51
|
Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 2013; 36:522-34. [PMID: 23835198 DOI: 10.1016/j.tins.2013.06.002] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 02/04/2023]
Abstract
Synapse development requires differentiation of presynaptic neurotransmitter release sites and postsynaptic receptive apparatus coordinated by synapse organizing proteins. In addition to the well-characterized neurexins, recent studies identified presynaptic type IIa receptor-type protein tyrosine phosphatases (RPTPs) as mediators of presynaptic differentiation and triggers of postsynaptic differentiation, thus extending the roles of RPTPs from axon outgrowth and guidance. Similarly to neurexins, RPTPs exist in multiple isoforms generated by alternative splicing that interact in a splice-selective code with diverse postsynaptic partners. The parallel RPTP and neurexin hub design facilitates synapse self-assembly through cooperation, pairs presynaptic similarity with postsynaptic diversity, and balances excitation with inhibition. Upon mutation of individual genes in neuropsychiatric disorders, imbalance of this synaptic organizing network may contribute to impaired cognitive function.
Collapse
|
52
|
Blood microRNA changes in depressed patients during antidepressant treatment. Eur Neuropsychopharmacol 2013; 23:602-11. [PMID: 22925464 DOI: 10.1016/j.euroneuro.2012.06.013] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 06/27/2012] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are potent modulators of protein expression that play key roles in brain pathways regulating neurogenesis and synaptic plasticity. These small RNAs may be critical for the pathophysiology of mental disorders and may influence the effectiveness of psychotropic drugs. To investigate the possible involvement of miRNAs in the mechanism of action of antidepressants (AD), we conducted a whole-miRNome quantitative analysis with qRT-PCR of the changes in the blood of 10 depressed subjects after 12 weeks of treatment with escitalopram. Thirty miRNAs were differentially expressed after the AD treatment: 28 miRNAs were up-regulated, and 2 miRNAs were strongly down-regulated. miRNA target gene prediction and functional annotation analysis showed that there was a significant enrichment in several pathways associated with neuronal brain function (such as neuroactive ligand-receptor interaction, axon guidance, long-term potentiation and depression), supporting the hypothesis that the differentially regulated miRNAs may be involved in the AD mechanism.
Collapse
|
53
|
Sangokoya C, Doss JF, Chi JT. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 2013; 9:e1003408. [PMID: 23593016 PMCID: PMC3616902 DOI: 10.1371/journal.pgen.1003408] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/08/2013] [Indexed: 02/06/2023] Open
Abstract
Ferroportin (FPN) is the only known cellular iron exporter in mammalian cells and plays a critical role in the maintenance of both cellular and systemic iron balance. During iron deprivation, the translation of FPN is repressed by iron regulatory proteins (IRPs), which bind to the 5′ untranslated region (UTR), to reduce iron export and preserve cellular iron. Here, we report a novel iron-responsive mechanism for the post-transcriptional regulation of FPN, mediated by miR-485-3p, which is induced during iron deficiency and represses FPN expression by directly targeting the FPN 3′UTR. The overexpression of miR-485-3p represses FPN expression and leads to increased cellular ferritin levels, consistent with increased cellular iron. Conversely, both inhibition of miR-485-3p activity and mutation of the miR-485-3p target sites on the FPN 3′UTR are able to relieve FPN repression and lead to decreased cellular iron levels. Together, these findings support a model that includes both IRPs and microRNAs as iron-responsive post-transcriptional regulators of FPN. The involvement of microRNA in the iron-responsive regulation of FPN offers additional stability and fine-tuning of iron homeostasis within different cellular contexts. MiR-485-3p-mediated repression of FPN may also offer a novel potential therapeutic mechanism for circumventing hepcidin-resistant mechanisms responsible for some iron overload diseases. Cellular iron homeostasis is maintained by a sophisticated system that responds to iron levels and coordinates the expression of targets important for balancing iron export and uptake with intracellular storage and utilization. Ferroportin is the only known cellular iron exporter in mammalian cells and plays a critical role in both cellular and systemic iron balance. Thus the ability to regulate cellular iron export is of great interest in the search for therapeutic strategies to control dysregulated iron homeostasis, iron overload disorders, and conditions affected by cellular iron concentrations such as antimicrobial resistance. During iron deprivation, repression of ferroportin levels reduces iron export and preserves cellular iron. Ferroportin translation is known to be repressed by iron regulatory proteins that bind to the 5′UTR, yet alternative mechanisms that can post-transcriptionally regulate ferroportin have not been previously reported. Here, we find that miR-485-3p is induced during iron deficiency and represses ferroportin by directly targeting its 3′UTR, and further experimental evidence supports a model that includes both iron regulatory proteins and microRNAs as post-transcriptional regulators of ferroportin. These findings demonstrate a novel role for microRNAs in the cellular response to iron deficiency and can have therapeutic implications for various diseases of iron homeostasis.
