51
|
Yu J, Bulk E, Ji P, Hascher A, Tang M, Metzger R, Marra A, Serve H, Berdel WE, Wiewroth R, Koschmieder S, Müller-Tidow C. The EPHB6 receptor tyrosine kinase is a metastasis suppressor that is frequently silenced by promoter DNA hypermethylation in non-small cell lung cancer. Clin Cancer Res 2010; 16:2275-83. [PMID: 20371680 DOI: 10.1158/1078-0432.ccr-09-2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Loss of EPHB6 receptor tyrosine kinase expression in early-stage non-small cell lung carcinoma (NSCLC) is associated with the subsequent development of distant metastasis. Here, we analyzed the regulation and function of EPHB6 in lung cancer metastasis. EXPERIMENTAL DESIGN The expression levels of EPHB6 were compared among normal lung tissue (n = 9), NSCLC without metastasis (n = 39), and NSCLC with metastasis (n = 39) according to the history of the patients. In addition, EPHB6 expression levels of matched tumor-normal pairs from 24 NSCLC patients were analyzed. The promoter DNA methylation status and its association with the expression levels of EPHB6 were determined among 14 pairs of tumor-normal samples. Metastatic potential of EPHB6 was assessed in vitro and in vivo in a metastasis mouse model. Overexpression and RNA interference (RNAi) approaches were used for analysis of the biological functions of EPHB6. RESULTS EPHB6 mRNA and protein levels were significantly reduced in NSCLC tumors compared with matched normal lung tissue. Decreased EPHB6 expression levels were associated with an increased risk for metastasis development in NSCLC patients. Loss of expression correlated with EPHB6 hypermethylation. EPHB6 expression was induced by 5-aza-2'-deoxycytidine treatment in an NSCLC cell line. Restoration of EPHB6 expression in lung adenocarcinoma cells increased adhesion and decreased migration. Reexpression of EPHB6 in lung cancer cells almost entirely abolished metastasis formation in non obese diabetic (NOD)/severe combined immunodeficient mice. CONCLUSIONS Taken together, these analyses show that EPHB6 is a metastasis inhibitory gene that is frequently silenced by hypermethylation of its promoter in NSCLC.
Collapse
Affiliation(s)
- Jun Yu
- Department of Medicine A--Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D, Pfeifer GP. CpG island hypermethylation in human astrocytomas. Cancer Res 2010; 70:2718-27. [PMID: 20233874 DOI: 10.1158/0008-5472.can-09-3631] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Astrocytomas are common and lethal human brain tumors. We have analyzed the methylation status of over 28,000 CpG islands and 18,000 promoters in normal human brain and in astrocytomas of various grades using the methylated CpG island recovery assay. We identified 6,000 to 7,000 methylated CpG islands in normal human brain. Approximately 5% of the promoter-associated CpG islands in the normal brain are methylated. Promoter CpG island methylation is inversely correlated whereas intragenic methylation is directly correlated with gene expression levels in brain tissue. In astrocytomas, several hundred CpG islands undergo specific hypermethylation relative to normal brain with 428 methylation peaks common to more than 25% of the tumors. Genes involved in brain development and neuronal differentiation, such as BMP4, POU4F3, GDNF, OTX2, NEFM, CNTN4, OTP, SIM1, FYN, EN1, CHAT, GSX2, NKX6-1, PAX6, RAX, and DLX2, were strongly enriched among genes frequently methylated in tumors. There was an overrepresentation of homeobox genes and 31% of the most commonly methylated genes represent targets of the Polycomb complex. We identified several chromosomal loci in which many (sometimes more than 20) consecutive CpG islands were hypermethylated in tumors. Seven such loci were near homeobox genes, including the HOXC and HOXD clusters, and the BARHL2, DLX1, and PITX2 genes. Two other clusters of hypermethylated islands were at sequences of recent gene duplication events. Our analysis offers mechanistic insights into brain neoplasia suggesting that methylation of the genes involved in neuronal differentiation, in cooperation with other oncogenic events, may shift the balance from regulated differentiation towards gliomagenesis.
