51
|
Cao L, Du P, Jiang SH, Jin GH, Huang QL, Hua ZC. Enhancement of antitumor properties of TRAIL by targeted delivery to the tumor neovasculature. Mol Cancer Ther 2008; 7:851-61. [DOI: 10.1158/1535-7163.mct-07-0533] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Müller N, Wyzgol A, Münkel S, Pfizenmaier K, Wajant H. Activity of soluble OX40 ligand is enhanced by oligomerization and cell surface immobilization. FEBS J 2008; 275:2296-304. [DOI: 10.1111/j.1742-4658.2008.06382.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Stieglmaier J, Bremer E, Kellner C, Liebig TM, ten Cate B, Peipp M, Schulze-Koops H, Pfeiffer M, Bühring HJ, Greil J, Oduncu F, Emmerich B, Fey GH, Helfrich W. Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 2008; 57:233-46. [PMID: 17665197 PMCID: PMC11030665 DOI: 10.1007/s00262-007-0370-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/04/2007] [Indexed: 12/24/2022]
Abstract
Although the treatment outcome of lymphoid malignancies has improved in recent years by the introduction of transplantation and antibody-based therapeutics, relapse remains a major problem. Therefore, new therapeutic options are urgently needed. One promising approach is the selective activation of apoptosis in tumor cells by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study investigated the pro-apoptotic potential of a novel TRAIL fusion protein designated scFvCD19:sTRAIL, consisting of a CD19-specific single-chain Fv antibody fragment (scFv) fused to the soluble extracellular domain of TRAIL (sTRAIL). Potent apoptosis was induced by scFvCD19:sTRAIL in several CD19-positive tumor cell lines, whereas normal blood cells remained unaffected. In mixed culture experiments, selective binding of scFvCD19:sTRAIL to CD19-positive cells resulted in strong induction of apoptosis in CD19-negative bystander tumor cells. Simultaneous treatment of CD19-positive cell lines with scFvCD19:sTRAIL and valproic acid (VPA) or Cyclosporin A induced strongly synergistic apoptosis. Treatment of patient-derived acute B-lymphoblastic leukemia (B-ALL) and chronic B-lymphocytic leukemia (B-CLL) cells resulted in strong tumoricidal activity that was further enhanced by combination with VPA. In addition, scFvCD19:sTRAIL prevented engraftment of human Nalm-6 cells in xenotransplanted NOD/Scid mice. The pre-clinical data presented here warrant further investigation of scFvCD19:sTRAIL as a potential new therapeutic agent for CD19-positive B-lineage malignancies.
Collapse
Affiliation(s)
- Julia Stieglmaier
- Chair of Genetics, University of Erlangen-Nuremberg, BTE-Building, Erwin-Rommel-Straße 3, 91058 Erlangen, Germany
| | - Edwin Bremer
- Groningen University Institute for Drug Exploration, Department of Pathology and Laboratory Medicine, Section Medical Biology, Laboratory for Tumor Immunology, University Medical Center, Groningen, The Netherlands
| | - Christian Kellner
- Chair of Genetics, University of Erlangen-Nuremberg, BTE-Building, Erwin-Rommel-Straße 3, 91058 Erlangen, Germany
| | - Tanja M. Liebig
- Department of Molecular Tumorbiology and Tumorimmunology, University Medical Center, Cologne, Germany
| | - Bram ten Cate
- Groningen University Institute for Drug Exploration, Department of Pathology and Laboratory Medicine, Section Medical Biology, Laboratory for Tumor Immunology, University Medical Center, Groningen, The Netherlands
| | - Matthias Peipp
- Section of Stem Cell Transplantation and Immunotherapy, University Medical Center University of Schleswig-Holstein, Kiel, Germany
| | - Hendrik Schulze-Koops
- Clinical Research Group III, Nikolaus Fiebiger Center for Molecular Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Pfeiffer
- Department of Pediatric Oncology, University Children’s Hospital, Tuebingen, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, University Hospital, Tuebingen, Germany
| | - Johann Greil
- Department of Pediatrics III, University Children’s Hospital, Heidelberg, Germany
| | - Fuat Oduncu
- Medizinische Klinik-Innenstadt, Klinikum der Universität München, München, Germany
| | - Bertold Emmerich
- Medizinische Klinik-Innenstadt, Klinikum der Universität München, München, Germany
| | - Georg H. Fey
- Chair of Genetics, University of Erlangen-Nuremberg, BTE-Building, Erwin-Rommel-Straße 3, 91058 Erlangen, Germany
