51
|
Liu F, Qin Y, Yu S, Soares DC, Yang L, Weng J, Li C, Gao M, Lu Z, Hu X, Liu X, Jiang T, Liu JY, Shu X, Tang Z, Liu M. Pathogenic mutations in retinitis pigmentosa 2 predominantly result in loss of RP2 protein stability in humans and zebrafish. J Biol Chem 2017; 292:6225-6239. [PMID: 28209709 PMCID: PMC5391753 DOI: 10.1074/jbc.m116.760314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Mutations in retinitis pigmentosa 2 (RP2) account for 10-20% of X-linked retinitis pigmentosa (RP) cases. The encoded RP2 protein is implicated in ciliary trafficking of myristoylated and prenylated proteins in photoreceptor cells. To date >70 mutations in RP2 have been identified. How these mutations disrupt the function of RP2 is not fully understood. Here we report a novel in-frame 12-bp deletion (c.357_368del, p.Pro120_Gly123del) in zebrafish rp2 The mutant zebrafish shows reduced rod phototransduction proteins and progressive retinal degeneration. Interestingly, the protein level of mutant Rp2 is almost undetectable, whereas its mRNA level is near normal, indicating a possible post-translational effect of the mutation. Consistent with this hypothesis, the equivalent 12-bp deletion in human RP2 markedly impairs RP2 protein stability and reduces its protein level. Furthermore, we found that a majority of the RP2 pathogenic mutations (including missense, single-residue deletion, and C-terminal truncation mutations) severely destabilize the RP2 protein. The destabilized RP2 mutant proteins are degraded via the proteasome pathway, resulting in dramatically decreased protein levels. The remaining non-destabilizing mutations T87I, R118H/R118G/R118L/R118C, E138G, and R211H/R211L are suggested to impair the interaction between RP2 and its protein partners (such as ARL3) or with as yet unknown partners. By utilizing a combination of in silico, in vitro, and in vivo approaches, our work comprehensively indicates that loss of RP2 protein structural stability is the predominating pathogenic consequence for most RP2 mutations. Our study also reveals a role of the C-terminal domain of RP2 in maintaining the overall protein stability.
Collapse
Affiliation(s)
- Fei Liu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yayun Qin
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Yu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dinesh C Soares
- MRC Human Genetics Unit/Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom, and
| | - Lifang Yang
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jun Weng
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chang Li
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Meng Gao
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhaojing Lu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xuebin Hu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiliang Liu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Jiang
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Yu Liu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Zhaohui Tang
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mugen Liu
- From the Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China,
| |
Collapse
|
52
|
Novel variants of RPGR in X-linked retinitis pigmentosa families and genotype-phenotype correlation. Eur J Ophthalmol 2017; 27:240-248. [PMID: 27768226 DOI: 10.5301/ejo.5000879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 11/20/2022]
Abstract
PURPOSE To identify novel mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene and retinitis pigmentosa 2 (RP2) gene underlying X-linked retinitis pigmentosa (XLRP) and assess genotype-phenotype correlations. METHODS The patient cohort, consisting of 13 individuals from 3 unrelated XLRP families, underwent comprehensive ophthalmologic examination. The open reading frames of RPGR and RP2 were analyzed with Sanger sequencing in each patient. The identified genetic variants were defined as mutations or polymorphisms on the basis of their pathological effect. RESULTS We found 3 genetic variants: a novel mutation c.1591G>T in exon 14 and a novel polymorphism c.1105C>T in exon 10, resulting in p.Glu531* and p.Arg369Cys of RPGR gene, respectively, and one already known mutation c.413A>G in exon 2, resulting in a p.Glu138Gly of RP2 gene. Considering our XLRP probands, RPGR-related phenotypic damages were similar and less severe than those of the patient with the RP2 mutation. On the other hand, the female carriers of XLRP variants showed different RPGR-related consequences, ranging from rods hypofunctionality in c.1591G>T nonsense heterozygosity to no retinal changes in c.1105C>T polymorphic heterozygosity. CONCLUSIONS These findings broaden the spectrum of RPGR mutations and phenotypic variability of the disease, which will be useful for genetic consultation and diagnosis in the future.
Collapse
|
53
|
Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia. Sci Rep 2016; 6:39179. [PMID: 27995965 PMCID: PMC5171904 DOI: 10.1038/srep39179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to describe a new pathogenic variant in the mutational hot spot exon ORF15 of retinitis pigmentosa GTPase regulator (RPGR) gene within an Italian family with X-linked retinitis pigmentosa (RP), detailing its distinctive genotype-phenotype correlation with pathologic myopia (PM). All members of this RP-PM family underwent a complete ophthalmic examination. The entire open reading frames of RPGR and retinitis pigmentosa 2 genes were analyzed by Sanger sequencing. A novel frame-shift mutation in exon ORF15 of RPGR gene (c.2091_2092insA; p.A697fs) was identified as hemizygous variant in the male proband with RP, and as heterozygous variant in the females of this pedigree who invariably exhibited symmetrical PM in both eyes. The c.2091_2092insA mutation coherently co-segregated with the observed phenotypes. These findings expand the spectrum of X-linked RP variants. Interestingly, focusing on Caucasian ethnicity, just three RPGR mutations are hitherto reported in RP-PM families: one of these is located in exon ORF15, but none appears to be characterized by a high penetrance of PM trait as observed in the present, relatively small, pedigree. The geno-phenotypic attributes of this heterozygosity suggest that gain-of-function mechanism could give rise to PM via a degenerative cell-cell remodeling of the retinal structures.
Collapse
|
54
|
Charng J, Cideciyan AV, Jacobson SG, Sumaroka A, Schwartz SB, Swider M, Roman AJ, Sheplock R, Anand M, Peden MC, Khanna H, Heon E, Wright AF, Swaroop A. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration. Hum Mol Genet 2016; 25:5444-5459. [PMID: 27798110 PMCID: PMC6078602 DOI: 10.1093/hmg/ddw361] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ORF15 exon of the RPGR gene cause a common form of X-linked retinitis pigmentosa, which often results in severe loss of vision. In dogs and mice, gene augmentation therapy has been shown to arrest the progressive degeneration of rod and cone photoreceptors. However, the distribution of potentially treatable photoreceptors across the human retinas and the rate of degeneration are not known. Here, we have defined structural and functional features of the disease in 70 individuals with ORF15 mutations. We also correlated the features observed in patients with those of three Rpgr-mutant (Rpgr-ko, Rd9, and Rpgr-cko) mice. In patients, there was pronounced macular disease. Across the retina, rod and cone dysfunction showed a range of patterns and a spectrum of severity between individuals, but a high symmetry was observed between eyes of each individual. Genotype was not related to disease expression. In the Rpgr-ko mice, there were intra-retinal differences in rhodopsin and cone opsin trafficking. In Rd9 and Rpgr-cko mice, retinal degeneration showed inter-ocular symmetry. Longitudinal results in patients revealed localized rod and cone dysfunction with progression rates of 0.8 to 1.3 log per decade in sensitivity loss. Relatively retained rod and cone photoreceptors in mid- and far-peripheral temporal-inferior and nasal-inferior visual field regions should be good targets for future localized gene therapies in patients.