Collapse
Affiliation(s)
- Xiwei Wu
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Qureshi SA, Bashir MU, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer. Int J Surg 2010; 8:194-8. [PMID: 20139036 DOI: 10.1016/j.ijsu.2010.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/21/2010] [Accepted: 02/02/2010] [Indexed: 01/07/2023]
Abstract
DNA methylation occurs at the CpG residues and serves as a powerful epigenetic mechanism that negatively regulates gene expression. This process is catalyzed by DNA methyltransferases and occurs within "CpG islands" found in the promoter regions of >70% of human genes. Given the important role of DNA methylation in regulating gene expression, un-programmed changes in methylation patterns are expected to either silence or activate transcription of tumor suppressor genes (via hypermethylation) or oncogenes (via demethylation), respectively, and by doing so promote a disease state. In light of the fact that a number of different cancers are frequently associated with hypermethylated tumor suppressor genes together with the observation that tumor derived genomic DNAs are present in various body fluids including serum/plasma, urine, sputum and bronchial lavage, methylated DNA has shown tremendous promise to serve as a robust biomarker for detecting cancer. Over the last several years protocols for capturing small amounts of DNA in circulation have been developed. Once captured, DNA methylation may be readily monitored by restriction enzyme digestion or bisulfite conversion followed by amplification of the desired genomic region with the polymerase chain reaction (PCR). New technologies which employ methyl-binding protein or antibodies that bind specifically to methylated-CpG residues have now enabled investigators to interrogate the status of entire "DNA methyome" of diseased tissue in an efficient and cost-effective manner. In this review, we describe the various tumor suppressor genes that are frequently hypermethylated in different cancers and how these and other methylated loci may be employed as clinically useful biomarkers for diagnosing cancer noninvasively using readily available body fluids.
Collapse
Affiliation(s)
- Sohail A Qureshi
- Department of Biological and Biomedical Sciences, and Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan.
| | | | | |
Collapse
|
54
|
Tran A, Escovedo C, Migdall-Wilson J, Chou AP, Chen W, Cloughesy T, Nelson S, Lai A. In Silico Enhanced Restriction Enzyme Based Methylation Analysis of the Human Glioblastoma Genome Using Agilent 244K CpG Island Microarrays. Front Neurosci 2010; 3:57. [PMID: 20582289 PMCID: PMC2858617 DOI: 10.3389/neuro.15.005.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 12/15/2009] [Indexed: 12/31/2022] Open
Abstract
Genome wide methylation profiling of gliomas is likely to provide important clues to improving treatment outcomes. Restriction enzyme based approaches have been widely utilized for methylation profiling of cancer genomes and will continue to have importance in combination with higher density microarrays. With the availability of the human genome sequence and microarray probe sequences, these approaches can be readily characterized and optimized via in silico modeling. We adapted the previously described HpaII/MspI based Methylation Sensitive Restriction Enzyme (MSRE) assay for use with two-color Agilent 244K CpG island microarrays. In this assay, fragmented genomic DNA is digested in separate reactions with isoschizomeric HpaII (methylation-sensitive) and MspI (methylation-insensitive) restriction enzymes. Using in silico hybridization, we found that genomic fragmentation with BfaI was superior to MseI, providing a maximum effective coverage of 22,362 CpG islands in the human genome. In addition, we confirmed the presence of an internal control group of fragments lacking HpaII/MspI sites which enable separation of methylated and unmethylated fragments. We used this method on genomic DNA isolated from normal brain, U87MG cells, and a glioblastoma patient tumor sample and confirmed selected differentially methylated CpG islands using bisulfite sequencing. Along with additional validation points, we performed a receiver operating characteristics (ROC) analysis to determine the optimal threshold (p ≤ 0.001). Based on this threshold, we identified ∼2,400 CpG islands common to all three samples and 145 CpG islands unique to glioblastoma. These data provide general guidance to individuals seeking to maximize effective coverage using restriction enzyme based methylation profiling approaches.
Collapse
Affiliation(s)
- Anh Tran
- Department of Neurology, David Geffen School of Medicine at UCLA Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Franceschi E, Tosoni A, Pozzati E, Brandes AA. Association between response to primary treatments and MGMT status in glioblastoma. Expert Rev Anticancer Ther 2009; 8:1781-6. [PMID: 18983238 DOI: 10.1586/14737140.8.11.1781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The median overall survival and, more importantly, the 2-year survival rate of patients with newly diagnosed glioblastoma are increased by the administration of combined temozolomide and radiotherapy, which has recently become the new standard of treatment in patients with a histological confirmation of diagnosis. Moreover, the assessment of O(6)-methylguanine-DNA methyltransferase gene promoter methylation has clarified the impact of this approach, and improved upon the interpretation of doubtful cases after concurrent radiotherapy/temozolomide treatment. Therefore, future strategies in the treatment of glioblastoma patients will include stratification for MGMT methylation status, and various approaches based on epigenetic features are currently under investigation.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, Azienda USL Bellaria-Maggiore, Bologna, Italy.
