51
|
Di Donato N, Riess A, Hackmann K, Rump A, Huebner A, von der Hagen M, Hahn G, Schrock E, Tinschert S. Macrocephaly, obesity, mental (intellectual) disability, and ocular abnormalities: alternative definition and further delineation of MOMO syndrome. Am J Med Genet A 2012; 158A:2857-62. [PMID: 22821547 DOI: 10.1002/ajmg.a.35481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/19/2012] [Indexed: 11/08/2022]
Abstract
MOMO syndrome, previously defined as Macrosomia, Obesity, Macrocephaly, and Ocular abnormalities (OMIM 157980) is a rare intellectual disability syndrome of unknown cause. We describe two further patients with MOMO syndrome. Reported data of patients with MOMO syndrome and our own findings indicate that overgrowth does not appear to be a specific feature. We propose to form the acronym "MOMO" from Macrocephaly, Obesity, Mental (intellectual) disability, and Ocular abnormalities, excluding macrosomia from the syndrome name. The combination of obesity, macrocephaly, and colobomas is unique, therefore these features can be used as major diagnostic criteria of MOMO syndrome.
Collapse
Affiliation(s)
- N Di Donato
- Institute of Clinical Genetics, Technical University Dresden, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
|
53
|
Abstract
BACKGROUND Chromosome microarray (CMA) testing allows automatic and easy identification of large chromosomal abnormalities detectable by conventional cytogenetics as well as the detection of submicroscopic chromosomal imbalances. METHODS A PubMed search was performed in order to review the current use of CMA testing in the field of human reproduction. Articles discussing the use of CMA in the preimplantation setting, ongoing pregnancies, miscarriages and patients with reproductive disorders were considered. RESULTS A high rate of concordance between conventional methods of detecting chromosomal abnormalities [e.g. fluorescence in situ hybridization (FISH), karyotyping] and CMA was reported in the prenatal setting with CMA providing more comprehensive and detailed results as it investigates the whole genome at higher resolution. In preimplantation genetic screening, CMA is replacing FISH and the selection of embryos based on CMA has already resulted in live births. For ongoing pregnancies and miscarriages, CMA eliminates tissue culture failures and artifacts and allows a quick turnaround time. The detection of submicroscopic imbalances [or copy number variants (CNVs)] is beneficial when the imbalance has a clear clinical consequence but is challenging for previously undescribed imbalances, particularly for ongoing pregnancies. Recurrent CNVs have been documented in patients with reproductive disorders; however, the application of CMA in this field is still limited. CONCLUSIONS CMA enhances reproductive medicine as it facilitates better understanding of the genetic aspects of human development and reproduction and more informed patient management. Further clinical validation of CMA in the prenatal setting, creation of practice guidelines and catalogs of newly discovered submicroscopic imbalances with clinical outcomes are areas that will require attention in the future.
Collapse
Affiliation(s)
- Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine (Cytogenetics), University of British Columbia, Children's and Women's Health Centre of BC and Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4.
| |
Collapse
|
54
|
Neuhann T, Müller D, Hackmann K, Holzinger S, Schrock E, Di Donato N. A further patient with van Maldergem syndrome. Eur J Med Genet 2012; 55:423-8. [DOI: 10.1016/j.ejmg.2012.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
|
55
|
Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants. Eur J Med Genet 2012; 55:577-85. [PMID: 22659343 DOI: 10.1016/j.ejmg.2012.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/19/2012] [Accepted: 05/20/2012] [Indexed: 12/18/2022]
Abstract
Genome-wide array comparative genome hybridization has become the first in line diagnostic tool in the clinical work-up of patients presenting with intellectual disability. As a result, chromosome X-copy number variations are frequently being detected in routine diagnostics. We retrospectively reviewed genome wide array-CGH data in order to determine the frequency and nature of chromosome X-copy number variations (X-CNV) in a cohort of 2222 sporadic male patients with intellectual disability (ID) referred to us for diagnosis. In this cohort, 68 males were found to have at least one X-CNV (3.1%). However, correct interpretation of causality remains a challenging task, and is essential for proper counseling, especially when the CNV is inherited. On the basis of these data, earlier experience and literature data we designed and propose an algorithm that can be used to evaluate the clinical relevance of X-CNVs detected in sporadic male ID patients. Applied to our cohort, 19 male ID patients (0.85%) were found to carry a (likely) pathogenic X-CNV.
Collapse
|
56
|
Mancini TI, Oliveira MM, Dutra ARN, Perez ABA, Minillo RM, Takeno SS, Melaragno MI. Interstitial 4q Deletion and Isodicentric Y-Chromosome in a Patient with Dysmorphic Features. Mol Syndromol 2012; 3:39-43. [PMID: 22855654 DOI: 10.1159/000338468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2012] [Indexed: 12/12/2022] Open
Abstract
We present a 2-year-old boy with a de novo 46,XY,idic(Y)(q11.221),del(4)(q26q31.1) karyotype. G-banding, FISH, MLPA, and SNP-array techniques were used to characterize the 24-Mb deletion in 4q and the breakpoint in the isodicentric Y-chromosome region between 15,982,252 and 15,989,842 bp. The patient presented with mild facial dysmorphism, hemangioma, mild frontal cerebral atrophy, and Dandy-Walker variant. Essentially, this case reveals that patients can present more complex genomic imbalances than initially suspected.
Collapse
Affiliation(s)
- T I Mancini
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
57
|
Gálvez-Peralta M, He L, Jorge-Nebert LF, Wang B, Miller ML, Eppert BL, Afton S, Nebert DW. ZIP8 zinc transporter: indispensable role for both multiple-organ organogenesis and hematopoiesis in utero. PLoS One 2012; 7:e36055. [PMID: 22563477 PMCID: PMC3341399 DOI: 10.1371/journal.pone.0036055] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 03/29/2012] [Indexed: 02/06/2023] Open
Abstract
Previously this laboratory characterized Slc39a8-encoded ZIP8 as a Zn(2+)/(HCO(3)(-))(2) symporter; yet, the overall physiological importance of ZIP8 at the whole-organism level remains unclear. Herein we describe the phenotype of the hypomorphic Slc39a8(neo/neo) mouse which has retained the neomycin-resistance gene in intron 3, hence causing significantly decreased ZIP8 mRNA and protein levels in embryo, fetus, placenta, yolk sac, and several tissues of neonates. The Slc39a8(neo) allele is associated with diminished zinc and iron uptake in mouse fetal fibroblast and liver-derived cultures; consequently, Slc39a8(neo/neo) newborns exhibit diminished zinc and iron levels in several tissues. Slc39a8(neo/neo) homozygotes from gestational day(GD)-11.5 onward are pale, growth-stunted, and die between GD18.5 and 48 h postnatally. Defects include: severely hypoplastic spleen; hypoplasia of liver, kidney, lung, and lower limbs. Histologically, Slc39a8(neo/neo) neonates show decreased numbers of hematopoietic islands in yolk sac and liver. Low hemoglobin, hematocrit, red cell count, serum iron, and total iron-binding capacity confirmed severe anemia. Flow cytometry of fetal liver cells revealed the erythroid series strikingly affected in the hypomorph. Zinc-dependent 5-aminolevulinic acid dehydratase, required for heme synthesis, was not different between Slc39a8(+/+) and Slc39a8(neo/neo) offspring. To demonstrate further that the mouse phenotype is due to ZIP8 deficiency, we bred Slc39a8(+/neo) with BAC-transgenic BTZIP8-3 line (carrying three extra copies of the Slc39a8 allele); this cross generated viable Slc39a8(neo/neo)_BTZIP8-3(+/+) pups showing none of the above-mentioned congenital defects-proving Slc39a8(neo/neo) causes the described phenotype. Our study demonstrates that ZIP8-mediated zinc transport plays an unappreciated critical role during in utero and neonatal growth, organ morphogenesis, and hematopoiesis.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Biological Transport
- Blotting, Western
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Cation Transport Proteins/physiology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/metabolism
- Gene Expression Regulation, Developmental
- Hematopoiesis/genetics
- Hematopoiesis/physiology
- Liver/cytology
- Liver/embryology
- Liver/metabolism
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Organogenesis/genetics
- Organogenesis/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Yolk Sac/embryology
- Yolk Sac/metabolism
- Zinc/metabolism
Collapse
Affiliation(s)
- Marina Gálvez-Peralta
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Lei He
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Lucia F. Jorge-Nebert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Bin Wang
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Marian L. Miller
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Bryan L. Eppert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
| | - Scott Afton
- Department of Chemistry, University Cincinnati School of Arts and Sciences, Cincinnati, Ohio, United States of America
| | - Daniel W. Nebert
- Department of Environmental Health, and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
58
|
Gong X, Jiang YW, Zhang X, An Y, Zhang J, Wu Y, Wang J, Sun Y, Liu Y, Gao X, Shen Y, Wu X, Qiu Z, Jin L, Wu BL, Wang H. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability. PLoS One 2012; 7:e34739. [PMID: 22509352 PMCID: PMC3324537 DOI: 10.1371/journal.pone.0034739] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability (ID) is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC) test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%), while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT) or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.