Collapse
Affiliation(s)
- Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Sharon B. Schwartz
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA
| | - Manisha Anand
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Marc C. Peden
- Retina Associates of Florida, Tampa, Florida, FL, USA
| | - Hemant Khanna
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, USA
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, MD, USA
| |
Collapse
|
55
|
Improved Diagnosis of Inherited Retinal Dystrophies by High-Fidelity PCR of ORF15 followed by Next-Generation Sequencing. J Mol Diagn 2016; 18:817-824. [PMID: 27620828 DOI: 10.1016/j.jmoldx.2016.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 11/21/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common form of retinal dystrophy. The disease is characterized by the progressive degeneration of photoreceptors, ultimately leading to blindness. The exon ORF15 of RP GTPase regulator (RPGR) is a mutation hot spot for X-linked RP and one form of cone dystrophy. However, accurate molecular testing of ORF15 is challenging because of a large segment of highly repetitive purine-rich sequence in this exon. ORF15 performs poorly in next-generation sequencing-based panels or whole exome sequencing analysis, whereas Sanger sequencing of ORF15 requires special reagents and PCR conditions with multiple pairs of overlapping primers that often do not provide a clean sequence. Because of these technical difficulties, molecular analysis of ORF15 is performed mostly in research laboratories without validation for clinical application. Herein, we report the development of a single step of high-fidelity PCR followed by next-generation sequencing for accurate mutation detection, which is easily integrated into routine clinical practice. Our approach has improved coverage depth of ORF15 with the ability to detect single-nucleotide variants and deletions/duplications. Using this method, we were able to identify ORF15 pathogenic variants in approximately 31% of undiagnosed RP patients. Our results underline the clinical importance of complete and accurate sequence analysis of ORF15 for patients with retinal dystrophies.
Collapse
|
56
|
Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. Proc Natl Acad Sci U S A 2016; 113:E2925-34. [PMID: 27162334 DOI: 10.1073/pnas.1523201113] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of retinitis pigmentosa, a blinding retinal disease resulting from photoreceptor degeneration. A photoreceptor specific ORF15 variant of RPGR (RPGR(ORF15)), carrying multiple Glu-Gly tandem repeats and a C-terminal basic domain of unknown function, localizes to the connecting cilium where it is thought to regulate cargo trafficking. Here we show that tubulin tyrosine ligase like-5 (TTLL5) glutamylates RPGR(ORF15) in its Glu-Gly-rich repetitive region containing motifs homologous to the α-tubulin C-terminal tail. The RPGR(ORF15) C-terminal basic domain binds to the noncatalytic cofactor interaction domain unique to TTLL5 among TTLL family glutamylases and targets TTLL5 to glutamylate RPGR. Only TTLL5 and not other TTLL family glutamylases interacts with RPGR(ORF15) when expressed transiently in cells. Consistent with this, a Ttll5 mutant mouse displays a complete loss of RPGR glutamylation without marked changes in tubulin glutamylation levels. The Ttll5 mutant mouse develops slow photoreceptor degeneration with early mislocalization of cone opsins, features resembling those of Rpgr-null mice. Moreover TTLL5 disease mutants that cause human retinal dystrophy show impaired glutamylation of RPGR(ORF15) Thus, RPGR(ORF15) is a novel glutamylation substrate, and this posttranslational modification is critical for its function in photoreceptors. Our study uncovers the pathogenic mechanism whereby absence of RPGR(ORF15) glutamylation leads to retinal pathology in patients with TTLL5 gene mutations and connects these two genes into a common disease pathway.
Collapse
|
57
|
Tee JJL, Smith AJ, Hardcastle AJ, Michaelides M. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol 2016; 100:1022-7. [PMID: 26843488 DOI: 10.1136/bjophthalmol-2015-307698] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/02/2016] [Indexed: 11/04/2022]
Abstract
Retinitis pigmentosa GTPase regulator (RPGR) gene sequence variants account for the vast majority of X linked retinitis pigmentosa (RP), which is one of the most severe forms of RP. Symptoms of nyctalopia typically begin in childhood, with increasing loss of peripheral visual field during teenage years, and progressive central visual loss during the second to fourth decade of life. There is however marked intrafamilial and interfamilial phenotypic heterogeneity in affected males and carrier females. There is now a far greater understanding of the range of phenotypes associated with variants in this gene; including rod-cone dystrophy, cone-rod dystrophy, cone dystrophy, macular dystrophy and non-ocular phenotypes. There are also increasingly established genotype-phenotype associations and structure-function correlations. RPGR is involved in ciliary function, with ciliary dysfunction now recognised as the mechanism underlying a large proportion of inherited retinal disease. There has been significant progress in identifying naturally occurring animal models and developing novel models to define the underlying disease mechanisms and to test gene replacement therapy, in addition to advances in human retinal imaging, culminating in completed and planned clinical trials. These significant developments will be discussed.
Collapse
Affiliation(s)
- James J L Tee
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Alexander J Smith
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Alison J Hardcastle
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK Moorfields Eye Hospital, London, UK
| |
Collapse
|
58
|
Photoreceptor rescue by an abbreviated human RPGR gene in a murine model of X-linked retinitis pigmentosa. Gene Ther 2015; 23:196-204. [PMID: 26348595 PMCID: PMC4863462 DOI: 10.1038/gt.2015.93] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/05/2015] [Accepted: 08/21/2015] [Indexed: 11/08/2022]
Abstract
The X-linked RP3 gene codes for the ciliary protein RPGR and accounts for over 10% of inherited retinal degenerations. The critical RPGR-ORF15 splice variant contains a highly repetitive purine-rich linker region that renders it unstable and difficult to adapt for gene therapy. To test the hypothesis that the precise length of the linker region is not critical for function, we evaluated whether AAV-mediated replacement gene therapy with a human ORF15 variant containing in-frame shortening of the linker region could reconstitute RPGR function in vivo. We delivered human RPGR-ORF15 replacement genes with deletion of most (314-codons, “short form”) or 1/3 (126-codons, “long form”) of the linker region to Rpgr null mice. Human RPGR-ORF15 expression was detected post-treatment with both forms of ORF15 transgenes. However, only the long form correctly localized to the connecting cilia and led to significant functional and morphological rescue of rods and cones. Thus the highly repetitive region of RPGR is functionally important but that moderate shortening of its length, which confers the advantage of added stability, preserves its function. These findings provide a theoretical basis for optimizing replacement gene design in clinical trials for X-linked RP3.
Collapse
|
59
|
Comander J, Weigel-DiFranco C, Sandberg MA, Berson EL. Visual Function in Carriers of X-Linked Retinitis Pigmentosa. Ophthalmology 2015; 122:1899-906. [PMID: 26143542 DOI: 10.1016/j.ophtha.2015.05.039] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To determine the frequency and severity of visual function loss in female carriers of X-linked retinitis pigmentosa (XLRP). DESIGN Case series. PARTICIPANTS Two hundred seventy-six XLRP carriers with cross-sectional data (n = 242) and longitudinal data (n = 34; median follow-up, 16 years; follow-up range, 3-37 years). Half of the carriers were from RPGR- or RP2-genotyped families. METHODS Retrospective medical records review. MAIN OUTCOME MEASURES Visual acuities, visual field areas, final dark adaptation thresholds, and full-field electroretinography (ERG) responses to 0.5-Hz and 30-Hz flashes. RESULTS In genotyped families, 40% of carriers showed a baseline abnormality on at least 1 of 3 psychophysical tests. There was a wide range of function among carriers. For example, 3 of 121 (2%) genotyped carriers were legally blind because of poor visual acuity, some as young as 35 years. Visual fields were less affected than visual acuity. In all carriers, the average ERG amplitude to 30-Hz flashes was approximately 50% of normal, and the average exponential rate of amplitude loss over time was half that of XLRP males (3.7%/year vs. 7.4%/year, respectively). Among obligate carriers with affected fathers, sons, or both, 53 of 55 (96%) had abnormal baseline ERG results. Some carriers who initially had completely normal fundi in both eyes went on to experience moderately decreased vision, although not legal blindness. Among carriers with RPGR mutations, those with mutations in ORF15, compared with those in exons 1-14, had worse final dark adaptation thresholds and lower 0.5-Hz and 30-Hz ERG amplitudes. CONCLUSIONS Most carriers of XLRP had mildly or moderately reduced visual function but rarely became legally blind. In most cases, obligate carriers could be identified by ERG testing. Carriers of RPGR ORF15 mutations tended to have worse visual function than carriers of RPGR exon 1 through 14 mutations. Because XLRP carrier ERG amplitudes and decay rates over time were on average half of those of affected men, these observations were consistent with the Lyon hypothesis of random X-inactivation.