| | - Wijnand Helfrich
- Groningen University Institute for Drug Exploration, Department of Pathology and Laboratory Medicine, Section Medical Biology, Laboratory for Tumor Immunology, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
54
|
Bremer E, ten Cate B, Samplonius DF, Mueller N, Wajant H, Stel AJ, Chamuleau M, van de Loosdrecht AA, Stieglmaier J, Fey GH, Helfrich W. Superior Activity of Fusion Protein scFvRit:sFasL over Cotreatment with Rituximab and Fas Agonists. Cancer Res 2008; 68:597-604. [DOI: 10.1158/0008-5472.can-07-5171] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Trzpis M, McLaughlin PMJ, de Leij LMFH, Harmsen MC. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:386-95. [PMID: 17600130 PMCID: PMC1934518 DOI: 10.2353/ajpath.2007.070152] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epithelial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of approximately 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally lower level than carcinoma cells. In early studies, EpCAM was proposed to be a cell-cell adhesion molecule. However, recent insights revealed a more versatile role for EpCAM that is not limited only to cell adhesion but includes diverse processes such as signaling, cell migration, proliferation, and differentiation. Cell surface expression of EpCAM may actually prevent cell-cell adhesion. Here, we provide a comprehensive review of the current knowledge on EpCAM biology in relation to other cell adhesion molecules. We discuss the implications of the newly identified functions of EpCAM in view of its prognostic relevance in carcinoma, inflammatory pathophysiology, and tissue development and regeneration as well as its role in normal epithelial homeostasis.
Collapse
Affiliation(s)
- Monika Trzpis
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
56
|
Koschny R, Walczak H, Ganten TM. The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med (Berl) 2007; 85:923-35. [PMID: 17437073 DOI: 10.1007/s00109-007-0194-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/07/2007] [Accepted: 03/14/2007] [Indexed: 12/30/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising new anticancer biotherapeutic. As shown by many preclinical studies, TRAIL efficiently induces apoptosis in numerous tumor cell lines but not in the majority of normal cells. However, an increasing number of publications report on a predominance of TRAIL resistance in primary human tumor cells, which require sensitization for TRAIL-induced apoptosis. Sensitization of cancer cells by treatment with chemotherapeutic drugs and irradiation has been shown to restore TRAIL sensitivity in many TRAIL-resistant tumor cells. Accordingly TRAIL treatment has been successfully used in different in vivo models for the treatment of tumors also in combination with chemotherapeutics without significant toxicity. However, some reports demonstrated toxicity of TRAIL alone or in combination with chemotherapeutic drugs in normal cells. This review summarizes data concerning the apoptosis-inducing pathways and efficacy of TRAIL, alone or in combination with chemotherapeutic drugs, in primary cancer cells compared to the unwanted effects of TRAIL treatment on normal tissue. We discuss the different in vitro tumor cell models and the potential of different recombinant forms of TRAIL or agonistic antibodies to TRAIL death receptors. Most preclinical studies show a high efficiency of a combinatorial TRAIL-based therapy in animal models and in primary human ex vivo tumor cells with a low toxicity in normal cells. Accordingly clinical phase I/II studies have begun and will be developed further with caution.
Collapse
Affiliation(s)
- Ronald Koschny
- Division of Apoptosis Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | |
Collapse
|
57
|
Stel AJ, Ten Cate B, Jacobs S, Kok JW, Spierings DCJ, Dondorff M, Helfrich W, Kluin-Nelemans HC, de Leij LFMH, Withoff S, Kroesen BJ. Fas Receptor Clustering and Involvement of the Death Receptor Pathway in Rituximab-Mediated Apoptosis with Concomitant Sensitization of Lymphoma B Cells to Fas-Induced Apoptosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:2287-95. [PMID: 17277134 DOI: 10.4049/jimmunol.178.4.2287] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.