Collapse
Affiliation(s)
- Carolyn Sangokoya
- The Institute for Genome Sciences and Policy, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jennifer F. Doss
- The Institute for Genome Sciences and Policy, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jen-Tsan Chi
- The Institute for Genome Sciences and Policy, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
54
|
Malan-Müller S, Hemmings SMJ, Seedat S. Big effects of small RNAs: a review of microRNAs in anxiety. Mol Neurobiol 2013; 47:726-39. [PMID: 23150170 PMCID: PMC3589626 DOI: 10.1007/s12035-012-8374-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/29/2012] [Indexed: 01/07/2023]
Abstract
Epigenetic and regulatory elements provide an additional layer of complexity to the heterogeneity of anxiety disorders. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that have recently drawn interest as epigenetic modulators of gene expression in psychiatric disorders. miRNAs elicit their effects by binding to target messenger RNAs (mRNAs) and hindering translation or accelerating degradation. Considering their role in neuronal differentiation and synaptic plasticity, miRNAs have opened up new investigative avenues in the aetiology and treatment of anxiety disorders. In this review, we provide a thorough analysis of miRNAs, their targets and their functions in the central nervous system (CNS), focusing on their role in anxiety disorders. The involvement of miRNAs in CNS functions (such as neurogenesis, neurite outgrowth, synaptogenesis and synaptic and neural plasticity) and their intricate regulatory role under stressful conditions strongly support their importance in the aetiology of anxiety disorders. Furthermore, miRNAs could provide new avenues for the development of therapeutic targets in anxiety disorders.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
55
|
Tardito D, Mallei A, Popoli M. Lost in translation. New unexplored avenues for neuropsychopharmacology: epigenetics and microRNAs. Expert Opin Investig Drugs 2012; 22:217-33. [DOI: 10.1517/13543784.2013.749237] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
56
|
Shih WL, Kao CF, Chuang LC, Kuo PH. Incorporating Information of microRNAs into Pathway Analysis in a Genome-Wide Association Study of Bipolar Disorder. Front Genet 2012; 3:293. [PMID: 23264780 PMCID: PMC3524550 DOI: 10.3389/fgene.2012.00293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/27/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are known to be important post-transcriptional regulators that are involved in the etiology of complex psychiatric traits. The present study aimed to incorporate miRNAs information into pathway analysis using a genome-wide association dataset to identify relevant biological pathways for bipolar disorder (BPD). We selected psychiatric- and neurological-associated miRNAs (N = 157) from PhenomiR database. The miRNA target genes (miTG) predictions were obtained from microRNA.org. Canonical pathways (N = 4,051) were downloaded from the Molecule Signature Database. We employed a novel weighting scheme for miTGs in pathway analysis using methods of gene set enrichment analysis and sum-statistic. Under four statistical scenarios, 38 significantly enriched pathways (P-value < 0.01 after multiple testing correction) were identified for the risk of developing BPD, including pathways of ion channels associated (e.g., gated channel activity, ion transmembrane transporter activity, and ion channel activity) and nervous related biological processes (e.g., nervous system development, cytoskeleton, and neuroactive ligand receptor interaction). Among them, 19 were identified only when the weighting scheme was applied. Many miRNA-targeted genes were functionally related to ion channels, collagen, and axonal growth and guidance that have been suggested to be associated with BPD previously. Some of these genes are linked to the regulation of miRNA machinery in the literature. Our findings provide support for the potential involvement of miRNAs in the psychopathology of BPD. Further investigations to elucidate the functions and mechanisms of identified candidate pathways are needed.