Collapse
Affiliation(s)
- Xiaohong Gong
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xin Zhang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu An
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Children's Hospital of Fudan University, Shanghai, China
| | - Jun Zhang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Institute and Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yangfei Sun
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyan Liu
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuewu Gao
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiping Shen
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zilong Qiu
- Institute of Neuroscience, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Jin
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Bai-Lin Wu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Children's Hospital of Fudan University, Shanghai, China
- * E-mail: (BW); (HW)
| | - Hongyan Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (BW); (HW)
| |
Collapse
|
59
|
Lubs HA, Stevenson RE, Schwartz CE. Fragile X and X-linked intellectual disability: four decades of discovery. Am J Hum Genet 2012; 90:579-90. [PMID: 22482801 DOI: 10.1016/j.ajhg.2012.02.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/03/2012] [Accepted: 02/17/2012] [Indexed: 01/18/2023] Open
Abstract
X-Linked intellectual disability (XLID) accounts for 5%-10% of intellectual disability in males. Over 150 syndromes, the most common of which is the fragile X syndrome, have been described. A large number of families with nonsyndromal XLID, 95 of which have been regionally mapped, have been described as well. Mutations in 102 X-linked genes have been associated with 81 of these XLID syndromes and with 35 of the regionally mapped families with nonsyndromal XLID. Identification of these genes has enabled considerable reclassification and better understanding of the biological basis of XLID. At the same time, it has improved the clinical diagnosis of XLID and allowed for carrier detection and prevention strategies through gamete donation, prenatal diagnosis, and genetic counseling. Progress in delineating XLID has far outpaced the efforts to understand the genetic basis for autosomal intellectual disability. In large measure, this has been because of the relative ease of identifying families with XLID and finding the responsible mutations, as well as the determined and interactive efforts of a small group of researchers worldwide.
Collapse
Affiliation(s)
- Herbert A Lubs
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | | | | |
Collapse
|
60
|
Filges I, Suda L, Weber P, Datta AN, Fischer D, Dill P, Glanzmann R, Benzing J, Hegi L, Wenzel F, Huber AR, Mori AC, Miny P, Röthlisberger B. High resolution array in the clinical approach to chromosomal phenotypes. Gene 2012; 495:163-9. [PMID: 22240311 DOI: 10.1016/j.gene.2011.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Array genomic hybridization (AGH) has recently been implemented as a diagnostic tool for the detection of submicroscopic copy number variants (CNVs) in patients with developmental disorders. However, there is no consensus regarding the choice of the platform, the minimal resolution needed and systematic interpretation of CNVs. We report our experience in the clinical diagnostic use of high resolution AGH up to 100 kb on 131 patients with chromosomal phenotypes but previously normal karyotype. We evaluated the usefulness in our clinics and laboratories by the detection rate of causal CNVs and CNVs of unknown clinical significance and to what extent their interpretation would challenge the systematic use of high-resolution arrays in clinical application. Prioritizing phenotype-genotype correlation in our interpretation strategy to criteria previously described, we identified 33 (25.2%) potentially pathogenic aberrations. 16 aberrations were confirmed pathogenic (16.4% syndromic, 8.5% non-syndromic patients); 9 were new and individual aberrations, 3 of them were pathogenic although inherited and one is as small as approx 200 kb. 13 of 16 further CNVs of unknown significance were classified likely benign, for 3 the significance remained unclear. High resolution array allows the detection of up to 12.2% of pathogenic aberrations in a diagnostic clinical setting. Although the majority of aberrations are larger, the detection of small causal aberrations may be relevant for family counseling. The number of remaining unclear CNVs is limited. Careful phenotype-genotype correlations of the individual CNVs and clinical features are challenging but remain a hallmark for CNV interpretation.
Collapse
|
61
|
Hryshchenko NV, Bychkova GM, Livshyts GB, Kravchenko SA, Pampukha VM, Soloviov OO, Kucherenko AM, Tatarskyy PF, Afanasieva NO, Dubrovska IV, Patskun EJ, Zymak-Zakutnia NO, Nikitchina TV, Lohush SY, Livshits LA. Clinical genealogical and molecular genetic study of patients with mental retardation. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
62
|
Verloes A, Héron D, Billette de Villemeur T, Afenjar A, Baumann C, Bahi-Buisson N, Charles P, Faudet A, Jacquette A, Mignot C, Moutard ML, Passemard S, Rio M, Robel L, Rougeot C, Ville D, Burglen L, des Portes V. Stratégie d’exploration d’une déficience intellectuelle inexpliquée. Arch Pediatr 2012; 19:194-207. [DOI: 10.1016/j.arcped.2011.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 02/07/2023]
|
63
|
Galizia EC, Srikantha M, Palmer R, Waters JJ, Lench N, Ogilvie CM, Kasperavičiūtė D, Nashef L, Sisodiya SM. Array comparative genomic hybridization: results from an adult population with drug-resistant epilepsy and co-morbidities. Eur J Med Genet 2012; 55:342-8. [PMID: 22342432 PMCID: PMC3526772 DOI: 10.1016/j.ejmg.2011.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/27/2011] [Indexed: 01/15/2023]
Abstract
Background The emergence of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated recognition of microdeletions and microduplications as risk factors for both generalised and focal epilepsies. Furthermore, there is evidence that some microdeletions/duplications, such as the 15q13.3 deletion predispose to a range of neuropsychiatric disorders, including intellectual disability (ID), autism, schizophrenia and epilepsy. We hypothesised that array CGH would reveal relevant findings in an adult patient group with epilepsy and complex phenotypes. Methods 82 patients (54 from the National Hospital for Neurology and Neurosurgery and 28 from King’s College Hospital) with drug-resistant epilepsy and co-morbidities had array CGH. Separate clinicians ordered array CGH and separate platforms were used at the two sites. Results In the two independent groups we identified copy number variants judged to be of pathogenic significance in 13.5% (7/52) and 20% (5/25) respectively, noting that slightly different selection criteria were used, giving an overall yield of 15.6%. Sixty-nine variants of unknown significance were also identified in the group from the National Hospital for Neurology and Neurosurgery and 5 from the King’s College Hospital patient group. Conclusion We conclude that array CGH be considered an important investigation in adults with complicated epilepsy and, at least at present for selected patients, should join the diagnostic repertoire of clinical history and examination, neuroimaging, electroencephalography and other indicated investigations in generating a more complete formulation of an individual’s epilepsy.