Collapse
Affiliation(s)
- Alja J Stel
- University Medical Center Groningen, Department of Pathology and Laboratory Medicine, Section Medical Biology-Laboratory Tumor Immunology, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Shi J, Liu Y, Zheng Y, Guo Y, Zhang J, Cheung PT, Xu R, Zheng D. Therapeutic Expression of an Anti-Death Receptor 5 Single-Chain Fixed-Variable Region Prevents Tumor Growth in Mice. Cancer Res 2006; 66:11946-53. [PMID: 17178893 DOI: 10.1158/0008-5472.can-06-1227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The clinical use of the single-chain fixed-variable (scFv) fragments of recombinant monoclonal antibodies as credible alternatives for classic therapeutic antibodies has two limitations: rapid blood clearance and inefficient local expression of functional molecules. In attempt to address these issues, we have developed a novel gene therapy protocol in which the anti-death receptor 5 (DR5) scFv fragments were either in vitro expressed in several tumor cell lines, or in vivo expressed in mice, using recombinant adeno-associated virus (rAAV)-mediated gene transfer. Viral transduction using the rAAV-S3C construct, which encodes a scFv molecule (S3C scFv) specific to DR5, led to stable expression in tumor cell lines and showed apoptosis-inducing activity in vitro, which could be inhibited by recombinant DR5 but not by DR4. A single i.m. injection of rAAV-S3C virus in nude mice resulted in stable expression of DR5-binding S3C scFv proteins in mouse sera for at least 240 days. Moreover, the expression of S3C scFv was associated with significant suppression of tumor growth and the increase of tumor cell apoptosis in previously established s.c. human lung LTEP-sml and liver Hep3B tumor xenografts.
Collapse
Affiliation(s)
- Juan Shi
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
ten Cate B, Samplonius DF, Bijma T, de Leij LFMH, Helfrich W, Bremer E. The histone deacetylase inhibitor valproic acid potently augments gemtuzumab ozogamicin-induced apoptosis in acute myeloid leukemic cells. Leukemia 2006; 21:248-52. [PMID: 17122863 DOI: 10.1038/sj.leu.2404477] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gemtuzumab ozogamicin (GO) is a calicheamicin-conjugated antibody directed against CD33, an antigen highly expressed on acute myeloid leukemic (AML) cells. CD33-specific binding triggers internalization of GO and subsequent hydrolytic release of calicheamicin. Calicheamicin then translocates to the nucleus, intercalates in the DNA structure and subsequently induces double-strand DNA breaks. GO is part of clinical practice for AML, but is frequently associated with severe side effects. Therefore, combination of GO with other therapeutics is warranted to reduce toxicity, while maximizing therapeutic selectivity. We hypothesized that the histone deacetylase inhibitor valproic acid (VPA) sensitizes AML cells to GO. VPA-induced histone hyperacetylation opens the chromatin structure, whereby the DNA intercalation of calicheamicin should be augmented. We found that clinically relevant concentrations of VPA potently augmented the tumoricidal activity of GO towards AML cell lines and primary AML blasts. Moreover, VPA treatment indeed augmented the DNA intercalation of calicheamicin and enhanced DNA degradation. Importantly, synergy was restricted to CD33-positive AML cells and did not require caspase activation. In conclusion, the synergistic proapoptotic activity of cotreatment of AML cells with VPA and GO indicates the potential value of this strategy for AML.