Collapse
Affiliation(s)
- Wei-Liang Shih
- Department of Public Health and Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University Taipei, Taiwan ; Infectious Diseases Research and Education Center, Department of Health - Executive Yuan and National Taiwan University Taipei, Taiwan
| | | | | | | |
Collapse
|
57
|
Mascetta G, di Mola FF, Tavano F, Selvaggi F, Giese N, Bassi C, Büchler MW, Friess H, di Sebastiano P. Substance P and neprilysin in chronic pancreatitis. ACTA ACUST UNITED AC 2012; 48:131-8. [PMID: 22572771 DOI: 10.1159/000337869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/06/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS We aimed to analyze substance P (SP) and neprilysin (NEP), the membrane metallopeptidase that degrades SP, in chronic pancreatitis (CP). METHODS SP and NEP mRNA levels were analyzed by qRT-PCR in tissue samples from 30 patients with CP and 8 organ donors. In addition, SP serum levels were determined before and after surgery in the same patients, by means of a competitive ELISA assay. Genetic and epigenetic analyses of the NEP gene were also performed. RESULTS SP mRNA expression levels were higher in CP tissues compared to controls (p = 0.0152), while NEP mRNA showed no significant differences between CP and healthy subjects (p = 0.2102). In CP patients, SP serum levels correlated with those in tissue, and after surgical resection SP serum levels were reduced compared to the preoperative values. Failure of NEP to overexpress in CP tissues was associated with significant miR-128a overexpression (p = 0.02), rather than with mutations in the NEP coding region or the presence of hypermethylation sites in the NEP promoter region. CONCLUSION Tissue and serum levels of SP were increased in CP, while NEP levels remained unaltered. In an SP/NEP-mediated pathway, it would appear that NEP fails to provide adequate surveillance of SP levels. Failure of NEP to overexpress could be associated with miRNA regulation.
Collapse
Affiliation(s)
- G Mascetta
- Department of Surgery, IRCCS, Hospital Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012; 17:359-76. [PMID: 22182940 DOI: 10.1038/mp.2011.162] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are devastating mental illnesses that are a significant public health concern. Selective serotonin-reuptake inhibitors are the first-line treatment strategy for these disorders, which despite being a significant advantage over older treatments, are hampered by a limited efficacy in a significant subset of patients, delayed onset of action and side effects that affect compliance. Thus, there is much impetus to develop novel therapeutic strategies. However, this goal can only be rationally realised with a better understanding of the molecular pathophysiology of these disorders. MicroRNAs (miRNAs) are a newly discovered class of gene-expression regulators that may represent a novel class of therapeutic targets to treat a variety of disorders including psychiatric diseases. miRNAs are heavily involved in regulating many physiological processes including those fundamental to the functioning of the central nervous system. Evidence collected to date has already demonstrated that miRNA-expression levels are altered in patients suffering from depression and anxiety and in pre-clinical models of psychological stress. Furthermore, increasing evidence suggests that psychoactive agents including antidepressants and mood stabilisers utilise miRNAs as downstream effectors. Altering miRNA levels has been shown to alter behaviour in a therapeutically desirable manner in pre-clinical models. This review aims to outline the evidence collected to date demonstrating miRNAs role in anxiety and depression, the potential advantages of targeting these small RNA molecules as well as some of the hurdles that will have to be overcome to fully exploit their therapeutic potential.
Collapse
|
59
|
Lopez-Valenzuela M, Ramírez O, Rosas A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, Espinosa-Parrilla Y. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans. Mol Biol Evol 2012; 29:1797-806. [PMID: 22319171 DOI: 10.1093/molbev/mss023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genetic changes in regulatory elements are likely to result in phenotypic effects that might explain population-specific as well as species-specific traits. MicroRNAs (miRNAs) are posttranscriptional repressors involved in the control of almost every biological process. These small noncoding RNAs are present in various phylogenetic groups, and a large number of them remain highly conserved at the sequence level. MicroRNA-mediated regulation depends on perfect matching between the seven nucleotides of its seed region and the target sequence usually located at the 3' untranslated region of the regulated gene. Hence, even single changes in seed regions are predicted to be deleterious as they may affect miRNA target specificity. In accordance to this, purifying selection has strongly acted on these regions. Comparison between the genomes of present-day humans from various populations, Neanderthal, and other nonhuman primates showed an miRNA, miR-1304, that carries a polymorphism on its seed region. The ancestral allele is found in Neanderthal, nonhuman primates, at low frequency (~5%) in modern Asian populations and rarely in Africans. Using miRNA target site prediction algorithms, we found that the derived allele increases the number of putative target genes for the derived miRNA more than ten-fold, indicating an important functional evolution for miR-1304. Analysis of the predicted targets for derived miR-1304 indicates an association with behavior and nervous system development and function. Two of the predicted target genes for the ancestral miR-1304 allele are important genes for teeth formation, enamelin, and amelotin. MicroRNA overexpression experiments using a luciferase-based assay showed that the ancestral version of miR-1304 reduces the enamelin- and amelotin-associated reporter gene expression by 50%, whereas the derived miR-1304 does not have any effect. Deletion of the corresponding target sites for miR-1304 in these dental genes avoided their repression, which further supports their regulation by the ancestral miR-1304. Morphological studies described several differences in the dentition of Neanderthals and present-day humans like slower dentition timing and thicker enamel for present-day humans. The observed miR-1304-mediated regulation of enamelin and amelotin could at least partially underlie these differences between the two Homo species as well as other still-unraveled phenotypic differences among modern human populations.