Collapse
Affiliation(s)
- Jason Comander
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts.
| | - Carol Weigel-DiFranco
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Michael A Sandberg
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Eliot L Berson
- Berman-Gund Laboratory for the Study of Retinal Degenerations, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
60
|
Desvignes T, Nguyen T, Chesnel F, Bouleau A, Fauvel C, Bobe J. X-Linked Retinitis Pigmentosa 2 Is a Novel Maternal-Effect Gene Required for Left-Right Asymmetry in Zebrafish. Biol Reprod 2015; 93:42. [PMID: 26134862 DOI: 10.1095/biolreprod.115.130575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/10/2015] [Indexed: 01/05/2023] Open
Abstract
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.
Collapse
Affiliation(s)
- Thomas Desvignes
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | - Thaovi Nguyen
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | | | - Aurélien Bouleau
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas Les Flots, France
| | | | - Julien Bobe
- INRA, UR1037 Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| |
Collapse
|
61
|
Zhang JX, Wang NL, Lu QJ. Development of gene and stem cell therapy for ocular neurodegeneration. Int J Ophthalmol 2015; 8:622-30. [PMID: 26086019 DOI: 10.3980/j.issn.2222-3959.2015.03.33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.
Collapse
Affiliation(s)
- Jing-Xue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Ning-Li Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| | - Qing-Jun Lu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China
| |
Collapse
|
62
|
Liu F, Chen J, Yu S, Raghupathy RK, Liu X, Qin Y, Li C, Huang M, Liao S, Wang J, Zou J, Shu X, Tang Z, Liu M. Knockout of RP2 decreases GRK1 and rod transducin subunits and leads to photoreceptor degeneration in zebrafish. Hum Mol Genet 2015; 24:4648-59. [PMID: 26034134 DOI: 10.1093/hmg/ddv197] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/26/2015] [Indexed: 12/14/2022] Open
Abstract
Retinitis pigmentosa (RP) affects about 1.8 million individuals worldwide. X-linked retinitis pigmentosa (XLRP) is one of the most severe forms of RP. Nearly 85% of XLRP cases are caused by mutations in the X-linked retinitis pigmentosa 2 (RP2) and RPGR. RP2 has been considered to be a GTPase activator protein for ARL3 and to play a role in the traffic of ciliary proteins. The mechanism of how RP2 mutations cause RP is still unclear. In this study, we generated an RP2 knockout zebrafish line using transcription activator-like effector nuclease technology. Progressive retinal degeneration could be observed in the mutant zebrafish. The degeneration of rods' outer segments (OSs) is predominant, followed by the degeneration of cones' OS. These phenotypes are similar to the characteristics of RP2 patients, and also partly consistent with the phenotypes of RP2 knockout mice and morpholino-mediated RP2 knockdown zebrafish. For the first time, we found RP2 deletion leads to decreased protein levels and abnormal retinal localizations of GRK1 and rod transducin subunits (GNAT1 and GNB1) in zebrafish. Furthermore, the distribution of the total farnesylated proteins in zebrafish retina is also affected by RP2 ablation. These molecular alterations observed in the RP2 knockout zebrafish might probably be responsible for the gradual loss of the photoreceptors' OSs. Our work identified the progression of retinal degeneration in RP2 knockout zebrafish, provided a foundation for revealing the pathogenesis of RP caused by RP2 mutations, and would help to develop potential therapeutics against RP in further studies.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiaxiang Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | | | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Chang Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Mi Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Shengjie Liao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jiuxiang Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China
| | - Jian Zou
- Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Zhongxin Beilou, Hangzhou, 310029 Zhejiang, PR China
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK and and
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, PR China,
| |
Collapse
|
63
|
Chassine T, Bocquet B, Daien V, Avila-Fernandez A, Ayuso C, Collin RWJ, Corton M, Hejtmancik JF, van den Born LI, Klevering BJ, Riazuddin SA, Sendon N, Lacroux A, Meunier I, Hamel CP. Autosomal recessive retinitis pigmentosa withRP1mutations is associated with myopia. Br J Ophthalmol 2015; 99:1360-5. [DOI: 10.1136/bjophthalmol-2014-306224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/26/2015] [Indexed: 11/03/2022]
|
64
|
Wu Z, Hiriyanna S, Qian H, Mookherjee S, Campos MM, Gao C, Fariss R, Sieving PA, Li T, Colosi P, Swaroop A. A long-term efficacy study of gene replacement therapy for RPGR-associated retinal degeneration. Hum Mol Genet 2015; 24:3956-70. [PMID: 25877300 DOI: 10.1093/hmg/ddv134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/13/2015] [Indexed: 11/14/2022] Open
Abstract
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene account for >70% of X-linked retinitis pigmentosa (XLRP) and 15-20% of all inherited retinal degeneration. Gene replacement therapy for RPGR-XLRP was hampered by the relatively slow disease progression in mouse models and by difficulties in cloning the full-length RPGR-ORF15 cDNA that includes a purine-rich 3'-coding region; however, its effectiveness has recently been demonstrated in four dogs with RPGR mutations. To advance the therapy to clinical stage, we generated new stable vectors in AAV8 or AAV9 carrying mouse and human full-length RPGR-ORF15-coding sequence and conducted a comprehensive long-term dose-efficacy study in Rpgr-knockout mice. After validating their ability to produce full-length proteins that localize to photoreceptor connecting cilia, we evaluated various vector doses in mice during a 2-year study. We demonstrate that eyes treated with a single injection of mouse or human RPGR-ORF15 vector at an optimal dose maintained the expression of RPGR-ORF15 throughout the study duration and exhibited higher electroretinogram amplitude, thicker photoreceptor layer and better targeting of opsins to outer segments compared with sham-treated eyes. Furthermore, mice that received treatment at an advanced age also showed remarkable preservation of retinal structure and function. Retinal toxicity was observed at high vector doses, highlighting the importance of careful dose optimization in future clinical experiments. Our long-term dose-efficacy study should facilitate the design of human trials with human RPGR-ORF15 vector as a clinical candidate.