| | | | | | | |
Collapse
|
56
|
Horbinski C, Hamilton RL, Lovell C, Burnham J, Pollack IF. Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol 2009; 20:581-8. [PMID: 19832838 DOI: 10.1111/j.1750-3639.2009.00336.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pilocytic astrocytoma (PA) is the most common glioma in the pediatric population. PAs can exhibit variable behavior that does not always correlate with location, yet at present there is no way to predict which tumors will be more aggressive. To address this problem, an institutional cohort of 147 PAs (118 with outcome data) from both cerebellar and noncerebellar locations (spine, diencephalon, midbrain, brainstem and cortex) was utilized. Parameters included quantification of characteristic morphologic variables as well as genes previously shown to be of relevance in high-grade gliomas, including MIB-1, p53 and MGMT. In this cohort, the classic biphasic appearance was most common in cerebellar tumors, whereas noncerebellar tumors were predominantly microcystic. Associations with outcome suggest that the presence of degenerative atypia may be a favorable factor in PAs. Oligodendroglial morphology and the absence of leptomeningeal invasion are adverse histologic factors, but only in cerebellar tumors. Conversely, MIB-1 proliferation index and p53 and MGMT expression do not correlate with outcome. Morphologic biomarkers thus do exist for PAs, but the utility of each biomarker varies according to location. These results suggest that PAs differ fundamentally according to location; therefore, biological behavior may not simply depend on extent of resection.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
57
|
Nagarajan RP, Costello JF. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics 2009; 6:436-46. [PMID: 19560734 PMCID: PMC3981537 DOI: 10.1016/j.nurt.2009.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/26/2009] [Accepted: 04/09/2009] [Indexed: 01/25/2023] Open
Abstract
Gliomas arise through genetic and epigenetic alterations of normal brain cells, although the exact cell of origin for each glioma subtype is unknown. The alteration-induced changes in gene expression and protein function allow uncontrolled cell division, tumor expansion, and infiltration into surrounding normal brain parenchyma. The genetic and epigenetic alterations are tumor subtype and tumor-grade specific. Particular alterations predict tumor aggressiveness, tumor response to therapy, and patient survival. Genetic alterations include deletion, gain, amplification, mutation, and translocation, which result in oncogene activation and tumor suppressor gene inactivation, or in some instances the alterations may simply be a consequence of tumorigenesis. Epigenetic alterations in brain tumors include CpG island hypermethylation associated with tumor suppressor gene silencing, gene-specific hypomethylation associated with aberrant gene activation, and genome-wide hypomethylation potentially leading to loss of imprinting, chromosomal instability, and cellular hyperproliferation. Other epigenetic alterations, such as changes in the position of histone variants and changes in histone modifications are also likely to be important in the molecular pathology of brain tumors. Given that histone deacetylases are targets for drugs that are already in clinical trial, surprisingly little is known about histone acetylation in primary brain tumors. Although a majority of epigenetic alterations are independent of genetic alterations, there is interaction on specific genes, signaling pathways and within chromosomal domains. Next-generation sequencing technology is now the method of choice for genomic and epigenome profiling, allowing more comprehensive understanding of genetic and epigenetic contributions to tumorigenesis in the brain.
Collapse
Affiliation(s)
- Raman P. Nagarajan
- grid.266102.10000000122976811Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94143 San Francisco, California
| | - Joseph F. Costello
- grid.266102.10000000122976811Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94143 San Francisco, California
| |
Collapse
|
58
|
Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol 2009; 19:188-97. [PMID: 19429483 DOI: 10.1016/j.semcancer.2009.02.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive and lethal cancer, accounting for the majority of primary brain tumors in adults. GBMs are characterized by genetic alterations large and small, affecting genes that control cell growth, apoptosis, angiogenesis, and invasion. Epigenetic alterations also affect the expression of cancer genes alone, or in combination with genetic mechanisms. For example, in each GBM, hundreds of genes are subject to DNA hypermethylation at their CpG island promoters. A subset of GBMs is also characterized by locus-specific and genome-wide decrease in DNA methylation, or DNA hypomethylation. Other epigenetic alterations, such as changes in the position of histone variants and changes in histone modifications are also likely important in the molecular pathology of GBM, but somewhat surprisingly there are very limited data about these in GBM. Alterations in histone modifications are especially important to understand, given that histone deacetylases are targets for drugs that are in clinical trial for GBMs. The technological wave of next-generation sequencing will accelerate GBM epigenome profiling, allowing the direct integration of DNA methylation, histone modification and gene expression profiles. Ultimately, genomic and epigenomic data should provide new predictive markers of response and lead to more effective therapies for GBM.
Collapse
Affiliation(s)
- Raman P Nagarajan
- Brain Tumor Research Center, Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
59
|
Hesson LB, Krex D, Latif F. Epigenetic markers in human gliomas: prospects for therapeutic intervention. Expert Rev Neurother 2008; 8:1475-96. [PMID: 18928342 DOI: 10.1586/14737175.8.10.1475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gliomas represent the most common CNS cancers in adults. Prognosis for patients harboring malignant gliomas is particularly dismal and, despite current treatment strategies comprising surgery, radiotherapy and chemotherapy, the median survival time after diagnosis is still in the range of just 12 months. In recent years, there has been an increased effort to identify tumor biomarkers that can be used as diagnostic tools, or markers for predicting therapeutic response and prognosis. Investigation of genetic changes has identified several such markers that have shown some success in predicting the most effective therapy. In recent years, however, it has become apparent that the biology of many cancers of the CNS is determined not only by their genetic profile but also their epigenetic profile. Epigenetic biomarkers show great potential in effectively predicting patient prognosis and response to therapy. The eventual application of epigenetic profiling of tumors may help to indicate the most effective tailored therapy for individual patients.