Collapse
Affiliation(s)
- Maria Lopez-Valenzuela
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra-Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
60
|
Juhila J, Sipilä T, Icay K, Nicorici D, Ellonen P, Kallio A, Korpelainen E, Greco D, Hovatta I. MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus. PLoS One 2011; 6:e21495. [PMID: 21731767 PMCID: PMC3120887 DOI: 10.1371/journal.pone.0021495] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain.
Collapse
Affiliation(s)
- Juuso Juhila
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Tessa Sipilä
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Katherine Icay
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Daniel Nicorici
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | | | - Dario Greco
- Department of Bioscience and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Iiris Hovatta
- Institute of Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
- * E-mail:
| |
Collapse
|
61
|
A miRNA-492 binding-site polymorphism in BSG (basigin) confers risk to psoriasis in Central South Chinese population. Hum Genet 2011; 130:749-57. [DOI: 10.1007/s00439-011-1026-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
|
62
|
Fibroblast growth factor-2 (FGF2) augmentation early in life alters hippocampal development and rescues the anxiety phenotype in vulnerable animals. Proc Natl Acad Sci U S A 2011; 108:8021-5. [PMID: 21518861 DOI: 10.1073/pnas.1103732108] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Individuals with mood disorders exhibit alterations in the fibroblast growth factor system, including reduced hippocampal fibroblast growth factor-2 (FGF2). It is difficult, however, to pinpoint whether these alterations are a cause or consequence of the disorder. The present study asks whether FGF2 administered the day after birth has long-lasting effects on hippocampal development and emotionality. We show that early-life FGF2 shifts the pace of neurogenesis, with an early acceleration around weaning followed by a deceleration in adulthood. This, in turn, results in a denser dentate gyrus with more neurons. To assess the impact of early-life FGF2 on emotionality, we use rats selectively bred for differences in locomotor response to novelty. Selectively bred low-responder (bLR) rats show low levels of novelty-induced locomotion and exhibit high levels of anxiety- and depression-like behavior compared with their selectively bred high-responder counterparts. Early-life FGF2 decreased anxiety-like behavior in highly anxious bLRs without altering other behaviors and without affecting high-responder rats. Laser capture microscopy of the dentate gyrus followed by microarray analysis revealed genes that were differentially expressed in bLRs exposed to early-life FGF2 vs. vehicle-treated bLRs. Some of the differentially expressed genes that have been positively associated with anxiety were down-regulated, whereas genes that promote cell survival were up-regulated. Overall, these results show a key role for FGF2 in the developmental trajectory of the hippocampus as well as the modulation of anxiety-like behavior in adulthood, and they point to potential downstream targets for the treatment of anxiety disorders.
Collapse
|
63
|
Muiños-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipilä T, Maron E, Pettai K, Kananen L, Navinés R, Martín-Santos R, Gratacòs M, Metspalu A, Hovatta I, Estivill X. Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 2011; 69:526-33. [PMID: 21168126 DOI: 10.1016/j.biopsych.2010.10.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/24/2010] [Accepted: 10/07/2010] [Indexed: 01/04/2023]
Abstract
BACKGROUND The involvement of microRNAs (miRNAs) in neuronal differentiation and synaptic plasticity suggests a role for miRNAs in psychiatric disorders; association analyses and functional approaches were used to evaluate the implication of miRNAs in the susceptibility for panic disorder. METHODS Case-control studies for 712 single-nucleotide polymorphisms (SNPs) tagging 325 human miRNA regions were performed in 203 Spanish patients with panic disorder and 341 control subjects. A sample of 321 anxiety patients and 642 control subjects from Finland and 102 panic disorder patients and 829 control subjects from Estonia was used as a replica. Reporter-gene assays and miRNA overexpression experiments in neuroblastoma cells were used to functionally evaluate the spectrum of genes regulated by the associated miRNAs. RESULTS Two SNPs associated with panic disorder: rs6502892 tagging miR-22 (p < .0002), and rs11763020 tagging miR-339 (p < .00008). Other SNPs tagging miR-138-2, miR-488, miR-491, and miR-148a regions associated with different panic disorder phenotypes. Replication in the north-European sample supported several of these associations, although they did not pass correction for multiple testing. Functional studies revealed that miR-138-2, miR-148a, and miR-488 repress (30%-60%) several candidate genes for panic disorder--GABRA6, CCKBR and POMC, respectively--and that miR-22 regulates four other candidate genes: BDNF, HTR2C, MAOA, and RGS2. Transcriptome analysis of neuroblastoma cells transfected with miR-22 and miR-488 showed altered expression of a subset of predicted target genes for these miRNAs and of genes that might be affecting physiological pathways related to anxiety. CONCLUSIONS This work represents the first report of a possible implication of miRNAs in the etiology of panic disorder.