Collapse
Affiliation(s)
- Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haohua Qian
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Maria M Campos
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chun Gao
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Fariss
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiansen Li
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Colosi
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
65
|
Beltran WA, Cideciyan AV, Lewin AS, Hauswirth WW, Jacobson SG, Aguirre GD. Gene augmentation for X-linked retinitis pigmentosa caused by mutations in RPGR. Cold Spring Harb Perspect Med 2014; 5:a017392. [PMID: 25301933 DOI: 10.1101/cshperspect.a017392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is a severe and early onset form of retinal degeneration, and no treatment is currently available. Recent evidence in two clinically relevant canine models shows that adeno-associated viral (AAV)-mediated RPGR gene transfer to rods and cones can prevent disease onset and rescue photoreceptors at early- and mid-stages of degeneration. There is thus a strong incentive for conducting long-term, preclinical efficacy and safety studies, while concomitantly pursuing the detailed phenotypic characterization of XLRP disease in patients that may benefit from such corrective therapy.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alfred S Lewin
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida 32610
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, Florida 32610
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Gustavo D Aguirre
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
66
|
Tzu JH, Arguello T, Berrocal AM, Berrocal M, Weisman AD, Liu M, Hess D, Caputo M, Goldberg JL, Feuer WJ, Stone EM, Lam BL. Clinical and Electrophysiologic Characteristics of a Large Kindred with X-Linked Retinitis Pigmentosa Associated with the RPGR Locus. Ophthalmic Genet 2014; 36:321-6. [PMID: 24555744 DOI: 10.3109/13816810.2014.886267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To phenotypically and genotypically characterize a large Puerto Rican kindred with X-linked retinitis pigmentosa associated with a novel RP GTPase regulator (RPGR) genotype. METHODS A total of 100 family members of a single kindred with X-linked RP were evaluated with ophthalmic examinations and blood DNA analysis. Visual fields, OCT, and full-field ERG were obtained on all affected males and carriers. RESULTS Of the 100 family members examined, 13 were affected males and 18 were carriers. A deletion of 2 base pair of the RPGR gene in the ORF15 region at position c.2267-2268 (Lys756del2aaAG hemi) was identified with the affected and carriers. Best eye visual acuity was correlated with age (Spearman coefficient = 0.95) with hand-motion acuity by age 35 and light perception to no light perception by age 50-60. Visual fields were minimally plottable by age 40, and ERG responses reached non-detectable levels by late teens. Carriers had no or mild visual symptoms. All carriers had visual acuity of at least 20/50 or better in one eye, and the amount of retinal degeneration was variable with ERG responses ranging from severely impaired to normal. CONCLUSIONS Profound visual loss occurred by the second decade of life with progression to near no light perception by age 60 in this kindred of X-linked RP associated with the RPGR genotype. Female carriers maintained visual acuity with age and were identifiable by clinical and ERG examination. The information from this study is important to determine the optimal age for intervention, as new RP treatments are being developed and tested.
Collapse
Affiliation(s)
- Jonathan H Tzu
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Tania Arguello
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Audina M Berrocal
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | | | - Alejandra D Weisman
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Mu Liu
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Ditte Hess
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Michelle Caputo
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Jeffrey L Goldberg
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - William J Feuer
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| | - Edwin M Stone
- c Department of Ophthalmology and Visual Sciences , University of Iowa , IA , USA , and.,d Howard Hughes Medical Institute, University of Iowa Carver College of Medicine , Iowa City , IA , USA
| | - Byron L Lam
- a Bascom Palmer Eye Institute, University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
67
|
Yang L, Yin X, Feng L, You D, Wu L, Chen N, Li A, Li G, Ma Z. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One 2014; 9:e85752. [PMID: 24454928 PMCID: PMC3893273 DOI: 10.1371/journal.pone.0085752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022] Open
Abstract
X-linked Retinitis Pigmentosa (XLRP) accounts for 10–20% of all RP cases, and represents the most severe subtype of this disease. Mutations in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene are the most common causes of XLRP, accounting for over 70–75% of all XLRP cases. In this work, we analyzed all the exons of RPGR gene with Sanger sequencing in seven Chinese XLRP families, two of these with a provisional diagnosis of adRP but without male-to-male transmission. Three novel deletions (c.2233_34delAG; c.2236_37delGA and c.2403_04delAG) and two known nonsense mutations (c.851C→G and c.2260G→T) were identified in five families. Two novel deletions (c.2233_34delAG and c.2236_37delGA) resulted in the same frame shift (p.E746RfsX22), created similar phenotype in Family 3 and 4. The novel deletion (c.2403_04delAG; p.E802GfsX31) resulted in both XLRP and x-linked cone-rod dystrophy within the male patients of family 5, which suggested the presence of either genetic or environmental modifiers, or both, play a substantial role in disease expression. Genotype-phenotype correlation analysis suggested that (1) both patients and female carriers with mutation in Exon 8 (Family 1) manifest more severe disease than did those with ORF15 mutations (Family 2&3&4); (2) mutation close to downstream of ORF15 (Family 5) demonstrate the early preferential loss of cone function with moderate loss of rod function.
Collapse
Affiliation(s)
- Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Lina Feng
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Debo You
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Lemeng Wu
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Ningning Chen
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Aijun Li
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| | - Zhizhong Ma
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
- * E-mail: (GL); (ZM)
| |
Collapse
|
68
|
|
69
|
Abstract
PURPOSE OF REVIEW To describe the entity of Lyonization in ocular eye diseases, along with its clinical and counseling implications. RECENT FINDINGS Several X-linked ocular diseases such as choroideremia, X-linked retinitis pigmentosa, and X-linked ocular albinism may have signs of Lyonization on ocular examination and diagnostic testing. These findings may aid in the proper diagnosis of ocular disease in both female carriers and their affected male relatives. SUMMARY Manifestations of Lyonization in the eye may help in the diagnosis of X-linked ocular diseases which may lead to accurate diagnosis, appropriate molecular genetic testing and genetic counseling.
Collapse
|
70
|
eyeGENE(R): a novel approach to combine clinical testing and researching genetic ocular disease. Curr Opin Ophthalmol 2013; 23:355-63. [PMID: 22847030 DOI: 10.1097/icu.0b013e32835715c9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Molecular genetics is revolutionizing the diagnosis and treatment of inherited eye diseases. The National Eye Institute of the National Institutes of Health (NIH), in an effort to facilitate future basic and clinical research in inherited eye disease, created The National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE). This review describes the process and utility of the eyeGENE program as it relates to ophthalmic clinical practice. RECENT FINDINGS Over the last few years, genetic testing of specific genes associated with inherited eye conditions is becoming the standard practice. Vision research and human clinical trials relying on molecular genetic testing of individuals with inherited eye conditions are becoming more common. Eye healthcare professionals must consider the options to assist patients in obtaining genetic testing results and locating trials or studies that may have benefit. SUMMARY eyeGENE is a DNA repository and patient registry for inherited eye diseases coupled to phenotypic descriptors and molecular genetic information. Through eyeGENE, healthcare professionals throughout the United States and Canada can obtain Clinical Laboratory Improvement Amendments-certified clinical molecular genetic results on their patients. Researchers may request access to a de-identified database of phenotype and genotype information about eyeGENE participants and DNA aliquots for their research studies. eyeGENE also offers participants the option of being included in a patient registry, whereby they may be re-contacted if an approved clinical study for which they might qualify is offered.