Collapse
Affiliation(s)
- Luke B Hesson
- Department of Reproductive and Child Health, Institute of Biomedical Research, Medical School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | | | | |
Collapse
|
60
|
Abstract
Epigenetics are defined, in broad-terms, as alterations in gene expression without changes in DNA sequence. While histone modifications and DNA methylation are two classical means to regulate gene expression, miRNA has also recently been documented to govern gene expression in normal as well as cancer cells. In this review, we will first describe briefly histone modifications, DNA methylation and miRNAs and the functions of these epigenetic marks during different cellular processes involving DNA metabolism. We will then highlight some epigenetic changes in glioblastomas, a malignant form of brain tumor, and potential application of epigenetic means for diagnosis, prognosis, and treatment of gliomas. We expect that novel therapies will be developed to counter epigenetic changes in this deadly disease.
Collapse
Affiliation(s)
- Rebecca Burgess
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
61
|
Shen L, Kondo Y, Ahmed S, Boumber Y, Konishi K, Guo Y, Chen X, Vilaythong JN, Issa JPJ. Drug sensitivity prediction by CpG island methylation profile in the NCI-60 cancer cell line panel. Cancer Res 2008; 67:11335-43. [PMID: 18056460 DOI: 10.1158/0008-5472.can-07-1502] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant promoter hypermethylation and associated gene silencing are epigenetic hallmarks of tumorigenesis. It has been suggested that aberrant DNA methylation can affect the sensitivity of cancers to antineoplastic agents by altering expression of genes critical to drug response. To study this issue, we used bisulfite PCR to assess DNA methylation of 32 promoter-associated CpG islands in human cancer cell lines from the National Cancer Institute (NCI) drug-screening panel (NCI-60 panel). The frequency of aberrant hypermethylation of these islands ranged from 2% to 81% in NCI-60 cancer cells, and provided a database that can be analyzed for the sensitivity to approximately 30,000 drugs tested in this panel. By correlating drug activity with DNA methylation, we identified a list of methylation markers that predict sensitivity to chemotherapeutic drugs. Among them, hypermethylation of the p53 homologue p73 and associated gene silencing was strongly correlated with sensitivity to alkylating agents. We used small interfering RNA to down-regulate p73 expression in multiple cell lines, including the resistant cell lines TK10 (renal cancer) and SKMEL28 (melanoma). Down-regulating p73 substantially increased sensitivity to commonly used alkylating agents, including cisplatin, indicating that epigenetic silencing of p73 directly modulates drug sensitivity. Our results confirm that epigenetic profiles are useful in identifying molecular mediators for cancer drug sensitivity (pharmaco-epigenomics).
Collapse
Affiliation(s)
- Lanlan Shen
- Department of Leukemia, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007. [PMID: 17717605 DOI: 10.1172/jci31457ds1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, accounting for an estimated 600,000 deaths annually. Aberrant methylation, consisting of DNA hypomethylation and/or promoter gene CpG hypermethylation, is implicated in the development of a variety of solid tumors, including HCC. We analyzed the global levels of DNA methylation as well as the methylation status of 105 putative tumor suppressor genes and found that the extent of genome-wide hypomethylation and CpG hypermethylation correlates with biological features and clinical outcome of HCC patients. We identified activation of Ras and downstream Ras effectors (ERK, AKT, and RAL) due to epigenetic silencing of inhibitors of the Ras pathway in all HCC. Further, selective inactivation of SPRY1 and -2, DAB2, and SOCS4 and -5 genes and inhibitors of angiogenesis (BNIP3, BNIP3L, IGFBP3, and EGLN2) was associated with poor prognosis. Importantly, several epigenetically silenced putative tumor suppressor genes found in HCC were also inactivated in the nontumorous liver. Our results assign both therapeutic and chemopreventive significance to methylation patterns in human HCC and open the possibility of using molecular targets, including those identified in this study, to effectively inhibit HCC development and progression.
Collapse
Affiliation(s)
- Diego F Calvisi
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117:2713-22. [PMID: 17717605 PMCID: PMC1950459 DOI: 10.1172/jci31457] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 06/12/2007] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide, accounting for an estimated 600,000 deaths annually. Aberrant methylation, consisting of DNA hypomethylation and/or promoter gene CpG hypermethylation, is implicated in the development of a variety of solid tumors, including HCC. We analyzed the global levels of DNA methylation as well as the methylation status of 105 putative tumor suppressor genes and found that the extent of genome-wide hypomethylation and CpG hypermethylation correlates with biological features and clinical outcome of HCC patients. We identified activation of Ras and downstream Ras effectors (ERK, AKT, and RAL) due to epigenetic silencing of inhibitors of the Ras pathway in all HCC. Further, selective inactivation of SPRY1 and -2, DAB2, and SOCS4 and -5 genes and inhibitors of angiogenesis (BNIP3, BNIP3L, IGFBP3, and EGLN2) was associated with poor prognosis. Importantly, several epigenetically silenced putative tumor suppressor genes found in HCC were also inactivated in the nontumorous liver. Our results assign both therapeutic and chemopreventive significance to methylation patterns in human HCC and open the possibility of using molecular targets, including those identified in this study, to effectively inhibit HCC development and progression.