Collapse
Affiliation(s)
- Elizabeth C Galizia
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
Array-based genome-wide segmental aneuploidy screening detects both de novo and inherited copy number variations (CNVs). In sporadic patients de novo CNVs are interpreted as potentially pathogenic. However, a deletion, transmitted from a healthy parent, may be pathogenic if it overlaps with a mutated second allele inherited from the other healthy parent. To detect such events, we performed multiplex enrichment and next-generation sequencing of the entire coding sequence of all genes within unique hemizygous deletion regions in 20 patients (1.53 Mb capture footprint). Out of the detected 703 non-synonymous single-nucleotide variants (SNVs), 8 represented variants being unmasked by a hemizygous deletion. Although evaluation of inheritance patterns, Grantham matrix scores, evolutionary conservation and bioinformatic predictions did not consistently indicate pathogenicity of these variants, no definitive conclusions can be drawn without functional validation. However, in one patient with severe mental retardation, lack of speech, microcephaly, cheilognathopalatoschisis and bilateral hearing loss, we discovered a second smaller deletion, inherited from the other healthy parent, resulting in loss of both alleles of the highly conserved heat shock factor binding protein 1 (HSBP1) gene. Conceivably, inherited deletions may unmask rare pathogenic variants that may exert a phenotypic impact through a recessive mode of gene action.
Collapse
|
65
|
Carrera N, Arrojo M, Sanjuán J, Ramos-Ríos R, Paz E, Suárez-Rama JJ, Páramo M, Agra S, Brenlla J, Martínez S, Rivero O, Collier DA, Palotie A, Cichon S, Nöthen MM, Rietschel M, Rujescu D, Stefansson H, Steinberg S, Sigurdsson E, St Clair D, Tosato S, Werge T, Stefansson K, González JC, Valero J, Gutiérrez-Zotes A, Labad A, Martorell L, Vilella E, Carracedo Á, Costas J. Association study of nonsynonymous single nucleotide polymorphisms in schizophrenia. Biol Psychiatry 2012; 71:169-77. [PMID: 22078303 DOI: 10.1016/j.biopsych.2011.09.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 08/19/2011] [Accepted: 09/06/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Genome-wide association studies using several hundred thousand anonymous markers present limited statistical power. Alternatively, association studies restricted to common nonsynonymous single nucleotide polymorphisms (nsSNPs) have the advantage of strongly reducing the multiple testing problem, while increasing the probability of testing functional single nucleotide polymorphisms (SNPs). METHODS We performed a case-control association study of common nsSNPs in Galician (northwest Spain) samples using the Affymetrix GeneChip Human 20k cSNP Kit, followed by a replication study of the more promising results. After quality control procedures, the discovery sample consisted of 5100 nsSNPs at minor allele frequency >5% analyzed in 476 schizophrenia patients and 447 control subjects. The replication sample consisted of 4069 cases and 15,128 control subjects of European origin. We also performed multilocus analysis, using aggregated scores of nsSNPs at liberal significance thresholds and cross-validation procedures. RESULTS The 5 independent nsSNPs with false discovery rate q ≤ .25, as well as 13 additional nsSNPs at p < .01 and located in functional candidate genes, were genotyped in the replication samples. One SNP, rs13107325, located at the metal ions transporter gene SLC39A8, reached significance in the combined sample after Bonferroni correction (trend test, p = 2.7 × 10(-6), allelic odds ratio = 1.32). This SNP presents minor allele frequency of 5% to 10% in many European populations but is rare outside Europe. We also confirmed the polygenic component of susceptibility. CONCLUSIONS Taking into account that another metal ions transporter gene, SLC39A3, is associated to bipolar disorder, our findings reveal a role for brain metal homeostasis in psychosis.
Collapse
Affiliation(s)
- Noa Carrera
- Fundación Pública Galega de Medicina Xenómica-SERGAS, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Delahaye A, Bitoun P, Drunat S, Gérard-Blanluet M, Chassaing N, Toutain A, Verloes A, Gatelais F, Legendre M, Faivre L, Passemard S, Aboura A, Kaltenbach S, Quentin S, Dupont C, Tabet AC, Amselem S, Elion J, Gressens P, Pipiras E, Benzacken B. Genomic imbalances detected by array-CGH in patients with syndromal ocular developmental anomalies. Eur J Hum Genet 2012; 20:527-33. [PMID: 22234157 DOI: 10.1038/ejhg.2011.233] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In 65 patients, who had unexplained ocular developmental anomalies (ODAs) with at least one other birth defect and/or intellectual disability, we performed oligonucleotide comparative genome hybridisation-based microarray analysis (array-CGH; 105A or 180K, Agilent Technologies). In four patients, array-CGH identified clinically relevant deletions encompassing a gene known to be involved in ocular development (FOXC1 or OTX2). In four other patients, we found three pathogenic deletions not classically associated with abnormal ocular morphogenesis, namely, del(17)(p13.3p13.3), del(10)(p14p15.3), and del(16)(p11.2p11.2). We also detected copy number variations of uncertain pathogenicity in two other patients. Rearranged segments ranged in size from 0.04 to 5.68 Mb. These results show that array-CGH provides a high diagnostic yield (15%) in patients with syndromal ODAs and can identify previously unknown chromosomal regions associated with these conditions. In addition to their importance for diagnosis and genetic counselling, these data may help identify genes involved in ocular development.
Collapse
Affiliation(s)
- Andrée Delahaye
- AP-HP, Hôpital Jean Verdier, Service d'Histologie, Embryologie, et Cytogénétique, Bondy, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
The genetic causes of mental retardation are highly heterogeneous and for a large proportion unknown. Mutations as well as large chromosomal abnormalities are known to contribute to mental retardation, and recently more subtle structural genomic variations have been shown to contribute significantly to this common and complex disorder. Genomic microarrays with increasing resolution levels have revealed the presence of rare de novo CNVs in approximately 15% of all mentally retarded patients. Microarray-based CNV screening is rapidly replacing conventional karyotyping in the diagnostic workflow, resulting in an increased diagnostic yield as well as biological insight into this disorder. In this chapter, an overview is given of the detection and interpretation of copy number variations in mental retardation, with a focus on diagnostic applications. In addition, a detailed protocol is provided for the diagnostic interpretation of copy-number variations in mental retardation.
Collapse
Affiliation(s)
- Rolph Pfundt
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | |
Collapse
|
68
|
Gijsbers ACJ, Schoumans J, Ruivenkamp CAL. Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 2011; 135:222-7. [PMID: 22086107 DOI: 10.1159/000334066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.
Collapse
Affiliation(s)
- A C J Gijsbers
- Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
69
|
Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics. Eur J Hum Genet 2011; 20:161-5. [PMID: 21934709 DOI: 10.1038/ejhg.2011.174] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P < 0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient.