Collapse
|
71
|
Bukowy-Bieryłło Z, Ziętkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, Fliegauf M, Voelkel K, Rutkiewicz E, Rutland J, Morgan L, Pogorzelski A, Martin J, Haan E, Berger W, Omran H, Witt M. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol 2013; 48:352-63. [PMID: 22888088 DOI: 10.1002/ppul.22632] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 05/19/2012] [Indexed: 01/02/2023]
Abstract
RPGR gene encodes retinitis pigmentosa guanosine triphosphatase regulator protein, mutations of which cause 70% of the X-linked retinitis pigmentosa (XLRP) cases. Rarely, RPGR mutations can also cause primary ciliary dyskinesia (PCD), a multisystem disorder characterized by recurrent respiratory tract infections, sinusitis, bronchiectasis, and male subfertility. Two patients with PCD_RP and their relatives were analyzed using DNA sequencing, transmission electron microscopy (TEM), immunofluorescence (IF), photometry, and high-speed videomicroscopy. The Polish patient carried a previously known c.154G>A substitution (p.Gly52Arg) in exon 2 (known to affect splicing); the mutation was co-segregating with the XLRP symptoms in his family. The c.824 G>T mutation (p. Gly275Val) in the Australian patient was a de novo mutation. In both patients, TEM and IF did not reveal any changes in the respiratory cilia structure. However, following ciliogenesis in vitro, in contrast to the ciliary beat frequency, the ciliary beat coordination in the spheroids from the Polish proband and his relatives carrying the c.154G>A mutation was reduced. Analysis of the ciliary alignment indicated severely disturbed orientation of cilia. Therefore, we confirm that defects in the RPGR protein may contribute to syndromic PCD. Lack of ultrastructural defects in respiratory cilia of the probands, the reduced ciliary orientation and the decreased coordination of the ciliary bundles observed in the Polish patient suggested that the RPGR protein may play a role in the establishment of the proper respiratory cilia orientation.
Collapse
Affiliation(s)
- Zuzanna Bukowy-Bieryłło
- Department of Molecular and Clinical Genetics, Institute of Human Genetics Polish Academy of Sciences, Poznań, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, Branham KE, Heckenlively JR, Daiger SP. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54:1411-6. [PMID: 23372056 DOI: 10.1167/iovs.12-11541] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We determined the fraction of families in a well-characterized cohort with a provisional diagnosis of autosomal dominant retinitis pigmentosa (adRP) that have disease-causing mutations in the X-linked retinitis pigmentosa GTPase regulator (RPGR) gene or the retinitis pigmentosa 2 (RP2) gene. METHODS Families with a provisional clinical diagnosis of adRP, and a pedigree consistent with adRP but no male-to-male transmission were selected from a cohort of 258 families, and tested for mutations in the RPGR and RP2 genes with di-deoxy sequencing. To facilitate testing of RPGR in "adRP" families that had no male members available for testing, the repetitive and purine-rich ORF15 of RPGR was subcloned and sequenced in heterozygous female subjects from 16 unrelated families. RESULTS Direct sequencing of RPGR and RP2 allowed for identification of a disease-causing mutation in 21 families. Of these "adRP" families 19 had RPGR mutations, and two had RP2 mutations. Subcloning and sequencing of ORF15 of RPGR in female subjects identified one additional RPGR mutation. Of the 22 mutations identified, 15 have been reported previously. CONCLUSIONS These data show that 8.5% (22 in 258) of families thought to have adRP truly have X-linked retinitis pigmentosa (XLRP). These results have substantive implications for calculation of recurrence risk, genetic counseling, and potential treatment options, and illustrate the importance of screening families with a provisional diagnosis of autosomal inheritance and no male-to-male transmission for mutations in X-linked genes. Mutations in RPGR are one of the most common causes of all forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Jennifer D Churchill
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
|
74
|
Branham K, Othman M, Brumm M, Karoukis AJ, Atmaca-Sonmez P, Yashar BM, Schwartz SB, Stover NB, Trzupek K, Wheaton D, Jennings B, Ciccarelli ML, Jayasundera KT, Lewis RA, Birch D, Bennett J, Sieving PA, Andreasson S, Duncan JL, Fishman GA, Iannaccone A, Weleber RG, Jacobson SG, Heckenlively JR, Swaroop A. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci 2012; 53:8232-7. [PMID: 23150612 DOI: 10.1167/iovs.12-11025] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To determine the proportion of male patients presenting simplex retinal degenerative disease (RD: retinitis pigmentosa [RP] or cone/cone-rod dystrophy [COD/CORD]) with mutations in the X-linked retinal degeneration genes RPGR and RP2. METHODS Simplex males were defined as patients with no known affected family members. Patients were excluded if they had a family history of parental consanguinity. Blood samples from a total of 214 simplex males with a diagnosis of retinal degeneration were collected for genetic analysis. The patients were screened for mutations in RPGR and RP2 by direct sequencing of PCR-amplified genomic DNA. RESULTS We identified pathogenic mutations in 32 of the 214 patients screened (15%). Of the 29 patients with a diagnosis of COD/CORD, four mutations were identified in the ORF15 mutational hotspot of the RPGR gene. Of the 185 RP patients, three patients had mutations in RP2 and 25 had RPGR mutations (including 12 in the ORF15 region). CONCLUSIONS This study represents mutation screening of RPGR and RP2 in the largest cohort, to date, of simplex males affected with RP or COD/CORD. Our results demonstrate a substantial contribution of RPGR mutations to retinal degenerations, and in particular, to simplex RP. Based on our findings, we suggest that RPGR should be considered as a first tier gene for screening isolated males with retinal degeneration.
Collapse
Affiliation(s)
- Kari Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Zheng Q, Ren Y, Tzekov R, Zhang Y, Chen B, Hou J, Zhao C, Zhu J, Zhang Y, Dai X, Ma S, Li J, Pang J, Qu J, Li W. Differential proteomics and functional research following gene therapy in a mouse model of Leber congenital amaurosis. PLoS One 2012; 7:e44855. [PMID: 22953002 PMCID: PMC3432120 DOI: 10.1371/journal.pone.0044855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/08/2012] [Indexed: 11/19/2022] Open
Abstract
Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.
Collapse
Affiliation(s)
| | - Yueping Ren
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Radouil Tzekov
- The Roskamp Institute, Sarasota, Florida, United States of America
| | - Yuanping Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Kunming Medical College, Kunming, China
| | - Bo Chen
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jiangping Hou
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Chunhui Zhao
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Jiali Zhu
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Ying Zhang
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Xufeng Dai
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Shan Ma
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia Li
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jijing Pang
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jia Qu
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
| | - Wensheng Li
- Eye Hospital, Wenzhou Medical College, Wenzhou, China
- Neurobiology-Neurodegeneration and Repair Laboratory, Retinal Cell Biology and Degeneration Section, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
76
|
Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc Natl Acad Sci U S A 2012; 109:2132-7. [PMID: 22308428 DOI: 10.1073/pnas.1118847109] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5-vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.