Collapse
MESH Headings
- Aminoglycosides/therapeutic use
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Anticonvulsants/toxicity
- Antigens, CD/blood
- Antigens, Differentiation, Myelomonocytic/blood
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- DNA, Neoplasm/drug effects
- Drug Synergism
- Gemtuzumab
- Histone Deacetylase Inhibitors
- Humans
- Intercalating Agents/pharmacology
- Leukemia, Myeloid, Acute/pathology
- Sialic Acid Binding Ig-like Lectin 3
- U937 Cells
- Valproic Acid/toxicity
Collapse
Affiliation(s)
- B ten Cate
- Laboratory for Tumor Immunology, Department of Pathology and Laboratory Medicine, Groningen University Institute for Drug Exploration, Section Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
60
|
Assohou-Luty C, Gerspach J, Siegmund D, Müller N, Huard B, Tiegs G, Pfizenmaier K, Wajant H. A CD40-CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows membrane CD40L-restricted activation of CD95. J Mol Med (Berl) 2006; 84:785-97. [PMID: 16924474 DOI: 10.1007/s00109-006-0073-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
We analyzed a novel bifunctional fusion protein, CD40ed-CD95Led, consisting amino-terminally of the extracellular domain of CD40 and carboxy-terminally of the extracellular domain of CD95L. On cells lacking CD40L, this fusion protein is poorly active with respect to CD95 activation [median effective dose (ED50)>1 microg/ml], but it stimulates CD95 signaling with high efficiency upon binding to membrane-expressed CD40L (ED50<1 ng/ml). Thus, cell surface immobilization mediated by the CD40 part of the molecule unmasks the high-latent, CD95-stimulating capacity of the otherwise poorly active CD95L fusion protein. Moreover, interaction of the CD40 part of CD40ed-CD95Led with CD40L prevents the activation of cellular CD40. The CD40ed-CD95Led fusion protein therefore simultaneously blocks antiapoptotic CD40 activation and induces CD95-mediated apoptosis. Indeed, T47D cells displaying an antiapoptotic autocrine CD40-CD40L signaling loop were significantly more sensitive toward CD40ed-CD95Led than toward soluble CD95L artificially activated by crosslinking. Fusion proteins of RANK and CD95L (RANKed-CD95Led) and CD40 and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) (CD40ed-TRAILed), with domain architectures similar to CD40ed-Cd95Led, displayed RANKL-dependent CD95 and CD40L-dependent TRAILR2 activation, respectively, indicating the principle feasibility of this fusion protein design.
Collapse
Affiliation(s)
- Constance Assohou-Luty
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 2006; 12:382-93. [PMID: 16798087 DOI: 10.1016/j.molmed.2006.06.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Abstract
Important breakthroughs in cancer therapy include clinical application of antibodies, such as Rituximab, and small inhibitory molecules, such as Iressa and Velcade. In addition, recent reports have indicated the therapeutic potential of physiological pro-apoptotic proteins such as TRAIL and galectin-1. Although unrelated at first glance, each strategy relies on the deliberate and selective induction of apoptosis in malignant cells. Importantly, therapy-resistance in cancer is frequently associated with de-regulation in the mechanisms that control apoptosis. However, cancer cells are often reliant on these molecular aberrations for survival. Therefore, selective induction of apoptosis in cancer cells but not normal cells seems feasible. Here, we review recent progress and prospects of selected novel anti-cancer approaches that specifically target and sensitize cancer cells to apoptosis.
Collapse
Affiliation(s)
- Edwin Bremer
- Groningen University Institute for Drug Exploration (GUIDE), Department of Pathology and Laboratory Medicine, Section Medical Biology, Laboratory for Tumor Immunology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
62
|
Kuijlen JMA, de Haan BJ, Helfrich W, de Boer JF, Samplonius D, Mooij JJA, de Vos P. The efficacy of alginate encapsulated CHO-K1 single chain-TRAIL producer cells in the treatment of brain tumors. J Neurooncol 2006; 78:31-9. [PMID: 16598433 DOI: 10.1007/s11060-005-9071-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 10/24/2022]
Abstract
OBJECT Patients with astrocytic tumors in the central nervous system (CNS) have low survival rates despite surgery and radiotherapy. Innovative therapies and strategies must be developed to prolong survival of these patients. The alginate microencapsulation method, used to continuously release a certain cytotoxic agent in the vicinity of the tumor, is such a novel therapeutic strategy. The biological functionality of the apoptosis inducing scFv425:sTRAIL protein, which was released through the microencapsulation method, was studied in vitro. Analysis of the intracerebral biocompatibility of alginate capsules was performed by implantation of empty alginate capsules in the brain of mice. METHOD Chinese Hamster Ovary cells (CHO-K1) were recombinantly engineered to produce the single chain anti-EGFR-sTRAIL protein (scFv425:sTRAIL). The CHO-K1 producer cells were encapsulated in an alginate capsule with a semi-permeable membrane through which the scFv425:sTRAIL protein could be released. RESULTS In vitro studies show maintained biological functionality of the released scFv425:sTRAIL protein. There was no immunological tissue response detectable after intracerebral implantation of the alginate capsules in mice brains. CONCLUSION Biological functionality of the produced scFv425:sTRAIL protein is maintained and intracerebral biocompatibility of the capsules is warranted. Alginate encapsulation of CHO-K1--scFv425:sTRAIL--producer cells and subsequently their intracerebral implantation is technically feasible. This study justifies further in vivo experiments.