Collapse
Affiliation(s)
- Diego F. Calvisi
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Sara Ladu
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Alexis Gorden
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Miriam Farina
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Ju-Seog Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Elizabeth A. Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Insa Schroeder
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Valentina M. Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer
Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Department of Biomedical Sciences, Division of Experimental
Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
64
|
Kim B, Kim H, Song BJ, Cha SH, Lee MO, Park SH. Oligonucleotide DNA chips are useful adjuncts in epigenetic studies of glioblastomas. Neuropathology 2006; 26:409-16. [PMID: 17080717 DOI: 10.1111/j.1440-1789.2006.00707.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several studies have suggested that hypermethylation and hypomethylation of CpG islands within the promoters and 5' exons of tumor-related genes are closely associated with carcinogenesis. However, large-scale analysis of candidate genes has been hampered by the lack of a high throughput approach for analyzing methylation patterns. Using methylation-specific oligonucleotide (MSO) chips, we evaluated the methylation patterns of eight samples of fresh frozen glioblastoma tissue. The MSO chip used contained DNA probes with the CpG sites of p16 (p16INK4A, CDKN2A), MGMT (O6-Methylguanine-DNA-methyltransferase), APC (adenomatous polyposis coil), RASSF1A (human RAS effect homolog), which are usually hypermethylated in cancer cells and MAGE (melanoma antigen), which is usually hypomethylated in cancer cells. We selected CpG sites for analysis; 28 CpG sites (263 bp) for p16, 26 CpG sites (249 bp) for MGMT, 16 CpG sites (195 bp) for APC, 22 CpG sites (262 bp) for RASSF1A and 18 CpG sites (235 bp) for MAGE. We then constructed primer sets not including CpG sites. Bisulfite modification of genomic DNA, methylation specific PCR, hybridization and image scan with data analysis and sequencing of the bisulfite modified DNA were carried out. Of the eight glioblastomas, hypermethylation of the 5'-CpG sites of the MGMT were found in two, RASSF1A were found in five, and p16 and APC genes were not found in any cases and hypomethylation of that of the MAGE was found in eight cases. These results obtained from the oligo DNA chip study were correlated well with the sequencing data of bisulfite modified genomic DNA except in regard to the RASSF1A and MAGE genes. The devised MSO DNA chip is a useful tool for studies on methylation.
Collapse
Affiliation(s)
- Bomi Kim
- Department of Pathology, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
65
|
Martinez R, Schackert G, Esteller M. Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme. J Neurooncol 2006; 82:133-9. [PMID: 17048097 DOI: 10.1007/s11060-006-9264-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2006] [Accepted: 09/07/2006] [Indexed: 12/31/2022]
Abstract
The identification of clinical subsets of glioblastomas (GBM) associated with different molecular genetic profiles had opened the possibility to design tailored therapies to individual patients. One of the most intrigued subtypes is the long-term survival (LTS) GBM, which responds better to current therapies. The present investigation on GBM from 50 consecutive GBM displaying classic survival and seven LTS GBM is based on molecular epigenetic, clinical and histopathological analyses. Our aim was to recognize biomarkers useful to distinguish LTS from classic GBM. We analyzed the promoter methylation status of key regulator genes implicated in tumor invasion (TIMP2, TIMP3), apoptosis and inflammation (TMS1/ASC, DAPK) as well as overall survival, therapy status and tumor pathological features. For the first purpose a methylation-specific PCR approach was performed to analyze the CpG island promoter methylation status of each gene. The overall TMS1/ASC methylation rate in the 57 analyzed tumors was 21.05%. Hypermethylation of TMS1/ASC was significantly more frequent in LTS GBM (57.1% vs. 16%, P=0.029, Fisher's exact test). DAPK promoter hypermethylation was only observed in the LTS subset (14.3%) whereas TIMP2 and TIMP3 were unmethylated in both GBM collectives. Our results strongly suggest that, compared to classic GBM, LTS GBM display distinct epigenetic characteristics which might provide additional prognostic biomarkers for the assessment of this malignancy.