Collapse
|
70
|
Breckpot J, Thienpont B, Arens Y, Tranchevent L, Vermeesch J, Moreau Y, Gewillig M, Devriendt K. Challenges of Interpreting Copy Number Variation in Syndromic and Non-Syndromic Congenital Heart Defects. Cytogenet Genome Res 2011; 135:251-9. [DOI: 10.1159/000331272] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
71
|
Tyshchenko N, Neuhann T, Gerlach E, Hahn G, Heisch K, Rump A, Schrock E, Tinschert S, Hackmann K. A new autosomal dominant syndrome of distinctive face showing ptosis and prominent eyes associated with cleft palate, ear anomalies, and learning disability. Am J Med Genet A 2011; 155A:2060-5. [DOI: 10.1002/ajmg.a.34159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/26/2011] [Indexed: 11/08/2022]
|
72
|
Simons A, Stevens-Kroef M, Idrissi-Zaynoun NE, van Gessel S, Weghuis DO, van den Berg E, Waanders E, Hoogerbrugge P, Kuiper R, van Kessel AG. Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2011; 50:969-81. [DOI: 10.1002/gcc.20919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
|
73
|
Liu WW, Gao YX, Zhou LP, Duan A, Tan LL, Li WZ, Yan M, Yang HY, Yan SL, Wang MQ, Ding WJ. Observations on Copy Number Variations in a Kidney-yang Deficiency Syndrome Family. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:548358. [PMID: 21811512 PMCID: PMC3136678 DOI: 10.1093/ecam/neq069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/19/2010] [Indexed: 11/17/2022]
Abstract
We have performed an analysis of a family with kidney-yang deficiency syndrome (KDS) in order to determine the structural genomic variations through a novel approach designated as “copy number variants” (CNVs). Twelve KDS subjects and three healthy spouses from this family were included in this study. Genomic DNA samples were genotyped utilizing an Affymetrix 100 K single nucleotide polymorphism array, and CNVs were identified by Copy Number Algorithm (CNAT4.0, Affymetrix). Our results demonstrate that 447 deleted and 476 duplicated CNVs are shared among KDS subjects within the family. The homologus ratio of deleted CNVs was as high as 99.78%. One-copy-duplicated CNVs display mid-range homology. For two copies of duplicated CNVs (CNV4), a markedly heterologous ratio was observed. Therefore, with the important exception of CNV4, our data shows that CNVs shared among KDS subjects display typical Mendelian inheritance. A total of 113 genes with established functions were identified from the CNV flanks; significantly enriched genes surrounding CNVs may contribute to certain adaptive benefit. These genes could be classified into categories including: binding and transporter, cell cycle, signal transduction, biogenesis, nerve development, metabolism regulation and immune response. They can also be included into three pathways, that is, signal transduction, metabolic processes and immunological networks. Particularly, the results reported here are consistent with the extensive impairments observed in KDS patients, involving the mass-energy-information-carrying network. In conclusion, this article provides the first set of CNVs from KDS patients that will facilitate our further understanding of the genetic basis of KDS and will allow novel strategies for a rational therapy of this disease.
Collapse
Affiliation(s)
- Wei Wei Liu
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Balikova I, de Ravel T, Ayuso C, Thienpont B, Casteels I, Villaverde C, Devriendt K, Fryns JP, Vermeesch JR. High frequency of submicroscopic chromosomal deletions in patients with idiopathic congenital eye malformations. Am J Ophthalmol 2011; 151:1087-1094.e45. [PMID: 21353197 DOI: 10.1016/j.ajo.2010.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the clinical usefulness of the array comparative genomic hybridization technique for the genetic analysis of patients with congenital ocular malformations. DESIGN Laboratory investigation. METHODS This was a multicenter study. Samples were collected from 37 patients with negative results for the routine diagnostic work-up, including normal karyotype and mutation analysis of appropriate genes. Samples from both parents also were tested. High-resolution genome-wide Agilent 244K oligoarray (Agilent Technologies) was applied. Confirmation of the results was obtained with independent techniques. RESULTS Causal deletions were identified in 5 (13%) patients, affecting OTX2, FOXC1 and VPS13B (COH1), the downstream regulatory region of PAX6, and a 1,5 Megabases de novo deletion on chromosome 16. CONCLUSIONS This high frequency of causal submicroscopic chromosomal aberrations in patients with congenital ocular malformation warrants implementation of array comparative genomic hybridization in the diagnostic work-up of these patients. Moreover, this screening technique broadens the phenotypic and mutational spectrum associated with genes known to cause congenital ocular malformation.
Collapse
|
75
|
Vermeesch JR, Balikova I, Schrander-Stumpel C, Fryns JP, Devriendt K. The causality of de novo copy number variants is overestimated. Eur J Hum Genet 2011; 19:1112-3. [PMID: 21587321 DOI: 10.1038/ejhg.2011.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
76
|
Abstract
Array technology, here termed molecular karyotyping, is an attractive alternative to conventional karyotyping for prenatal diagnosis given the increase in resolution as well as faster report times. We review the benefits and limitations of this technique for the detection of pathogenic genomic imbalances, address the challenges raised in the interpretation of copy number variations, discuss practical considerations for the routine implementation of molecular karyotyping in prenatal diagnosis, and identify areas where more research is desired to enable large scale introduction of the technique(s).
Collapse
|
77
|
Rooms L, Vandeweyer G, Reyniers E, van Mol K, de Canck I, Van der Aa N, Rossau R, Kooy RF. Array-based MLPA to detect recurrent copy number variations in patients with idiopathic mental retardation. Am J Med Genet A 2011; 155A:343-8. [PMID: 21271651 DOI: 10.1002/ajmg.a.33810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 10/03/2010] [Indexed: 02/04/2023]
Abstract
Microdeletions, either subtelomeric or interstitial, are responsible for the mental handicap in approximately 10-20% of all patients. Currently, Multiplex Ligation-dependent Probe Amplification (MLPA) is widely used to detect these small aberrations in a routine fashion. Although cost-effective, the throughput is low and the degree of multiplexing is limited to maximally 40-50 probes. Therefore, we developed an array-based MLPA method, with probes identified by unique tag sequences, allowing the simultaneous analysis of 180 probes in a single experiment thereby covering all known mental retardation loci with at least two probes. We screened 120 patients with idiopathic mental retardation. In this group we detected 6 aberrations giving a detection rate of 5%, consistent with similar studies. In addition we tested 293 patients with mental retardation who were negative for fragile X syndrome and commercially available subtelomeric MLPA. We found seven causative rearrangements in this group (detection rate of 2.4%) thereby illustrating the value of including probes for interstitial microdeletion syndromes and additional probes in the telomeric regions in targeted screening sets for mental retardation. Array-based MLPA may thus be a good candidate to develop probe sets that rapidly detect copy number changes of disease associated loci in the human genome. This method may become a valuable tool in a routine diagnostic setting as it is a fast, user-friendly and relatively low-cost technique providing straightforward results requiring only 125 ng of genomic DNA.