Collapse
Affiliation(s)
- Jos M A Kuijlen
- Department of Neurosurgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
63
|
Kuijlen JMA, Mooij JJA, Platteel I, Hoving EW, van der Graaf WTA, Span MM, Hollema H, den Dunnen WFA. TRAIL-receptor expression is an independent prognostic factor for survival in patients with a primary glioblastoma multiforme. J Neurooncol 2006; 78:161-71. [PMID: 16544055 DOI: 10.1007/s11060-005-9081-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/21/2005] [Indexed: 11/29/2022]
Abstract
PURPOSE In order to improve the survival of patients with a glioblastoma multiforme tumor (GBM), new therapeutic strategies must be developed. The use of a death inducing ligand such as TRAIL (TNF Related Apoptosis Inducing Ligand) seems a promising innovative therapy. The aim of this study was to quantify the expression of the death regulating receptors TRAIL-R1, TRAIL-R2 and TRAIL on primary GBM specimens and to correlate this expression with survival. EXPERIMENTAL DESIGN Expression of TRAIL and TRAIL-receptors was assessed by immunohistochemistry, both quantitatively (% of positive tumor cells) and semi-quantitatively (staining intensity) within both the perinecrotic and intermediate tumor zones of primary GBM specimens. RT-PCR of GBM tissue was performed to show expression of TRAIL receptor mRNA. RESULTS Immunohistochemistry showed a slight diffuse intracytoplasmic and a stronger membranous staining for TRAIL and TRAIL receptors in tumor cells. Semi-quantitative expression of TRAIL showed a significantly higher expression of TRAIL in the perinecrotic zone than in the intermediate zone of the tumor (P=0.0001). TRAIL-R2 expression was significantly higher expressed than TRAIL-R1 (P=0.005). The antigenic load of TRAIL-R2 was positively correlated with survival (P=0.02). Multivariate analysis of TRAIL-R1 within the study group (n=62) showed that age, gender, staining intensity, antigenic load, % of TRAIL-R1 expression, were not statistically correlated with survival however radiotherapy was significantly correlated (multivariate analysis: age: P=0.15; gender: P=0.64; staining intensity: P=0.17; antigenic load: P=0.056; % of TRAIL-R1 expression: P=0.058; radiotherapy: P=0.0001). Subgroup analysis of patients who had received radiotherapy (n=47) showed a significant association of % of TRAIL-R1 expression and the antigenic load of TRAIL-R1 with survival (multivariate analysis: P=0.036, respectively, P=0.023). Multivariate analysis of TRAIL-R2 staining intensity and antigenic load, within the study group (P=0.004, respectively, P=0.03) and the subgroup (P=0.002, respectively, P=0.004), showed a significant association with survival. RT-PCR analysis detected a negative relation between the amount of TRAIL-R1 mRNA and the WHO grade of astrocytic tumors (P=0.03). CONCLUSIONS TRAIL-R1 and TRAIL-R2 expression on tumor cells are independent prognostic factors for survival in patients with a glioblastoma multiforme. Both receptors could be targets for TRAIL therapy. As TRAIL-R2 is more expressed, in comparison with TRAIL-R1, on GBM tumor cells, TRAIL-R2 seems to be of more importance as a target for future TRAIL therapy than TRAIL-R1.
Collapse
Affiliation(s)
- Jos M A Kuijlen
- Department of Neurosurgery, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Abstract
The membrane-bound death ligands CD95L/FasL and TRAIL, which activate the corresponding death receptors CD95/Fas, TRAILR1 and TRAILR2, induce apoptosis in many tumour cells, but can also elicit an inflammatory response. This chapter focuses on the relevance of CD95L/FasL and TRAIL for the tumour surveillance function of natural killer cells and cytotoxic T-cells and discuss current concepts of utilizing these ligands in tumour therapy.