Collapse
Affiliation(s)
- Ramon Martinez
- Department of Neurosurgery, University of Dresden, Fetscherstr. 74, D-01307, Dresden, and Klinikum Fulda, Academic Hospital Philipps University Marburg, Fulda, Germany.
| | | | | |
Collapse
|
66
|
Siegmund KD, Levine AJ, Chang J, Laird PW. Modeling exposures for DNA methylation profiles. Cancer Epidemiol Biomarkers Prev 2006; 15:567-72. [PMID: 16537717 DOI: 10.1158/1055-9965.epi-05-0717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We extend the finite mixture model to estimate the association between exposure and latent disease subtype measured by DNA methylation profiles. Estimates from this model are compared with those obtained from the simpler two-phase approach of first clustering the DNA methylation data followed by associating exposure with disease subtype using logistic regression. The two models are fit to data from a study of colorectal adenomas and are compared in a simulation study. Depending on the analytic approach, we obtain different estimates of the odds ratio (OR) and its 95% confidence interval (95% CI) for the association of RBC folate and DNA methylation subtype in colorectal adenomas (OR, 0.31; 95% CI, 0.08-1.26 from the extended finite mixture model; OR, 0.44; 95% CI, 0.15-1.28 from the two-phase approach; n = 58 case subjects). Although our results could be a chance occurrence due to fluctuations from small sample size, we did a simulation study using larger samples and found that differences between the two approaches emerge when there is noise in the cluster analysis. In the naive two-phase approach, the estimate of the OR is biased towards the null, and its SE is underestimated when there is error in the cluster assignment. Estimates from the extended mixture model are unbiased and have the correct SE estimate but may require larger sample sizes for convergence. Thus, when the clusters are not identified with certainty, the extended mixture model is preferred for valid estimation of the OR and CI.
Collapse
Affiliation(s)
- Kimberly D Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1540 Alcazar Street, CHP 220, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
67
|
Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006; 174:341-8. [PMID: 16446478 PMCID: PMC1373719 DOI: 10.1503/cmaj.050774] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Research has shown that epigenetic mechanisms provide an "extra" layer of transcriptional control that regulates how genes are expressed. These mechanisms are critical components in the normal development and growth of cells. Epigenetic abnormalities have been found to be causative factors in cancer, genetic disorders and pediatric syndromes as well as contributing factors in autoimmune diseases and aging. In this review, we examine the basic principles of epigenetic mechanisms and their contribution to human health as well as the clinical consequences of epigenetic errors. In addition, we address the use of epigenetic pathways in new approaches to diagnosis and targeted treatments across the clinical spectrum.
Collapse
Affiliation(s)
- David Rodenhiser
- EpiGenWestern Research Group, Children's Health Research Institute, London, Ont.
| | | |
Collapse
|
68
|
Nutt CL. Molecular genetics of oligodendrogliomas: a model for improved clinical management in the field of neurooncology. Neurosurg Focus 2005; 19:E2. [PMID: 16398466 DOI: 10.3171/foc.2005.19.5.3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last several years, oligodendroglial tumors have become a model for the positive role of molecular genetics in improved treatment of patients with brain tumors. Oligodendrogliomas, in contrast to astrocytic gliomas, frequently respond to chemotherapy and have a better overall prognosis. Combined loss of chromosomes 1p and 19q has proven to be a powerful predictor of chemotherapeutic response and survival in oligodendrogliomas. In contrast, other genetic alterations, such as TP53 and PTEN mutations, EGFR amplification, and homozygous deletion of CDKN2A have been correlated with worse outcome in these tumors. Furthermore, 1p/19q loss has been shown to correlate with unequivocal oligodendroglial tumor histology, location and growth pattern of tumors within the brain, and magnetic resonance imaging characteristics. Although much is also known about the molecular pathological characteristics of astrocytic gliomas, the significance of this information to clinical management in patients with these tumors has not been as striking as has been the case for oligodendrogliomas; possible reasons for this are discussed. In this paper the author will summarize these advances, thus attempting to highlight the molecular genetic study of oligodendrogliomas as a model for improved clinical management in the field of neurooncology.
Collapse
Affiliation(s)
- Catherine L Nutt
- Department of Pathology, Neurosurgical Service and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
69
|
Szyf M. DNA methylation and demethylation as targets for anticancer therapy. BIOCHEMISTRY (MOSCOW) 2005; 70:533-49. [PMID: 15948707 DOI: 10.1007/s10541-005-0147-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer growth and metastasis require the coordinate change in gene expression of different sets of genes. While genetic alterations can account for some of these changes, it is becoming evident that many of the changes in gene expression observed are caused by epigenetic modifications. The epigenome consists of the chromatin and its modifications, the "histone code" as well as the pattern of distribution of covalent modifications of cytosines residing in the dinucleotide sequence CG by methylation. Although hypermethylation of tumor suppressor genes has attracted a significant amount of attention and inhibitors of DNA methylation were shown to activate methylated tumor suppressor genes and inhibit tumor growth, demethylation of critical genes plays a critical role in cancer as well. This review discusses the emerging role of demethylation in activation of pro-metastatic genes and the potential therapeutic implications of the demethylation machinery in metastasis.