Collapse
|
77
|
Chen RWS, Greenberg JP, Lazow MA, Ramachandran R, Lima LH, Hwang JC, Schubert C, Braunstein A, Allikmets R, Tsang SH. Autofluorescence imaging and spectral-domain optical coherence tomography in incomplete congenital stationary night blindness and comparison with retinitis pigmentosa. Am J Ophthalmol 2012; 153:143-54.e2. [PMID: 21920492 PMCID: PMC4377134 DOI: 10.1016/j.ajo.2011.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE To test the hypothesis that the evaluation of retinal structure can have diagnostic value in differentiating between incomplete congenital stationary night blindness (CSNB2) and retinitis pigmentosa (RP). To compare retinal thickness differences between patients with CSNB2 and myopic controls. DESIGN Prospective cross-sectional study. METHODS Ten eyes of 5 patients diagnosed with CSNB2 (4 X-linked recessive, 1 autosomal recessive) and 6 eyes of 3 patients with RP (2 autosomal dominant, 1 autosomal recessive) were evaluated with spectral-domain optical coherence tomography (SD OCT) and fundus autofluorescence (FAF). Diagnoses of CSNB2 and RP were confirmed by full-field electroretinography (ERG). Manual segmentation of retinal layers, aided by a computer program, was performed by 2 professional segmenters on SD OCT images of all CSNB2 patients and 4 age-similar, normal myopic controls. Seven patients were screened for mutations with congenital stationary night blindness and RP genotyping arrays. RESULTS Patients with CSNB2 had specific findings on SD OCT and FAF that were distinct from those found in RP. CSNB2 patients showed qualitatively normal SD OCT results with preserved photoreceptor inner segment/outer segment junction, whereas this junction was lost in RP patients. In addition, CSNB2 patients had normal FAF images, whereas patients with RP demonstrated a ring of increased autofluorescence around the macula. On SD OCT segmentation, the inner and outer retinal layers of both X-linked recessive and autosomal recessive CSNB2 patients were thinner compared with those of normal myopic controls, with means generally outside of normal 95% confidence intervals. The only layers that demonstrated similar thickness between CSNB2 patients and the controls were the retinal nerve fiber layer and, temporal to the fovea, the combined outer segment layer and retinal pigment epithelium. A proband and his 2 affected brothers from a family segregating X-linked recessive CSNB2 had a mutation, p.R614X, in the gene encoding calcium channel, α 1F subunit. CONCLUSIONS CSNB2 patients (X-linked recessive and autosomal recessive) had significantly thinner retinas than myopic controls. However, they demonstrated qualitatively normal SD OCT and FAF images, and therefore can be differentiated from RP patients with these techniques. Although ERG testing remains the gold standard for the diagnosis of these conditions, FAF and SD OCT systems are more widely available to community ophthalmologists, offer shorter acquisition times, and, unlike ERG, can be performed on the same day as the initial clinic visit. Therefore, as a supplement to ERG and genetic testing, we advocate the use of FAF and SD OCT in the examination of patients with CSNB2 and RP.
Collapse
Affiliation(s)
- Royce W S Chen
- Department of Ophthalmology, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Delphin N, Hanein S, Taie LF, Zanlonghi X, Bonneau D, Moisan JP, Boyle C, Nitschke P, Pruvost S, Bonnefont JP, Munnich A, Roche O, Kaplan J, Rozet JM. Intellectual disability associated with retinal dystrophy in the Xp11.3 deletion syndrome: ZNF674 on trial. Guilty or innocent? Eur J Hum Genet 2011; 20:352-6. [PMID: 22126752 DOI: 10.1038/ejhg.2011.217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
X-linked retinal dystrophies (XLRD) are listed among the most severe RD owing to their early onset, leading to significant visual loss before the age of 30. One-third of XLRD are accounted for by RP2 mutations at the Xp11.23 locus. Deletions of ca. 1.2 Mb in the Xp11.3-p11.23 region have been previously reported in two independent families segregating XLRD with intellectual disability (ID). Although the RD was ascribed to the deletion of RP2, the ID was suggested to be accounted for by the loss of ZNF674, which mutations were independently reported to account for isolated XLID. Here, we report deletions in the Xp11.3-p11.23 region responsible for the loss of ZNF674 in two unrelated families segregating XLRD, but no ID, identified by chromosomal microarray analysis. These findings question the responsibility of ZNF674 deletions in ID associated with X-linked retinal dystrophy.
Collapse
Affiliation(s)
- Nathalie Delphin
- INSERM U781 - Department of Genetics/Fondation IMAGINE and Paris Descartes University, CHU Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One 2011; 6:e23021. [PMID: 21857984 PMCID: PMC3155520 DOI: 10.1371/journal.pone.0023021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 07/07/2011] [Indexed: 11/23/2022] Open
Abstract
Mutations in RPGR account for over 70% of X-linked retinitis pigmentosa (XlRP), characterized by retinal degeneration and eventual blindness. The clinical consequences of RPGR mutations are highly varied, even among individuals with the same mutation: males demonstrate a wide range of clinical severity, and female carriers may or may not be affected. This study describes the phenotypic diversity in a cohort of 98 affected males from 56 families with RPGR mutations, and demonstrates the contribution of genetic factors (i.e., allelic heterogeneity and genetic modifiers) to this diversity. Patients were categorized as grade 1 (mild), 2 (moderate) or 3 (severe) according to specific clinical criteria. Patient DNAs were genotyped for coding SNPs in 4 candidate modifier genes with products known to interact with RPGR protein: RPGRIP1, RPGRIP1L, CEP290, and IQCB1. Family-based association testing was performed using PLINK. A wide range of clinical severity was observed both between and within families. Patients with mutations in exons 1–14 were more severely affected than those with ORF15 mutations, and patients with predicted null alleles were more severely affected than those predicted to make RPGR protein. Two SNPs showed association with severe disease: the minor allele (N) of I393N in IQCB1 (p = 0.044) and the common allele (R) of R744Q in RPGRIP1L (p = 0.049). These data demonstrate that allelic heterogeneity contributes to phenotypic diversity in XlRP and suggest that this may depend on the presence or absence of RPGR protein. In addition, common variants in 2 proteins known to interact with RPGR are associated with severe disease in this cohort.
Collapse
|
80
|
Gene therapeutic approach using mutation-adapted U1 snRNA to correct a RPGR splice defect in patient-derived cells. Mol Ther 2011; 19:936-41. [PMID: 21326217 DOI: 10.1038/mt.2011.7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Retinitis pigmentosa (RP) is a disease that primarily affects the peripheral retina and ultimately causes visual impairment. X-chromosomal forms of RP are frequently caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We show that the novel splice donor site (SDS) mutation c.1245+3A>T in intron 10 of RPGR cosegregates with RP in a five-generation Caucasian family. The mutation causes in-frame skipping of exon 10 from RPGR transcripts in patient-derived primary fibroblasts. To correct the splice defect, we developed a gene therapeutic approach using mutation-adapted U1 small nuclear RNA (U1). U1 is required for SDS recognition of pre-mRNAs and initiates the splice process. The mutation described herein interferes with the recognition of the SDS by U1. To overcome the deleterious effects of the mutation, we generated four U1 isoforms with increasing complementarity to the SDS. Lentiviral particles were used to transduce patient-derived fibroblasts with these U1 variants. Full complementarity of U1 corrects the splice defect partially and increases recognition of the mutant SDS. The therapeutic effect is U1-concentration dependent as we show for endogenously expressed RPGR transcripts in patient-derived cells. U1-based gene therapeutic approaches constitute promising technologies to treat SDS mutations in inherited diseases including X-linked RP.
Collapse
|
81
|
Bowne SJ, Sullivan LS, Koboldt DC, Ding L, Fulton R, Abbott RM, Sodergren EJ, Birch DG, Wheaton DH, Heckenlively JR, Liu Q, Pierce EA, Weinstock GM, Daiger SP. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 2011; 52:494-503. [PMID: 20861475 DOI: 10.1167/iovs.10-6180] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine whether massively parallel next-generation DNA sequencing offers rapid and efficient detection of disease-causing mutations in patients with monogenic inherited diseases. Retinitis pigmentosa (RP) is a challenging application for this technology because it is a monogenic disease in individuals and families but is highly heterogeneous in patient populations. RP has multiple patterns of inheritance, with mutations in many genes for each inheritance pattern and numerous, distinct, disease-causing mutations at each locus; further, many RP genes have not been identified yet. METHODS Next-generation sequencing was used to identify mutations in pairs of affected individuals from 21 families with autosomal dominant RP, selected from a cohort of families without mutations in "common" RP genes. One thousand amplicons targeting 249,267 unique bases of 46 candidate genes were sequenced with the 454GS FLX Titanium (Roche Diagnostics, Indianapolis, IN) and GAIIx (Illumina/Solexa, San Diego, CA) platforms. RESULTS An average sequence depth of 70× and 125× was obtained for the 454GS FLX and GAIIx platforms, respectively. More than 9000 sequence variants were identified and analyzed, to assess the likelihood of pathogenicity. One hundred twelve of these were selected as likely candidates and tested for segregation with traditional di-deoxy capillary electrophoresis sequencing of additional family members and control subjects. Five disease-causing mutations (24%) were identified in the 21 families. CONCLUSION This project demonstrates that next-generation sequencing is an effective approach for detecting novel, rare mutations causing heterogeneous monogenic disorders such as RP. With the addition of this technology, disease-causing mutations can now be identified in 65% of autosomal dominant RP cases.