Collapse
Affiliation(s)
- Margarita Muiños-Gimeno
- Genes and Disease Program, Centre for Genomic Regulation (CRG), Public Health and Epidemiology Network Biomedical Research Center (CIBERESP), Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The number of known mutations in human nuclear genes, underlying or associated with human inherited disease, has now exceeded 100,000 in more than 3700 different genes (Human Gene Mutation Database). However, for a variety of reasons, this figure is likely to represent only a small proportion of the clinically relevant genetic variants that remain to be identified in the human genome (the 'mutome'). With the advent of next-generation sequencing, we are currently witnessing a revolution in medical genetics. In particular, whole-genome sequencing (WGS) has the potential to identify all disease-causing or disease-associated DNA variants in a given individual. Here, we use examples of recent advances in our understanding of mutational/pathogenic mechanisms to guide our thinking about possible locations outwith gene-coding sequences for those disease-causing or disease-associated variants that are likely so often to have been overlooked because of the inadequacy of current mutation screening protocols. Such considerations are important not only for improving mutation-screening strategies but also for enhancing the interpretation of findings derived from genome-wide association studies, whole-exome sequencing and WGS. An improved understanding of the human mutome will not only lead to the development of improved diagnostic testing procedures but should also improve our understanding of human genome biology.
Collapse
Affiliation(s)
- J M Chen
- Etablissement Français du Sang (EFS) - Bretagne, Brest, France.
| | | | | |
Collapse
|
65
|
MicroRNA function in the nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:47-100. [PMID: 21846569 DOI: 10.1016/b978-0-12-415795-8.00004-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are an extensive class of small noncoding RNAs that control posttranscriptional gene expression. miRNAs are highly expressed in neurons where they play key roles during neuronal differentiation, synaptogenesis, and plasticity. It is also becoming increasingly evident that miRNAs have a profound impact on higher cognitive functions and are involved in the etiology of several neurological diseases and disorders. In this chapter, we summarize our current knowledge of miRNA functions during neuronal development, physiology, and dysfunction.
Collapse
|
66
|
Guidi M, Muiños-Gimeno M, Kagerbauer B, Martí E, Estivill X, Espinosa-Parrilla Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Mol Biol 2010; 11:95. [PMID: 21143953 PMCID: PMC3019150 DOI: 10.1186/1471-2199-11-95] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 12/10/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Neurotrophins and their receptors are key molecules in the regulation of neuronal differentiation and survival. They mediate the survival of neurons during development and adulthood and are implicated in synaptic plasticity. The human neurotrophin-3 receptor gene NTRK3 yields two major isoforms, a full-length kinase-active form and a truncated non-catalytic form, which activates a specific pathway affecting membrane remodeling and cytoskeletal reorganization. The two variants present non-overlapping 3'UTRs, indicating that they might be differentially regulated at the post-transcriptional level. Here, we provide evidence that the two isoforms of NTRK3 are targeted by different sets of microRNAs, small non-coding RNAs that play an important regulatory role in the nervous system. RESULTS We identify one microRNA (miR-151-3p) that represses the full-length isoform of NTRK3 and four microRNAs (miR-128, miR-485-3p, miR-765 and miR-768-5p) that repress the truncated isoform. In particular, we show that the overexpression of miR-128 - a brain enriched miRNA - causes morphological changes in SH-SY5Y neuroblastoma cells similar to those observed using an siRNA specifically directed against truncated NTRK3, as well as a significant increase in cell number. Accordingly, transcriptome analysis of cells transfected with miR-128 revealed an alteration of the expression of genes implicated in cytoskeletal organization as well as genes involved in apoptosis, cell survival and proliferation, including the anti-apoptotic factor BCL2. CONCLUSIONS Our results show that the regulation of NTRK3 by microRNAs is isoform-specific and suggest that neurotrophin-mediated processes are strongly linked to microRNA-dependent mechanisms. In addition, these findings open new perspectives for the study of the physiological role of miR-128 and its possible involvement in cell death/survival processes.