Collapse
Affiliation(s)
- M Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal PQ H3G 1Y6, Canada.
| |
Collapse
|
70
|
Waha A, Güntner S, Huang THM, Yan PS, Arslan B, Pietsch T, Wiestler OD, Waha A. Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 2005; 7:193-9. [PMID: 15799819 PMCID: PMC1501138 DOI: 10.1593/neo.04490] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a microarray-based methylation analysis of astrocytomas [World Health Organization (WHO) grade II], we identified a CpG island within the first exon of the protocadherin-gamma subfamily A11 (PCDH-gamma-A11) gene that showed hypermethylation compared to normal brain tissue. Bisulfite sequencing and combined bisulfite restriction analysis (COBRA) was performed to screen low- and high-grade astrocytomas for the methylation status of this CpG island. Hypermethylation was detected in 30 of 34 (88%) astrocytomas (WHO grades II and III), 20 of 23 (87%) glioblastomas (WHO grade IV), and 8 of 8 (100%) glioma cell lines. There was a highly significant correlation (P = .00028) between PCDH-gamma-A11 hypermethylation and decreased transcription as determined by competitive reverse transcription polymerase chain reaction in WHO grades II and III astrocytomas. After treatment of glioma cell lines with a demethylating agent, transcription of PCDH-gamma-A11 was restored. In summary, we have identified PCDH-gamma-A11 as a new target silenced epigenetically in astrocytic gliomas. The inactivation of this cell-cell contact molecule might be involved in the invasive growth of astrocytoma cells into normal brain parenchyma.
Collapse
Affiliation(s)
- Anke Waha
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Stefanie Güntner
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Tim Hui-Ming Huang
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Pearlly S Yan
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Bülent Arslan
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Otmar D Wiestler
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Waha
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
71
|
|
72
|
Batistatou A, Stefanou D, Goussia A, Arkoumani E, Papavassiliou AG, Agnantis NJ. Estrogen receptor beta (ERbeta) is expressed in brain astrocytic tumors and declines with dedifferentiation of the neoplasm. J Cancer Res Clin Oncol 2005; 130:405-10. [PMID: 15141349 DOI: 10.1007/s00432-004-0548-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Estrogen receptor beta (ERbeta) is the second identified receptor mediating the effects of estrogen on target tissues. The role of ERbeta in cancer pathobiology is largely unknown, because specific antibodies have not been available until recently. Initial studies have shown that ERbeta expression declines in breast, ovarian, prostatic, and colon carcinomas. Tamoxifen, a synthetic anti-estrogen compound that is a mixed agonist/antagonist of estrogen receptor alpha (ERalpha) and a pure antagonist of ERbeta, has moderate beneficial effects in human astrocytic neoplasms. However, most published studies agree that glial tumors do not express ERalpha. The purpose of this study was to explore the expression of ERbeta in astrocytic neoplasms. METHODS ERbeta expression was monitored immunohistochemically in 56 cases of astrocytomas of all grades (grade I-IV) and in adjacent non-neoplastic brain tissue. RESULTS Moderate or strong nuclear immunopositivity was obtained in non-neoplastic astrocytes and in low-grade astrocytomas, whereas the majority of high-grade tumors were immunonegative or displayed weak immunoreactivity. The progressive decline in ERbeta expression paralleled the increase in tumor grade. CONCLUSIONS In as much as ERbeta is possibly the only ER expressed in astrocytes, its decreased expression may play an important role in astrocytic tumor initiation and in the potential response of glial neoplasms to tamoxifen.
Collapse
Affiliation(s)
- Anna Batistatou
- Department of Pathology, University Campus, P.O. Box 1186, 45110 Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
While different markers for cancer diagnosis have been known for at least a decade, the systematic search for biomarkers emerged only several years ago. In this article, I will concentrate on DNA methylation as a dynamic and robust platform for the development of cancer-specific biomarkers. Simultaneous analysis of a growing number of independent methylation events can create increasingly more precise and individualized diagnostics. The differential detection of methylated and unmethylated DNA can be accomplished through either chemical modification or digestion with methylation-sensitive restriction enzyme(s). The benefits and potential pitfalls of both these approaches for clinical sample analysis will be addressed.
Collapse
Affiliation(s)
- Victor V Levenson
- Northwestern University, 710 N. Fairbanks Ct, Olson 8-424, Chicago, IL 60611, USA.
| |
Collapse
|
74
|
Abstract
Cancer arises due to the accumulation of DNA modifications that give cells a selective growth advantage. One common DNA modification is promoter hypermethylation associated with loss of expression of a tumor suppressor gene. The methylation status of a specific sequence or the pattern of methylation across the genome can be readily measured, and these sequences and analytical methods are being rapidly developed for molecular diagnostic applications. Detection of certain methylation events can be used for early detection of tumors, and analysis of patterns of methylation across the genome might provide information on disease subtype, aggressiveness, and treatment response. DNA methylation-based molecular diagnostic assays are particularly attractive because of the stability of the target analyte (DNA) and the potential sensitivity of the assays. As the field matures, methylation-based assays will make a major contribution to the field of molecular diagnostics, providing tools to fill unmet needs in current diagnostic and treatment plans for many types of cancer.