Collapse
Affiliation(s)
- Sara J Bowne
- Human Genetics Center, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Holopainen JM, Cheng CL, Molday LL, Johal G, Coleman J, Dyka F, Hii T, Ahn J, Molday RS. Interaction and localization of the retinitis pigmentosa protein RP2 and NSF in retinal photoreceptor cells. Biochemistry 2010; 49:7439-47. [PMID: 20669900 DOI: 10.1021/bi1005249] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RP2 is a ubiquitously expressed protein encoded by a gene associated with X-linked retinitis pigmentosa (XLRP), a retinal degenerative disease that causes severe vision loss. Previous in vitro studies have shown that RP2 binds to ADP ribosylation factor-like 3 (Arl3) and activates its intrinsic GTPase activity, but the function of RP2 in the retina, and in particular photoreceptor cells, remains unclear. To begin to define the role of RP2 in the retina and XLRP, we have conducted biochemical studies to identify proteins in retinal cell extracts that interact with RP2. Here, we show that RP2 interacts with N-ethylmaleimide sensitive factor (NSF) in retinal cells as well as cultured embryonic kidney (HEK293) cells by mass spectrometry-based proteomics and biochemical analysis. This interaction is mediated by the N-terminal domain of NSF. The E138G and DeltaI137 mutations of RP2 known to cause XLRP abolished the interaction of RP2 with the N-terminal domain of NSF. Immunofluorescence labeling studies further showed that RP2 colocalized with NSF in photoreceptors and other cells of the retina. Intense punctate staining of RP2 was observed close to the junction between the inner and outer segments beneath the connecting cilium, as well as within the synaptic region of rod and cone photoreceptors. Our studies indicate that RP2, in addition to serving as a regulator of Arl3, interacts with NSF, and this complex may play an important role in membrane protein trafficking in photoreceptors and other cells of the retina.
Collapse
Affiliation(s)
- Juha M Holopainen
- Department of Ophthalmology,University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Jayasundera T, Branham KEH, Othman M, Rhoades WR, Karoukis AJ, Khanna H, Swaroop A, Heckenlively JR. RP2 phenotype and pathogenetic correlations in X-linked retinitis pigmentosa. ACTA ACUST UNITED AC 2010; 128:915-23. [PMID: 20625056 DOI: 10.1001/archophthalmol.2010.122] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To assess the phenotype of patients with X-linked retinitis pigmentosa (XLRP) with RP2 mutations and to correlate the findings with their genotype. METHODS Six hundred eleven patients with RP were screened for RP2 mutations. From this screen, 18 patients with RP2 mutations were evaluated clinically with standardized electroretinography, Goldmann visual fields, and ocular examinations. In addition, 7 well-documented cases from the literature were used to augment genotype-phenotype correlations. RESULTS Of 11 boys younger than 12 years, 10 (91%) had macular involvement and 9 (82%) had best-corrected visual acuity worse than 20/50. Two boys from different families (aged 8 and 12 years) displayed a choroideremia-like fundus, and 9 boys (82%) were myopic (mean error, -7.97 diopters [D]). Of 10 patients with electroretinography data, 9 demonstrated severe rod-cone dysfunction. All 3 female carriers had macular atrophy in 1 or both eyes and were myopic (mean, -6.23 D). All 9 nonsense and frameshift and 5 of 7 missense mutations (71%) resulted in severe clinical presentations. CONCLUSIONS Screening of the RP2 gene should be prioritized in patients younger than 16 years characterized by X-linked inheritance, decreased best-corrected visual acuity (eg, >20/40), high myopia, and early-onset macular atrophy. Patients exhibiting a choroideremia-like fundus without choroideremia gene mutations should also be screened for RP2 mutations. CLINICAL RELEVANCE An identifiable phenotype for RP2-XLRP aids in clinical diagnosis and targeted genetic screening.
Collapse
Affiliation(s)
- Thiran Jayasundera
- Department of Ophthalmologyand Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Ji Y, Wang J, Xiao X, Li S, Guo X, Zhang Q. Mutations in RPGR and RP2 of Chinese Patients with X-Linked Retinitis Pigmentosa. Curr Eye Res 2009; 35:73-9. [DOI: 10.3109/02713680903395299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yanli Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Juan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
85
|
Veltel S, Wittinghofer A. RPGR and RP2: targets for the treatment of X-linked retinitis pigmentosa? Expert Opin Ther Targets 2009; 13:1239-51. [PMID: 19702441 DOI: 10.1517/14728220903225016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Retinitis pigmentosa is the most important hereditary eye disease and there is currently no cure available. Although mutations were found in more than 40 genes in patients with retinitis pigmentosa, only two genes have thus far been found to be responsible for one of the most severe forms of the disease, X-linked retinitis pigmentosa. In this review, we highlight the current knowledge about the two gene products RPGR and RP2 and try to link genetic data from patients with functional data on the corresponding proteins. Based on the fact that recent gene therapeutic approaches for eye diseases are at a very promising stage, we discuss the potential of RPGR and RP2 as drug targets to treat retinitis pigmentosa.
Collapse
Affiliation(s)
- Stefan Veltel
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto Hahn-Street 11, 44227 Dortmund, Germany
| | | |
Collapse
|
86
|
Abstract
PURPOSE To document the progression of disease in male and female members of a previously described family with X-linked dominant retinitis pigmentosa (RP) caused by a de novo insertion after nucleotide 173 in exon ORF15 of RPGR. METHODS The clinical records of 19 members of family UTAD054 were reviewed. Their evaluations consisted of confirmation of family history, standardised electroretinograms (ERGs), Goldmann visual fields, and periodic ophthalmological examinations over a 23-year period. RESULTS Male members of family UTAD054 had non-recordable to barely recordable ERGs from early childhood. The males showed contracted central fields and developed more severe retinopathy than the females. The female members showed a disease onset delayed to teenage years, recordable but diminishing photopic and scotopic ERG amplitudes in a cone-rod pattern, progressive loss and often asymmetric visual fields, and diffuse atrophic retinopathy with fewer pigment deposits compared with males. CONCLUSIONS This insertion mutation in the RPGR exon ORF15 is associated with a RP phenotype that severely affects males early and females by 30 years of age, and is highly penetrant in female members. Families with dominant-acting RPGR mutations may be mistaken to have an autosomal mode of inheritance resulting in an incorrect prediction of recurrence risk and prognosis. Broader recognition of X-linked RP forms with dominant inheritance is necessary to facilitate appropriate counselling of these patients.
Collapse
|
87
|
Abstract
PURPOSE OF REVIEW To introduce the issues specific to the genetic counseling profession for genetic eye diseases. RECENT FINDINGS To discuss current issues in ocular genetic counseling including the use of a focused ophthalmology pedigree, informed consent in the blind population, genetic testing trends and psychosocial issues. SUMMARY Introduce the time-consuming issues to be addressed in genetic counseling for genetic eye disease patients.