Collapse
Affiliation(s)
- Harald Wajant
- Department of Molecular Internal Medicine, Medical Polyclinic, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| |
Collapse
|
65
|
Bremer E, ten Cate B, Samplonius DF, de Leij LFMH, Helfrich W. CD7-restricted activation of Fas-mediated apoptosis: a novel therapeutic approach for acute T-cell leukemia. Blood 2005; 107:2863-70. [PMID: 16332967 DOI: 10.1182/blood-2005-07-2929] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Agonistic anti-Fas antibodies and multimeric recombinant Fas ligand (FasL) preparations show high tumoricidal activity against leukemic cells, but are unsuitable for clinical application due to unacceptable systemic toxicity. Consequently, new antileukemia strategies based on Fas activation have to meet the criterion of strictly localized action at the tumor-cell surface. Recent insight into the FasL/Fas system has revealed that soluble homotrimeric FasL (sFasL) is in fact nontoxic to normal cells, but also lacks tumoricidal activity. We report on a novel fusion protein, designated scFvCD7:sFasL, that is designed to have leukemia-restricted activity. ScFvCD7:sFasL consists of sFasL genetically linked to a high-affinity single-chain fragment of variable regions (scFv) antibody fragment specific for the T-cell leukemia-associated antigen CD7. Soluble homotrimeric scFvCD7:sFasL is inactive and acquires tumoricidal activity only after specific binding to tumor cell-surface-expressed CD7. Treatment of T-cell acute lymphoblastic leukemia (T-ALL) cell lines and patient-derived T-ALL, peripheral T-cell lymphoma (PTCL), and CD7-positive acute myeloid leukemia (AML) cells with homotrimeric scFvCD7:sFasL revealed potent CD7-restricted induction of apoptosis that was augmented by conventional drugs, farnesyl transferase inhibitor L-744832, and the proteasome inhibitor bortezomib (Velcade; Millenium, Cambridge, MA). Importantly, identical treatment did not affect normal human peripheral-blood lymphocytes (PBLs) and endothelial cells, with only moderate apoptosis in interleukin-2 (IL-2)/CD3-activated T cells. CD7-restricted activation of Fas in T-cell leukemic cells by scFvCD7:sFasL revitalizes interest in the applicability of Fas signaling in leukemia therapy.
Collapse
Affiliation(s)
- Edwin Bremer
- University Medical Center Groningen, Department of Pathology & Laboratory Medicine, Medical Biology Section, Laboratory for Tumor Immunology, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
66
|
Peterson NC. Advances in monoclonal antibody technology: genetic engineering of mice, cells, and immunoglobulins. ILAR J 2005; 46:314-9. [PMID: 15953839 DOI: 10.1093/ilar.46.3.314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to produce antibodies that are directed against specific antigens has played a crucial role in advancing scientific discoveries. Recombinant technologies have extended the application of antibodies beyond the research laboratory and into the clinic for the treatment of cancer and other diseases. Creative approaches using these technologies have been used to reduce the antibody to its minimal functional size, and/or make them bifunctional (immunotoxins), bispecific, or less immunoreactive (humanized). Additionally, mice that are engineered to generate antibodies of human genomic origin have been used to produce therapeutic antibodies and are being further developed. As the research and clinical demands for antibodies continue to increase, the development of improved resources (cell lines and animals) to improve production efficiency, generate larger repertoires, and deliver greater yields of antibodies is being explored, and advances in this area are discussed further in this review.
Collapse
Affiliation(s)
- Norman C Peterson
- Department of Comparative Medicine, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
67
|
Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, Helfrich W. Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 2005; 6:636-45. [PMID: 15548373 PMCID: PMC1531668 DOI: 10.1593/neo.04229] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to the antibody fragment scFvC54 specific for the cell surface target antigen EGP2. In the present study, we report that the selective binding of scFvC54:sTRAIL to EGP2-positive target cells conveys an exceptionally potent pro-apoptotic effect toward neighboring tumor cells that are devoid of EGP2 expression (bystander cells). The anti-tumor bystander activity of scFvC54:sTRAIL was detectable at target-to-bystander cell ratios as low as 1:100. Treatment in the presence of EGP2-blocking or TRAIL-neutralizing antibody strongly inhibited apoptosis in both target and bystander tumor cells. In the absence of target cells, bystander cell apoptosis induction was abrogated. The bystander apoptosis activity of scFvC54:sTRAIL did not require internalization, enzymatic conversion, diffusion, or communication (gap junctional intracellular communication) between target and bystander cells. Furthermore, scFvC54:sTRAIL showed no detectable signs of innocent bystander activity toward freshly isolated blood cells. Further development of this new principle is warranted for approaches where cancer cells can escape from antibody-based therapy due to partial loss of target antigen expression.