Collapse
Affiliation(s)
- Liesbeth Rooms
- Department of Medical Genetics, University of Antwerp and University Hospital, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Vandeweyer G, Reyniers E, Wuyts W, Rooms L, Kooy RF. CNV-WebStore: online CNV analysis, storage and interpretation. BMC Bioinformatics 2011; 12:4. [PMID: 21208430 PMCID: PMC3024943 DOI: 10.1186/1471-2105-12-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/05/2011] [Indexed: 02/02/2023] Open
Abstract
Background Microarray technology allows the analysis of genomic aberrations at an ever increasing resolution, making functional interpretation of these vast amounts of data the main bottleneck in routine implementation of high resolution array platforms, and emphasising the need for a centralised and easy to use CNV data management and interpretation system. Results We present CNV-WebStore, an online platform to streamline the processing and downstream interpretation of microarray data in a clinical context, tailored towards but not limited to the Illumina BeadArray platform. Provided analysis tools include CNV analsyis, parent of origin and uniparental disomy detection. Interpretation tools include data visualisation, gene prioritisation, automated PubMed searching, linking data to several genome browsers and annotation of CNVs based on several public databases. Finally a module is provided for uniform reporting of results. Conclusion CNV-WebStore is able to present copy number data in an intuitive way to both lab technicians and clinicians, making it a useful tool in daily clinical practice.
Collapse
Affiliation(s)
- Geert Vandeweyer
- Department of Medical Genetics, University Hospital Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
79
|
de Leeuw N, Hehir-Kwa JY, Simons A, Geurts van Kessel A, Smeets DF, Faas BHW, Pfundt R. SNP Array Analysis in Constitutional and Cancer Genome Diagnostics – Copy Number Variants, Genotyping and Quality Control. Cytogenet Genome Res 2011; 135:212-21. [PMID: 21934286 DOI: 10.1159/000331273] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- N de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
80
|
Integrated analysis of clinical signs and literature data for the diagnosis and therapy of a previously undescribed 6p21.3 deletion syndrome. Eur J Hum Genet 2010; 19:239-42. [PMID: 21119708 DOI: 10.1038/ejhg.2010.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A de novo 0.3 Mb deletion on 6p21.3 was detected by array-comparative genomic hybridization in a girl with mental retardation, drug-resistant seizures, facial dysmorphisms, gut malrotation and abnormal pancreas segmentation. Consistent with phenotypic manifestations is haploinsufficiency of SYNGAP1, which was recently demonstrated to cause non-syndromic mental retardation, and of the flanking genes CuTA, a likely modulator of the processing and trafficking of secretory proteins in the human brain, and hPHF1, involved in HOX gene silencing. Mutations of both CuTA and hPHF1 were never reported as causative of human diseases. Similarly, the present syndromic condition was not previously described and it can be regarded as a human model confirming the suggested biological properties of the genes included in the deletion interval. In addition, experimental evidence that SYNGAP1 and CuTA are involved in the secretory pathway in neurons, through glutamate and acetylcholinesterase signalling, prompted us to consider modulation of the glutamate pathway as target of a therapeutic strategy for seizure control.
Collapse
|
81
|
A three-step workflow procedure for the interpretation of array-based comparative genome hybridization results in patients with idiopathic mental retardation and congenital anomalies. Genet Med 2010; 12:478-85. [PMID: 20734469 DOI: 10.1097/gim.0b013e3181e3914a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the aims of clinical genetics is to identify gene mutations or genomic rearrangements that may underlie complex presentations of phenotypic features, such as multiple congenital malformations and mental retardation. During the decade after publication of the first article on array-based comparative genome hybridization, this technique has supplemented karyotyping as the prime genome-wide screening method in patients with idiopathic multiple congenital malformations and mental retardation. The use of this novel, discovery-based, approach has dramatically increased the detection rate of genomic imbalances. Array-based comparative genome hybridization detects copy number changes in the genome of patients and healthy subjects, some of which may represent phenotypically neutral copy number variations. This prompts the need for properly distinguishing between those copy number changes that may contribute to the clinical phenotype amid a pool of neutral copy number variations. We briefly review the characteristics of copy number changes in relation to their clinical relevance. Second, we discuss several published workflow schemes to identify copy number changes putatively contributing to the phenotype, and third, we propose a three-step procedure aiming to rapidly evaluate copy number changes on a case-by-case basis as to their potential contribution to the phenotype of patients with idiopathic multiple congenital malformations and mental retardation. This workflow is gene-centered and should aid in identification of disease-related candidate genes and in estimating the recurrence risk for the disorder in the family.
Collapse
|
82
|
A parallel SNP array study of genomic aberrations associated with mental retardation in patients and general population in Estonia. Eur J Med Genet 2010; 54:136-43. [PMID: 21112420 DOI: 10.1016/j.ejmg.2010.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/04/2010] [Indexed: 11/21/2022]
Abstract
The increasing use of whole-genome array screening has revealed the important role of DNA copy-number variations in the pathogenesis of neurodevelopmental disorders and several recurrent genomic disorders have been defined during recent years. However, some variants considered to be pathogenic have also been observed in phenotypically normal individuals. This underlines the importance of further characterization of genomic variants with potentially variable expressivity in both patient and general population cohorts to clarify their phenotypic consequence. In this study whole-genome SNP arrays were used to investigate genomic rearrangements in 77 Estonian families with idiopathic mental retardation. In addition to this family-based approach, phenotype and genotype data from a cohort of 1000 individuals in the general population were used for accurate interpretation of aberrations found in mental retardation patients. Relevant structural aberrations were detected in 18 of the families analyzed (23%). Fifteen of those were in genomic regions where clinical significance has previously been established. In 3 families, 4 novel aberrations associated with intellectual disability were detected in chromosome regions 2p25.1-p24.3, 3p12.1-p11.2, 7p21.2-p21.1 and Xq28. Carriers of imbalances in 15q13.3, 16p11.2 and Xp22.31 were identified among reference individuals, affirming the variable phenotypic consequence of rare variants in some genomic regions considered as pathogenic.
Collapse
|
83
|
Bassett AS, Costain G, Fung WLA, Russell KJ, Pierce L, Kapadia R, Carter RF, Chow EW, Forsythe PJ. Clinically detectable copy number variations in a Canadian catchment population of schizophrenia. J Psychiatr Res 2010; 44:1005-9. [PMID: 20643418 PMCID: PMC3129333 DOI: 10.1016/j.jpsychires.2010.06.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 02/02/2023]
Abstract
Copy number variation (CNV) is a highly topical area of research in schizophrenia, but the clinical relevance is uncertain and the translation to clinical practice is under-studied. There is a paucity of research involving truly community-based samples of schizophrenia and widely available laboratory techniques. Our objective was to determine the prevalence of clinically detectable CNVs in a community sample of schizophrenia, while mimicking typical clinical practice conditions. We used a brief clinical screening protocol for developmental features in adults with schizophrenia for identifying individuals with 22q11.2 deletions and karyotypically detectable chromosomal anomalies in 204 consecutive patients with schizophrenia from a single Canadian catchment area. Twenty-seven (13.2%) subjects met clinical criteria for a possible syndrome, and 26 of these individuals received clinical genetic testing. Five of these, representing 2.5% of the total sample (95% CI: 0.3%-4.6%), including two of ten patients with mental retardation, had clinically detectable anomalies: two 22q11.2 deletions (1.0%), one 47, XYY, and two other novel CNVs--an 8p23.3-p23.1 deletion and a de novo 19p13.3-p13.2 duplication. The results support the utility of screening and genetic testing to identify genetic syndromes in adults with schizophrenia in clinical practice. Identifying large, rare CNVs (particularly 22q11.2 deletions) can lead to significant changes in management, follow-up, and genetic counselling that are helpful to the patient, family, and clinicians.
