Cells Int 2016; 2016:8468549. [PMID: 27127520 PMCID: PMC4834412 DOI: 10.1155/2016/8468549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.
Collapse
|
95
|
Christ B, Brückner S, Winkler S. The Therapeutic Promise of Mesenchymal Stem Cells for Liver Restoration. Trends Mol Med 2015; 21:673-686. [PMID: 26476857 DOI: 10.1016/j.molmed.2015.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Abstract
Hepatocyte transplantation aims to provide a functional substitution of liver tissue lost due to trauma or toxins. Chronic liver diseases are associated with inflammation, deterioration of tissue homeostasis, and deprivation of metabolic capacity. Recent advances in liver biology have focused on the pro-regenerative features of mesenchymal stem cells (MSCs). We argue that MSCs represent an attractive therapeutic option to treat liver disease. Indeed, their pleiotropic actions include the modulation of immune reactions, the stimulation of cell proliferation, and the attenuation of cell death responses. These characteristics are highly warranted add-ons to their capacity for hepatocyte differentiation. Undoubtedly, the elucidation of the regenerative mechanisms of MSCs in different liver diseases will promote their versatile and disease-specific therapeutic use.
Collapse
Affiliation(s)
- Bruno Christ
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany.
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| |
Collapse
|
96
|
Xishan Z, Bin Z, Haiyue Z, Xiaowei D, Jingwen B, Guojun Z. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells. Sci Rep 2015; 5:14284. [PMID: 26412454 PMCID: PMC4585933 DOI: 10.1038/srep14284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/06/2015] [Indexed: 02/05/2023] Open
Abstract
Adipose derived Mesenchymal stem cells (AMSCs) are able to expand in vitro and undergo differentiation into multiple cell lineages, yet have low immunogenicity while exhibiting several immunoregulatory characteristics. We sought to investigate the immunomodulatory mechanisms of AMSCs to better understand their immunogenic properties. Following 10 days of chondrogenic differentiation or 48 hours of IFN-γ pretreatment, AMSCs retained low level immunogenicity but prominent immunoregulatory activity and AMSC immunogenicity was enhanced by chondrogenic differentiation or IFN-γ treatment. We found Jagged-2 expression was significantly elevated following chondrogenic differentiation or IFN-γ pretreatment. Jagged-2-RNA interference experiments suggested that Jagged-2-siRNA2 suppresses Jagged-2 expression during chondrogenic differentiation and in IFN-γ pretreated AMSCs. Besides, Jagged-2 interference attenuated immunosuppressive activity by mixed lymphocyte culture and mitogen stimulation experiments. So, the immunoregulatory activity of AMSCs, to some extent dependent upon Jagged-2, might be stronger after multilineage differentiation or influence from inflammatory factors. This may also be why rejection does not occur after allogeneic AMSCs differentiate into committed cells.
Collapse
Affiliation(s)
- Zhu Xishan
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Bin
- Institute of Basic medicine. Peking Union Medical College, Chinese Academy of Medical Science, China
| | - Zhao Haiyue
- Clinical department, Capital Medical University
| | - Dou Xiaowei
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Bai Jingwen
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Zhang Guojun
- The Breast Center, Cancer Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
97
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
98
|
Cao X, Liu M, Wang P, Liu DY. Intestinal dendritic cells change in number in fulminant hepatic failure. World J Gastroenterol 2015; 21:4883-4893. [PMID: 25945001 PMCID: PMC4408460 DOI: 10.3748/wjg.v21.i16.4883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/12/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the change in intestinal dendritic cell (DC) number in fulminant hepatic failure (FHF).
METHODS: An animal model of FHF was created. Intestinal CD11b/c was detected by immunohistochemistry and Western blot. Quantitative real-time polymerase chain reaction (PCR) was used to detect intestinal integrin-α mRNA expression. Intestinal CD83, CD86, CD74, CD3 and AKT were detected by immunohistochemistry, Western blot and PCR. Phosphorylated-AKT (p-AKT) was detected by immunohistochemistry and Western blot.
RESULTS: In the FHF group [D-galactosamine (D-Galn) + lipopolysaccharide (LPS) group], the mice began to die after 6 h; conversely, in the D-Galn and LPS groups, the activity of mice was poor, but there were no deaths. Immunohistochemistry results showed that in FHF, the expression of CD11b/c (7988400 ± 385941 vs 1102400 ± 132273, P < 0.05), CD83 (13875000 ± 467493 vs 9257600 ± 400364, P < 0.05), CD86 (7988400 ± 385941 vs 1102400 ± 13227, P < 0.05) and CD74 (11056000 ± 431427 vs 4633400 ± 267903, P < 0.05) was significantly increased compared with the normal saline (NS) group. Compared with the NS group, the protein expression of CD11b/c (5.4817 ± 0.77 vs 1.4073 ± 0.37, P < 0.05) and CD86 (4.2673 ± 0.69 vs 1.1379 ± 0.42, P < 0.05) was significantly increased. Itg-α (1.1224 ± 0.3 vs 0.4907 ± 0.19, P < 0.05), CD83 (3.6986 ± 0.40 vs 1.0762 ± 0.22, P < 0.05) and CD86 (1.5801 ± 0.32 vs 0.8846 ± 0.10, P < 0.05) mRNA expression was increased significantly in the FHF group. At the protein level, expression of CD74 in the FHF group (2.3513 ± 0.52) was significantly increased compared with the NS group (1.1298 ± 0.33), whereas in the LPS group (2.3891 ± 0.47), the level of CD74 was the highest (P < 0.05). At the gene level, the relative expression of CD74 mRNA in the FHF group (1.5383 ± 0.26) was also significantly increased in comparison to the NS group (0.7648 ± 0.22; P < 0.05). CD3 expression was the highest in the FHF group (P < 0.05). In the FHF, LPS and D-Galn groups, the expression of AKT at the protein and mRNA levels was elevated compared with the NS group, but there was no statistical significance (P > 0.05). The p-AKT protein expression in the FHF (1.54 ± 0.06), LPS (1.56 ± 0.05) and D-Galn (1.29 ± 0.03) groups was higher than that in the NS group (1.07 ± 0.03) (P < 0.05).
CONCLUSION: In FHF, a large number of DCs mature, express CD86, and activate MHC class II molecular pathways to induce a T cell response, and the AKT pathway is activated.
Collapse
|
99
|
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6:526-539. [PMID: 25426250 PMCID: PMC4178253 DOI: 10.4252/wjsc.v6.i5.526] [Citation(s) in RCA: 291] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.
Collapse
|
100
|
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12:260. [PMID: 25304688 PMCID: PMC4197270 DOI: 10.1186/s12967-014-0260-8] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.
Collapse
Affiliation(s)
- Marialaura Madrigal
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India. .,INDICASAT-AIP, City of Knowledge, Republic of Panama. .,MediStem Panama Inc., City of Knowledge, Republic of Panama.
| | | | - Neil H Riordan
- MediStem Panama Inc., City of Knowledge, Republic of Panama.
| |
Collapse
|