Collapse
Affiliation(s)
- Edwin Bremer
- Groningen University Institute for Drug Exploration (GUIDE), Laboratory for Tumor Immunology, Section Medical Biology, Department of Pathology and Laboratory Medicine, University Hospital Groningen, Hanzeplein 1, Groningen 9713 GZ, The Netherlands
| | | | | | | | | | | |
Collapse
|
68
|
Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LFMH, Helfrich W. Target Cell–Restricted Apoptosis Induction of Acute Leukemic T Cells by a Recombinant Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Fusion Protein with Specificity for Human CD7. Cancer Res 2005; 65:3380-8. [PMID: 15833872 DOI: 10.1158/0008-5472.can-04-2756] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current treatment of human T-cell leukemia and lymphoma is predominantly limited to conventional cytotoxic therapy and is associated with limited therapeutic response and significant morbidity. Therefore, more potent and leukemia-specific therapies with favorable toxicity profiles are urgently needed. Here, we report on the construction of a novel therapeutic fusion protein, scFvCD7:sTRAIL, designed to induce target antigen-restricted apoptosis in human T-cell tumors. ScFvCD7:sTRAIL consists of the death-inducing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to an scFv antibody fragment specific for the T-cell surface antigen CD7. Treatment with scFvCD7:sTRAIL induced potent CD7-restricted apoptosis in a series of malignant T-cell lines, whereas normal resting leukocytes, activated T cells, and vascular endothelial cells (human umbilical vein endothelial cells) showed no detectable apoptosis. The apoptosis-inducing activity of scFvCD7:sTRAIL was stronger than that of the immunotoxin scFvCD7:ETA. In mixed culture experiments with CD7-positive and CD7-negative tumor cells, scFvCD7:sTRAIL induced very potent bystander apoptosis of CD7-negative tumor cells. In vitro treatment of blood cells freshly derived from T-acute lymphoblastic leukemia patients resulted in marked apoptosis of the malignant T cells that was strongly augmented by vincristin. In conclusion, scFvCD7:sTRAIL is a novel recombinant protein causing restricted apoptosis in human leukemic T cells with low toxicity for normal human blood and endothelial cells.
Collapse
Affiliation(s)
- Edwin Bremer
- Laboratory for Tumor Immunology, Department of Pathology and Laboratory Medicine, Section Medical Biology, University Hospital Groningen, Groningen University Institute for Drug Exploration, 9713 GZ Groningen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LFMH, Helfrich W. Simultaneous Inhibition of Epidermal Growth Factor Receptor (EGFR) Signaling and Enhanced Activation of Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Receptor-mediated Apoptosis Induction by an scFv:sTRAIL Fusion Protein with Specificity for Human EGFR. J Biol Chem 2005; 280:10025-33. [PMID: 15644326 DOI: 10.1074/jbc.m413673200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent with tumor-selective apoptotic activity. Here we present a novel approach that combines EGFR-signaling inhibition with target cell-restricted apoptosis induction using a TRAIL fusion protein with engineered specificity for EGFR. This fusion protein, scFv425:sTRAIL, comprises the EGFR-blocking antibody fragment scFv425 genetically fused to soluble TRAIL (sTRAIL). Treatment with scFv425:sTRAIL resulted in the specific accretion to the cell surface of EGFR-positive cells only. EGFR-specific binding rapidly induced a dephosphorylation of EGFR and down-stream mitogenic signaling, which was accompanied by cFLIP(L) down-regulation and Bad dephosphorylation. EGFR-specific binding converted soluble scFv425:sTRAIL into a membrane-bound form of TRAIL that cross-linked agonistic TRAIL receptors in a paracrine manner, resulting in potent apoptosis induction in a series of EGFR-positive tumor cell lines. Co-treatment of EGFR-positive tumor cells with the EGFR-tyrosine kinase inhibitor Iressa resulted in a potent synergistic pro-apoptotic effect, caused by the specific down-regulation of c-FLIP. Furthermore, in mixed culture experiments binding (L)of scFv425:sTRAIL to EGFR-positive target cells conveyed a potent apoptotic effect toward EGFR-negative bystander tumor cells. The favorable characteristics of scFv425:sTRAIL, alone and in combination with Iressa, as well as its potent anti-tumor bystander activity indicate its potential value for treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Edwin Bremer
- Groningen University Institute for Drug Exploration, University Medical Center Groningen Department of Pathology and Laboratory Medicine, Section Medial Biology, Laboratory for Tumor Immunology, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|