Collapse
Affiliation(s)
- Anne S. Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Corresponding author. Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada. Tel.: +1 (416) 535 8501x2734; fax: +1 (416) 535 7199. (A.S. Bassett)
| | - Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Community Mental Health Services, Saint John, New Brunswick, Canada
| | - Wai Lun Alan Fung
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Laura Pierce
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ronak Kapadia
- Community Mental Health Services, Saint John, New Brunswick, Canada
| | - Ronald F. Carter
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Eva W.C. Chow
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Pamela J. Forsythe
- Community Mental Health Services, Saint John, New Brunswick, Canada, Department of Psychiatry, Saint John Regional Hospital, Saint John, New Brunswick, Canada
| |
Collapse
|
84
|
Morrow EM. Genomic copy number variation in disorders of cognitive development. J Am Acad Child Adolesc Psychiatry 2010; 49:1091-104. [PMID: 20970697 PMCID: PMC3137887 DOI: 10.1016/j.jaac.2010.08.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. METHOD Review of studies published in PubMed including classic studies of genomic disorders and microarray and copy number studies in normal controls, intellectual disability, autism, and schizophrenia. RESULTS The advent of novel microarray technology has led to a revolution in the discovery of classic and novel copy number variants (CNVs) in various disorders affecting cognitive development. Across autism and schizophrenia, global CNV burden and de novo CNV burden are associated with disease. Also, specific recurrent CNVs may be associated with several DSM conditions. Each condition is also associated with heterogeneous and individually rare CNVs. CONCLUSIONS CNVs play an important role in the genetic architecture of the childhood neuropsychiatric disorders discussed. This discovery appears to suggest an important role for the strict regulation of gene dosage in the neurodevelopmental roots of these conditions. Microarrays have emerged as high-yield tests in the diagnosis and molecular subtyping of the childhood-onset disorders involving cognitive development. In summary, CNV studies in disorders of cognitive development have revealed interesting and important new insights and have opened an avenue of investigation that holds great promise for neuropsychiatric disease.
Collapse
Affiliation(s)
- Eric M. Morrow
- Dr. Morrow is with Brown University and the Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital, Providence, RI
| |
Collapse
|
85
|
Hayashi S, Imoto I, Aizu Y, Okamoto N, Mizuno S, Kurosawa K, Okamoto N, Honda S, Araki S, Mizutani S, Numabe H, Saitoh S, Kosho T, Fukushima Y, Mitsubuchi H, Endo F, Chinen Y, Kosaki R, Okuyama T, Ohki H, Yoshihashi H, Ono M, Takada F, Ono H, Yagi M, Matsumoto H, Makita Y, Hata A, Inazawa J. Clinical application of array-based comparative genomic hybridization by two-stage screening for 536 patients with mental retardation and multiple congenital anomalies. J Hum Genet 2010; 56:110-24. [DOI: 10.1038/jhg.2010.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
86
|
Wohlleber E, Kirchhoff M, Zink AM, Kreiss-Nachtsheim M, Küchler A, Jepsen B, Kjaergaard S, Engels H. Clinical and molecular characterization of two patients with overlapping de novo microdeletions in 2p14-p15 and mild mental retardation. Eur J Med Genet 2010; 54:67-72. [PMID: 20950717 DOI: 10.1016/j.ejmg.2010.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/23/2010] [Indexed: 12/23/2022]
Abstract
Here, we present two patients with overlapping de novo microdeletions in chromosome 2p14-p15, mild mental retardation concerning especially language development, as well as mild dysmorphic features. Patient 1 also presented with generalized seizures, sensorineural hearing loss, and relative microcephaly. In patient 1, molecular karyotyping detected a 2.23-Mb deletion in chromosome 2p14-p15 including 11 known genes. The second patient, with a 2.84-Mb microdeletion containing 15 genes, was identified in the DECIPHER database. The two deleted regions overlap by a stretch of 1.6 Mb that contains 10 genes, several of which have functions in neuronal development. This report illustrates the power of databases such as DECIPHER and MRNET in assessing the pathogenicity of copy-number variations (CNVs).
Collapse
Affiliation(s)
- Eva Wohlleber
- Institute of Human Genetics, University of Bonn, Biomedizinisches Zentrum, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Intellectual disability (ID) is the leading socio-economic problem of health care, but compared to autism and schizophrenia, it has received very little public attention. Important risk factors for ID are malnutrition, cultural deprivation, poor health care, and parental consanguinity. In the Western world, fetal alcohol exposure is the most common preventable cause. Most severe forms of ID have genetic causes. Cytogenetically detectable and submicroscopic chromosomal rearrangements account for approximately 25% of all cases. X-linked gene defects are responsible in 10-12% of males with ID; to date, 91 of these defects have been identified. In contrast, autosomal gene defects have been largely disregarded, but due to coordinated efforts and the advent of next-generation DNA sequencing, this is about to change. As shown for Fra(X) syndrome, this renewed focus on autosomal gene defects will pave the way for molecular diagnosis and prevention, shed more light on the pathogenesis of ID, and reveal new opportunities for therapy.
Collapse
|
88
|
Mitchell KJ. The genetics of neurodevelopmental disease. Curr Opin Neurobiol 2010; 21:197-203. [PMID: 20832285 DOI: 10.1016/j.conb.2010.08.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/30/2010] [Accepted: 08/15/2010] [Indexed: 11/29/2022]
Abstract
The term neurodevelopmental disorder encompasses a wide range of diseases, including recognizably distinct syndromes known to be caused by very rare mutations in specific genes or chromosomal loci, and also much more common disorders such as schizophrenia, autism spectrum disorders, and idiopathic epilepsy and mental retardation. After decades of frustration, the past couple of years have suddenly seen tremendous progress in unravelling the genetics of these common disorders. These findings have led to a paradigm shift in our conception of the genetic architecture of common neurodevelopmental disease, highlighting the importance of individual, rare mutations and overlapping genetic aetiology of various disorders. They have also converged on specific neurodevelopmental pathways, providing insights into pathogenic mechanisms.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
89
|
Further delineation of the 17p13.3 microdeletion involving YWHAE but distal to PAFAH1B1: Four additional patients. Eur J Med Genet 2010; 53:303-8. [DOI: 10.1016/j.ejmg.2010.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 06/26/2010] [Indexed: 01/31/2023]
|
90
|
Whibley AC, Plagnol V, Tarpey PS, Abidi F, Fullston T, Choma MK, Boucher CA, Shepherd L, Willatt L, Parkin G, Smith R, Futreal PA, Shaw M, Boyle J, Licata A, Skinner C, Stevenson RE, Turner G, Field M, Hackett A, Schwartz CE, Gecz J, Stratton MR, Raymond FL. Fine-scale survey of X chromosome copy number variants and indels underlying intellectual disability. Am J Hum Genet 2010; 87:173-88. [PMID: 20655035 DOI: 10.1016/j.ajhg.2010.06.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 11/16/2022] Open
Abstract
Copy number variants and indels in 251 families with evidence of X-linked intellectual disability (XLID) were investigated by array comparative genomic hybridization on a high-density oligonucleotide X chromosome array platform. We identified pathogenic copy number variants in 10% of families, with mutations ranging from 2 kb to 11 Mb in size. The challenge of assessing causality was facilitated by prior knowledge of XLID-associated genes and the ability to test for cosegregation of variants with disease through extended pedigrees. Fine-scale analysis of rare variants in XLID families leads us to propose four additional genes, PTCHD1, WDR13, FAAH2, and GSPT2, as candidates for XLID causation and the identification of further deletions and duplications affecting X chromosome genes but without apparent disease consequences. Breakpoints of pathogenic variants were characterized to provide insight into the underlying mutational mechanisms and indicated a predominance of mitotic rather than meiotic events. By effectively bridging the gap between karyotype-level investigations and X chromosome exon resequencing, this study informs discussion of alternative mutational mechanisms, such as noncoding variants and non-X-linked disease, which might explain the shortfall of mutation yield in the well-characterized International Genetics of Learning Disability (IGOLD) cohort, where currently disease remains unexplained in two-thirds of families.