Collapse
Affiliation(s)
- Monica Guidi
- Center for Genomic Regulation, Genes and Disease Program, Dr, Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
67
|
MicroRNA expression profiling in benign (sporadic and hereditary) and recurring adrenal pheochromocytomas. Mod Pathol 2010; 23:1583-95. [PMID: 20818339 DOI: 10.1038/modpathol.2010.164] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNAs are involved in the pathogenesis of several tumors, however, there have been no data on microRNA expression in pheochromocytomas to date. The objective of our study was to perform microRNA expression profiling in sporadic and hereditary benign, and recurring adrenomedullary tumors. Furthermore, the applicability of formalin-fixed paraffin-embedded tissue samples for the analysis of microRNA expression in pheochromocytomas was examined. MicroRNA expression data of three matched frozen and formalin-fixed paraffin-embedded samples were correlated. A total of 21 formalin-fixed paraffin-embedded samples (sporadic benign, multiple endocrine neoplasia 2, von Hippel-Lindau disease, sporadic recurring) were subjected to microRNA expression profiling using microarrays. MicroRNAs with significant differences in expression were validated and sample sizes were extended including tumors from neurofibromatosis type 1 patients by real-time quantitative reverse-transcription PCR (n=33). MicroRNA target prediction was carried out by TargetScan and MicroCosm Targets. Pathway analysis of targets was performed by Ingenuity Pathway Analysis and DIANA mirPath. Furthermore, microRNA expression profiles of a malignant pheochromocytoma and a pair of primary and recurrent tumors were studied by TaqMan Human MicroRNA Cards. MicroRNA expression correlated well between frozen and formalin-fixed paraffin-embedded samples (70-92%). Microarray analysis revealed 16 significantly differentially expressed microRNAs. Five of these were validated by real-time RT-PCR. miR-139-3p, miR-541 and miR-765 were significantly differentially expressed between sporadic benign and von Hippel-Lindau-related pheochromocytomas. Significantly higher expression of miR-885-5p and miR-1225-3p was found in multiple endocrine neoplasia type 2 and sporadic recurring pheochromocytomas, respectively. Pathway analysis revealed the possible involvement of Notch- and G-protein-coupled receptor signaling in tumor recurrence. MicroRNA expression profiles in the primary recurrent and recurring malignant comparisons have been similar. In conclusion, we have proved that formalin-fixed paraffin-embedded samples can be used for the analysis of microRNA expression in pheochromocytomas. MicroRNA expression patterns differ between various sporadic, hereditary and recurring tumors and miR-1225-3p may be useful for identifying recurring pheochromocytomas.
Collapse
|
68
|
Forero DA, van der Ven K, Callaerts P, Del-Favero J. miRNA genes and the brain: implications for psychiatric disordersa. Hum Mutat 2010; 31:1195-204. [DOI: 10.1002/humu.21344] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Accepted: 07/29/2010] [Indexed: 01/12/2023]
|
69
|
Abstract
Obsessive-compulsive disorder (OCD) is a serious psychiatric disorder that affects approximately 2% of the populations of children and adults. Family aggregation studies have demonstrated that OCD is familial, and results from twin studies demonstrate that the familiality is due in part to genetic factors. Only three genome-wide linkage studies have been completed to date, with suggestive but not definitive results. In addition, over 80 candidate gene studies have been published. Most of these studies have focused on genes in the serotonergic and dopaminergic pathways. Unfortunately, none have achieved genome-wide significance, and, with the exception of the glutamate transporter gene, none have been replicated. Future research will require the collaboration of multidisciplinary teams of investigators to (i) achieve sufficiently large samples of individuals with OCD; (ii) apply the state-of-the-art laboratory techniques; and (iii) perform the bioinformatic analyses essential to the identification of risk loci.
Collapse
Affiliation(s)
- David L Pauls
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
70
|
Wang WX, Wilfred BR, Hu Y, Stromberg AJ, Nelson PT. Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. RNA (NEW YORK, N.Y.) 2010; 16:394-404. [PMID: 20042474 PMCID: PMC2811668 DOI: 10.1261/rna.1905910] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the "RIP-Chip" assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, Lexington, Kentucky,40506-9983, USA
| | | | | | | | | |
Collapse
|