Collapse
|
88
|
Beltran WA, Acland GM, Aguirre GD. Age-dependent disease expression determines remodeling of the retinal mosaic in carriers of RPGR exon ORF15 mutations. Invest Ophthalmol Vis Sci 2009; 50:3985-95. [PMID: 19255154 DOI: 10.1167/iovs.08-3364] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize the retinal histopathology in carriers of X-linked progressive retinal atrophy (XLPRA1 and XLPRA2), two canine models of X-linked retinitis pigmentosa caused, respectively, by a stop and a frameshift mutation in RPGRORF15. METHODS Retinas of XLPRA2 and XLPRA1 carriers of different ages were processed for morphologic evaluation, TUNEL assay, and immunohistochemistry. Cell-specific markers were used to examine retinal remodeling events. RESULTS A mosaic pattern composed of patches of diseased and normal retina was first detected in XLPRA2 carriers at 4.9 weeks of age. A peak of photoreceptor cell death led to focal rod loss; however, in these patches an increased density of cones was found to persist over time. Patches of disease gradually disappeared so that by 39 weeks of age the overall retinal morphology, albeit thinner, had improved lamination. In older XLPRA2 carriers (>or=8.8 years), extended regions of severe degeneration occurred in the peripheral/mid-peripheral retina. In XLPRA1 carriers, opsin mislocalization and rare events of rod death were detected by TUNEL assay at 20 weeks of age; however, only patchy degeneration was seen by 1.4 years and was still apparent at 7.8 years. CONCLUSIONS The time of onset and the progression of the disease differed between the two models. In the early-onset form (XLPRA2) the morphologic appearance of the retinal mosaic changed as a function of age, suggesting that structural plasticity persists in the early postnatal canine retina as mutant photoreceptors die. In the late-onset form (XLPRA1), patches of disease persisted until later ages.
Collapse
Affiliation(s)
- William A Beltran
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104,
| | | | | |
Collapse
|
89
|
Al-Maskari A, O'grady A, Pal B, McKibbin M. Phenotypic progression in X-linked retinitis pigmentosa secondary to a novel mutation in the RPGR gene. Eye (Lond) 2009; 23:519-21. [PMID: 19218993 DOI: 10.1038/eye.2008.427] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To report phenotypic progression for a novel mutation in the RPGRgene causing X-linked retinitis pigmentosa (RP), and describe the phenotype in affected males and females. METHODS Bidirectional fluorescent sequencing analysis was used to screen for mutations in RPGR. Five affected males and eight affected females from two English families underwent refraction, ETDRS visual acuity, OCT imaging, and Goldmann visual field testing. RESULTS DNA analysis identified a novel c.350G>A sequence change in exon 5 of RPGR. The change segregated with disease in both families. For affected males there was a significant correlation between age and visual acuity (r=-0.91, P=0.034), and a non-significant correlation between age and visual field area (r=-0.56, P=0.4). For affected females, there was a significant correlation between age and visual acuity (r=-0.8, P=0.018), and between age and visual field area (r=-0.94, P=0.005). All affected females were highly myopic. No correlation between retinal thickness, and either age or sex was noted. CONCLUSION This novel mutation in RPGRcauses X-Linked RP with complete penetrance in males and females. Affected females are highly myopic but retain better visual function than affected males. The phenotypic data can be used to provide a mutation-specific visual prognosis, and may also help recognition of the genotype.
Collapse
Affiliation(s)
- A Al-Maskari
- Department of Ophthalmology, St James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|
90
|
Shu X, McDowall E, Brown AF, Wright AF. The human retinitis pigmentosa GTPase regulator gene variant database. Hum Mutat 2008; 29:605-8. [DOI: 10.1002/humu.20733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
91
|
Jin ZB, Gu F, Matsuda H, Yukawa N, Ma X, Nao-i N. Somatic and gonadal mosaicism in X-linked retinitis pigmentosa. Am J Med Genet A 2008; 143A:2544-8. [PMID: 17935240 DOI: 10.1002/ajmg.a.31984] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The g.ORF15 + 652-653delAG mutation in the RPGR gene is the most frequent mutation in X-linked retinitis pigmentosa (XLRP). The objective of this study was to investigate the possibility of mosaicism in an XLRP family. Eight subjects in the RP family were recruited. Blood samples were collected for DNA extraction. Haplotype analysis and mutational screening on the RPGR gene were performed. Additionally, samples of hair follicles and buccal cells from the mother of the proband were acquired for DNA extraction and molecular analysis. Phenotype was characterized with routine ophthalmic examination, Goldmann perimetry, electroretinography, and color fundus photography. A g.ORF15 + 652-653delAG mutation was identified in second- and third-generation patients/carriers. A first-generation female, who was considered to be an obligate carrier, demonstrated a normal phenotype as well as a normal genotype in lymphocytic DNA, indicating the gonadal mosaicism; however, a heterozygous AG-deletion at nucleotide 652 and 653 was identified in the genomic DNA of hair follicles, hair shaft, and buccal cells, indicating that the mutation is somatic. In conclusion, we reported on a family in which an asymptomatic woman with somatic-gonadal mosaicism for a RPGR gene mutation transmitted the mutation to an asymptomatic daughter and to a son with XLRP. Gonadal mosaicism may be responsible for a proportion of multiplex or simplex RP families, in which more than 50% of all cases of RP are found. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Department of Ophthalmology & Visual Science, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
92
|
Shu X, Black GC, Rice JM, Hart-Holden N, Jones A, O'Grady A, Ramsden S, Wright AF. RPGRmutation analysis and disease: an update. Hum Mutat 2007; 28:322-8. [PMID: 17195164 DOI: 10.1002/humu.20461] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene are the most common single cause of retinitis pigmentosa, accounting for up to 15 to 20% of cases in Caucasians. A total of 240 different RPGR mutations have been reported, including 24 novel ones in this work, which are associated with X-linked retinitis pigmentosa (XLRP) (95%), cone, cone-rod dystrophy, or atrophic macular atrophy (3%), and syndromal retinal dystrophies with ciliary dyskinesia and hearing loss (2%). All disease-causing mutations occur in one or more RPGR isoforms containing the carboxyl-terminal exon open reading frame 15 (ORF15), which are widely expressed but show their highest expression in the connecting cilia of rod and cone photoreceptors. Of reported RPGR mutations, 55% occur in a glutamic acid-rich domain within exon ORF15, which accounts for only 31% of the protein. RPGR forms complexes with a variety of other proteins and appears to have a role in microtubular organization and transport between photoreceptor inner and outer segments.
Collapse
Affiliation(s)
- Xinhua Shu
- Medical Research Council Human Genetics Unit, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. ACTA ACUST UNITED AC 2007; 125:151-8. [PMID: 17296890 PMCID: PMC2580741 DOI: 10.1001/archopht.125.2.151] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exceptional progress has been made during the past two decades in identifying genes causing inherited retinal diseases such as retinitis pigmentosa. An inescapable consequence is that the relationship between genes, mutations, and clinical findings has become very complex. Success in identifying the causes of inherited retinal diseases has many implications, including a better understanding of the biological basis of vision and insights into the processes involved in retinal pathology. From a clinical point of view, there are two important questions arising from these developments: where do we stand today in finding disease-causing mutations in affected individuals, and what are the implications of this information for clinical practice? This perspective addresses these questions specifically for retinitis pigmentosa, but the observations apply generally to other forms of inherited eye disease.
Collapse
Affiliation(s)
- Stephen P Daiger
- Department of Ophthalmology and Visual Science, School of Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|