Collapse
Affiliation(s)
- Annabel C Whibley
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord 2010; 2:182-209. [PMID: 21124998 PMCID: PMC2974911 DOI: 10.1007/s11689-010-9055-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/25/2010] [Indexed: 11/06/2022] Open
Abstract
Intellectual disability (ID), also referred to as mental retardation (MR), is frequently the result of genetic mutation. Where ID is present together with additional clinical symptoms or physical anomalies, there is often sufficient information available for the diagnosing physician to identify a known syndrome, which may then educe the identification of the causative defect. However, where co-morbid features are absent, narrowing down a specific gene can only be done by ‘brute force’ using the latest molecular genetic techniques. Here we attempt to provide a systematic review of genetic causes of cases of ID where no other symptoms or co-morbid features are present, or non-syndromic ID. We attempt to summarize commonalities between the genes and the molecular pathways of their encoded proteins. Since ID is a common feature of autism, and conversely autistic features are frequently present in individuals with ID, we also look at possible overlaps in genetic etiology with non-syndromic ID.
Collapse
|
92
|
Bae JS, Cheong HS, Park BL, Kim LH, Han CS, Park TJ, Kim JY, Pasaje CFA, Lee JS, Shin HD. Genome-wide profiling of structural genomic variations in Korean HapMap individuals. PLoS One 2010; 5:e11417. [PMID: 20625389 PMCID: PMC2896390 DOI: 10.1371/journal.pone.0011417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/10/2010] [Indexed: 02/05/2023] Open
Abstract
Background Structural genomic variation study, along with microarray technology development has provided many genomic resources related with architecture of human genome, and led to the fact that human genome structure is a lot more complicated than previously thought. Methodology/Principal Findings In the case of International HapMap Project, Epstein-Barr various immortalized cell lines were preferably used over blood in order to get a larger number of genomic DNA. However, genomic aberration stemming from immortalization process, biased representation of the donor tissue, and culture process may influence the accuracy of SNP genotypes. In order to identify chromosome aberrations including loss of heterozygosity (LOH), large-scale and small-scale copy number variations, we used Illumina HumanHap500 BeadChip (555,352 markers) on Korean HapMap individuals (n = 90) to obtain Log R ratio and B allele frequency information, and then utilized the data with various programs including Illumina ChromoZone, cnvParition and PennCNV. As a result, we identified 28 LOHs (>3 mb) and 35 large-scale CNVs (>1 mb), with 4 samples having completely duplicated chromosome. In addition, after checking the sample quality (standard deviation of log R ratio <0.30), we selected 79 samples and used both signal intensity and B allele frequency simultaneously for identification of small-scale CNVs (<1 mb) to discover 4,989 small-scale CNVs. Identified CNVs in this study were successfully validated using visual examination of the genoplot images, overlapping analysis with previously reported CNVs in DGV, and quantitative PCR. Conclusion/Significance In this study, we describe the result of the identified chromosome aberrations in Korean HapMap individuals, and expect that these findings will provide more meaningful information on the human genome.
Collapse
Affiliation(s)
- Joon Seol Bae
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Hyun Sub Cheong
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Byung Lae Park
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Lyoung Hyo Kim
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Chang Soo Han
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
| | - Tae Joon Park
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Jason Yongha Kim
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Charisse Flerida A. Pasaje
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Jin Sol Lee
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Hyoung Doo Shin
- Laboratory of Genomic Diversity, Department of Life Science, Sogang University, Seoul, Republic of Korea
- Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
93
|
Van der Aa N, Vandeweyer G, Kooy RF. A boy with mental retardation, obesity and hypertrichosis caused by a microdeletion of 19p13.12. Eur J Med Genet 2010; 53:291-3. [PMID: 20570643 DOI: 10.1016/j.ejmg.2010.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/24/2010] [Indexed: 02/07/2023]
Abstract
We present a moderately mentally retarded boy with obesity, short stature, hypertrichosis and facial dysmorphism due to a deletion of 1.2 Mb on chromosome 19p13.2. The deletion was de novo and familial history was negative for the disorder. Genes in the deleted region possibly related to the clinical symptoms of our patient include NOTCH3 (MIM600276), causative of the vascular neurodegenerative disorder CADASIL and CASP14 (MIM605848), playing a central role in apoptosis in the inner root sheeth of the hair follicle.
Collapse
Affiliation(s)
- Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, University Hospital Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
94
|
Qiao Y, Harvard C, Tyson C, Liu X, Fawcett C, Pavlidis P, Holden JJA, Lewis MES, Rajcan-Separovic E. Outcome of array CGH analysis for 255 subjects with intellectual disability and search for candidate genes using bioinformatics. Hum Genet 2010; 128:179-94. [PMID: 20512354 DOI: 10.1007/s00439-010-0837-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/09/2010] [Indexed: 12/20/2022]
Abstract
Array CGH enables the detection of pathogenic copy number variants (CNVs) in 5-15% of individuals with intellectual disability (ID), making it a promising tool for uncovering ID candidate genes. However, most CNVs encompass multiple genes, making it difficult to identify key disease gene(s) underlying ID etiology. Using array CGH we identified 47 previously unreported unique CNVs in 45/255 probands. We prioritized ID candidate genes using five bioinformatic gene prioritization web tools. Gene priority lists were created by comparing integral genes from each CNV from our ID cohort with sets of training genes specific either to ID or randomly selected. Our findings suggest that different training sets alter gene prioritization only moderately; however, only the ID gene training set resulted in significant enrichment of genes with nervous system function (19%) in prioritized versus non-prioritized genes from the same de novo CNVs (7%, p < 0.05). This enrichment further increased to 31% when the five web tools were used in concert and included genes within mitogen-activated protein kinase (MAPK) and neuroactive ligand-receptor interaction pathways. Gene prioritization web tools enrich for genes with relevant function in ID and more readily facilitate the selection of ID candidate genes for functional studies, particularly for large CNVs.