Collapse
|
75
|
Bello MJ, Amiñoso C, Lopez-Marin I, Arjona D, Gonzalez-Gomez P, Alonso ME, Lomas J, de Campos JM, Kusak ME, Vaquero J, Isla A, Gutierrez M, Sarasa JL, Rey JA. DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q. Acta Neuropathol 2004; 108:413-21. [PMID: 15365725 DOI: 10.1007/s00401-004-0911-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/22/2004] [Accepted: 06/22/2004] [Indexed: 11/30/2022]
Abstract
The purpose of this research was to examine the DNA methylation profile of meningiomas. Accordingly, we examined the DNA methylation status of ten tumor-related genes (RB1, p16(INK4a), p73, MGMT, ER, DAPK, TIMP-3, p14(ARF), THBS1, and Caspase-8) in 98 meningiomas (68 grade I; 27 grade II; and 3 grade III samples) using methylation-specific PCR and sequencing. The most frequently methylated genes were THBS1 (30%), TIMP-3 (24%), p16(INK4a) (17%), MGMT (16%), p73 (15%), ER (15%), and p14(ARF) (13%), whereas methylation was relatively rare in the other genes (<10%). Methylation occurred in at least one gene in 77.5% of the cases and in three or more genes in 25.5%. Methylation was tumor specific since it was absent in the controls: two non-neoplastic meningeal samples and two non-neoplastic brain samples. The frequency of aberrant gene methylation in grade I versus grade II-III tumors showed some differences for TIMP-3, THBS1, MGMT, p16(INK4a) and p73; these differences reached statistical significance for TIMP-3: 18% in grade I versus 40% in grade II-III (P < 0.02). Our previous loss of heterozygosity studies provided the allelic constitution at 1p and 22q for 60 of the 98 meningiomas included in this report. The level of aberrant promoter methylation increased in tumors (30 samples) displaying 1p loss (either isolated or as concurrent deletion at 1p/22q; P = 0.014). These meningiomas primarily accumulated the epigenetic changes of THBS1 (14/30; 47%; P < 0.005), TIMP-3 (12/30; 40%; P < 0.05), p73 (10/30; 26%; P < 0.02) and p14(ARF) /p16(INK4a)(7/30 each one; 23%; not significant). Our findings indicate that aberrant DNA methylation of promoter-associated CpG islands in meningiomas contributes to the development of these tumors.
Collapse
Affiliation(s)
- M Josefa Bello
- Department of C. Experimental, Laboratorio Oncogenetica Molecular, Hospital Universitario La Paz, Paseo Castellana 261, 28046 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Our current knowledge of the molecular pathogenesis of the diffuse adult astrocytic tumours is vast if compared to 20 years ago, yet we are far from understanding the details of this process at the molecular level and using such an understanding to logically and specifically treat patients' tumours. In other astrocytic tumours we have little or no knowledge of the molecular processes. This article will attempt to summarise the histological classification criteria and genetic data for all the astrocytic tumours. The current World Health Organisation classification lists six entities, some with subgroups. Common problems associated with the diagnosis of these tumours are outlined. While the molecular findings are not as yet used clinically, we are approaching a time when the histological investigation will have to be supplemented with molecular data to ensure the best choice of treatment for the patient and as an accurate indicator of prognosis.
Collapse
Affiliation(s)
- Koichi Ichimura
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
77
|
Hartmann C, Mueller W, von Deimling A. Pathology and molecular genetics of oligodendroglial tumors. J Mol Med (Berl) 2004; 82:638-55. [PMID: 15322700 DOI: 10.1007/s00109-004-0565-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oligodendroglial gliomas are second only to astrocytic gliomas in frequency. The lack of stringent diagnostic criteria cause high interobserver variation in regard to classification and grading of these tumors. Previous studies have described oligodendrogliomas with features that overlap with those of neurocytic tumors, thus further complicating diagnostic decisions. The increasing need for standardized diagnostic criteria in this subset of gliomas is emphasized by the benefit of adjuvant therapies in patients with anaplastic oligodendrogliomas. Characteristic chromosomal aberrations have been successfully determined for oligodendroglial tumors in recent years. In contrast to astrocytomas, however, no genes in the affected regions have been clearly linked to their pathogenesis. However, the molecular findings promise to be helpful for diagnostic and therapeutic decisions. This review compiles clinical, pathological, and molecular genetic findings on WHO grades II and III oligodendrogliomas and oligoastrocytomas.
Collapse
|
78
|
Affiliation(s)
- V P Collins
- Department of Histopathology, University of Cambridge, Addenbrooke's Hospital, UK.
| |
Collapse
|