Collapse
Affiliation(s)
- Y Qiao
- Department of Pathology (Cytogenetics), Child and Family Research Institute, University of British Columbia (UBC), 950 West 28th, Room 3060, Vancouver, BC, V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Hehir-Kwa JY, Wieskamp N, Webber C, Pfundt R, Brunner HG, Gilissen C, de Vries BBA, Ponting CP, Veltman JA. Accurate distinction of pathogenic from benign CNVs in mental retardation. PLoS Comput Biol 2010; 6:e1000752. [PMID: 20421931 PMCID: PMC2858682 DOI: 10.1371/journal.pcbi.1000752] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/19/2010] [Indexed: 11/18/2022] Open
Abstract
Copy number variants (CNVs) have recently been recognized as a common form of genomic variation in humans. Hundreds of CNVs can be detected in any individual genome using genomic microarrays or whole genome sequencing technology, but their phenotypic consequences are still poorly understood. Rare CNVs have been reported as a frequent cause of neurological disorders such as mental retardation (MR), schizophrenia and autism, prompting widespread implementation of CNV screening in diagnostics. In previous studies we have shown that, in contrast to benign CNVs, MR-associated CNVs are significantly enriched in genes whose mouse orthologues, when disrupted, result in a nervous system phenotype. In this study we developed and validated a novel computational method for differentiating between benign and MR-associated CNVs using structural and functional genomic features to annotate each CNV. In total 13 genomic features were included in the final version of a Naïve Bayesian Tree classifier, with LINE density and mouse knock-out phenotypes contributing most to the classifier's accuracy. After demonstrating that our method (called GECCO) perfectly classifies CNVs causing known MR-associated syndromes, we show that it achieves high accuracy (94%) and negative predictive value (99%) on a blinded test set of more than 1,200 CNVs from a large cohort of individuals with MR. These results indicate that this classification method will be of value for objectively prioritizing CNVs in clinical research and diagnostics. Rare copy number variants (CNVs) are a frequent cause of neurological disorders such as mental retardation (MR). However CNVs are also commonly identified in healthy individuals. It is therefore crucial for both diagnostic and research applications to be able to distinguish between disease-causing CNVs and “benign” CNVs occurring as normal genomic variation. Separating these two types can take advantage of significant differences in their genomic contents. For example, benign CNVs are enriched in repetitive sequences. By contrast, CNVs associated with MR tend to have high densities of functional elements, including genes whose mouse orthologues, when knocked-out, lead to specific nervous system abnormalities. We have developed a novel objective approach that is effective in distinguishing MR-associated CNVs from benign CNVs based on the presence of 13 genomic attributes. This method is able to achieve high accuracies in a cohort of CNVs known to cause MR and in a cohort of individuals with unexplained MR. The development of this technique promises to substantially improve the methodology for determining the pathogenicity of CNVs.
Collapse
Affiliation(s)
- Jayne Y. Hehir-Kwa
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Nienke Wieskamp
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Caleb Webber
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Rolph Pfundt
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Han G. Brunner
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Christian Gilissen
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Bert B. A. de Vries
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
| | - Chris P. Ponting
- MRC Functional Genomics Unit, University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Joris A. Veltman
- Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
96
|
Galasso C, Lo-Castro A, El-Malhany N, Curatolo P. "Idiopathic" mental retardation and new chromosomal abnormalities. Ital J Pediatr 2010; 36:17. [PMID: 20152051 PMCID: PMC2844383 DOI: 10.1186/1824-7288-36-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/14/2010] [Indexed: 02/07/2023] Open
Abstract
Mental retardation is a heterogeneous condition, affecting 1-3% of general population. In the last few years, several emerging clinical entities have been described, due to the advent of newest genetic techniques, such as array Comparative Genomic Hybridization. The detection of cryptic microdeletion/microduplication abnormalities has allowed genotype-phenotype correlations, delineating recognizable syndromic conditions that are herein reviewed. With the aim to provide to Paediatricians a combined clinical and genetic approach to the child with cognitive impairment, a practical diagnostic algorithm is also illustrated. The use of microarray platforms has further reduced the percentage of "idiopathic" forms of mental retardation, previously accounted for about half of total cases. We discussed the putative pathways at the basis of remaining "pure idiopathic" forms of mental retardation, highlighting possible environmental and epigenetic mechanisms as causes of altered cognition.
Collapse
Affiliation(s)
- Cinzia Galasso
- Department of Neuroscience, Paediatric Neurology Unit, "Tor Vergata" University of Rome, Italy
| | | | | | | |
Collapse
|
97
|
Kooy RF. Distinct disorders affecting the brain share common genetic origins. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948821 PMCID: PMC2948356 DOI: 10.3410/b2-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last few years, large cohorts of patients with distinct brain disorders of neuropsychiatric and neurological origin have been analyzed for copy number variation. Surprisingly, the same genetic abnormalities were found in cohorts of patients affected with mental retardation, autism, or schizophrenia.
Collapse
Affiliation(s)
- R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Universiteitsplein 1 2610 Antwerp Belgium
| |
Collapse
|
98
|
Xiang B, Zhu H, Shen Y, Miller DT, Lu K, Hu X, Andersson HC, Narumanchi TM, Wang Y, Martinez JE, Wu BL, Li P, Li MM, Chen TJ, Fan YS. Genome-wide oligonucleotide array comparative genomic hybridization for etiological diagnosis of mental retardation: a multicenter experience of 1499 clinical cases. J Mol Diagn 2010; 12:204-12. [PMID: 20093387 DOI: 10.2353/jmoldx.2010.090115] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To assess the clinical utility of genome-wide oligonucleotide arrays in diagnosis of mental retardation and to address issues relating to interpretation of copy number changes (CNCs), we collected results on a total of 1499 proband patients from five academic diagnostic laboratories where the same 44K array platform has been used. Three of the five laboratories achieved a diagnostic yield of 14% and the other two had a yield of 11 and 7%, respectively. Approximately 80% of the abnormal cases had a single segment deletion or duplication, whereas the remaining 20% had a compound genomic imbalance involving two or more DNA segments. Deletion of 16p11.2 is a common microdeletion syndrome associated with mental retardation. We classified pathogenic CNCs into six groups according to the structural changes. Our data have demonstrated that the 44K platform provides a reasonable resolution for clinical use and a size of 300 kb can be used as a practical cutoff for further investigations of the clinical relevance of a CNC detected with this platform. We have discussed in depth the issues associated with the clinical use of array CGH and provided guidance for interpretation, reporting, and counseling of test results based on our experience.
Collapse
Affiliation(s)
- Bixia Xiang
- University of Miami Miller School of Medicine, Mailman Center for Child Development, Room 7050, 1601 Northwest 12th Avenue, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Paciorkowski AR, Fang M. Chromosomal microarray interpretation: what is a child neurologist to do? Pediatr Neurol 2009; 41:391-8. [PMID: 19931159 DOI: 10.1016/j.pediatrneurol.2009.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/25/2009] [Accepted: 05/04/2009] [Indexed: 12/14/2022]
Abstract
The chromosomal microarray now plays a central role in the evaluation of children with neurologic developmental disorders, including global developmental delay, mental retardation, and increasingly also autistic spectrum disorders. As arrays become more sophisticated and their use more widespread, the child neurologist is likely to encounter abnormal chromosomal microarray results. The interpretation of such data is not always straightforward. This review article discusses in a practical manner the nature of chromosomal microarray results, describes an algorithm to help the child neurologist navigate a variety of testing scenarios, and proposes a standardized system for ranking array data based on levels of evidence of genotype-phenotype correlation.
Collapse
Affiliation(s)
- Alex R Paciorkowski
- Division of Pediatric and Developmental Neurology, Department of Neurology, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.
| | | |
Collapse
|
100
|
Friedman J, Adam S, Arbour L, Armstrong L, Baross A, Birch P, Boerkoel C, Chan S, Chai D, Delaney AD, Flibotte S, Gibson WT, Langlois S, Lemyre E, Li HI, MacLeod P, Mathers J, Michaud JL, McGillivray BC, Patel MS, Qian H, Rouleau GA, Van Allen MI, Yong SL, Zahir FR, Eydoux P, Marra MA. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization. BMC Genomics 2009; 10:526. [PMID: 19917086 PMCID: PMC2781027 DOI: 10.1186/1471-2164-10-526] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 11/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. RESULTS We performed 500 K Affymetrix GeneChip array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. CONCLUSION Affymetrix GeneChip 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience.
Collapse
Affiliation(s)
- Jm Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|