51
|
Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2012; 2:a006593. [PMID: 23209176 DOI: 10.1101/cshperspect.a006593] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antiangiogenesis was proposed as a novel target for the treatment of cancer 40 years ago. Since the original hypothesis put forward by Judah Folkman in 1971, factors that mediate angiogenesis, their cellular targets, many of the pathways they signal, and inhibitors of the cytokines and receptors have been identified. Vascular endothelial growth factor (VEGF) is the most prominent among the angiogenic cytokines and is believed to play a central role in the process of neovascularization, both in cancer as well as other inflammatory diseases. This article reviews the biology of VEGF and its receptors, the use of anti-VEGF approaches in clinical disease, the toxicity of these therapies, and the resistance mechanisms that have limited the activity of these agents when used as monotherapy.
Collapse
Affiliation(s)
- Mark W Kieran
- Department of Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | | | | |
Collapse
|
52
|
Abstract
Glioblastoma, the most common malignant primary brain tumor, carries an invariably poor prognosis. Targeting underlying biological foundations of the disease will be crucial to developing more effective treatment strategies. Although increasing evidence clearly indicates that glioblastoma is a molecularly heterogeneous disorder, recent large-scale expression profiling has provided a framework for categorizing the tumor into 3 to 4 distinct subclasses, each with its own characteristic genomic alterations. As such, there remains the enticing possibility that glioblastoma subclasses themselves might represent predictive biomarkers, particularly in the context of specific targeted agents. This review focuses on how best to ascertain the functional relevance of molecular subclass in glioblastoma through both preclinical and clinical investigations. The availability of appropriate mouse modeling systems along with expanded molecular profiling capabilities in the clinical setting should aid such efforts. However, significant systematic challenges remain, particularly in the setting of clinical trials.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | |
Collapse
|
53
|
Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets 2012; 16:973-84. [PMID: 22876981 DOI: 10.1517/14728222.2012.711817] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and aggressive type of primary malignant brain tumor in adults. Despite therapy with maximal safe surgical resection, radiation and temozolomide, prognosis remains poor at 14.6 months. Hence, there is an urgent need for developing novel therapeutic agents. In GBMs, the balance of angiogenic growth factors is skewed toward pro-angiogenesis and VEGF is identified as the key growth factor responsible for neovasculature. Targeting angiogenesis is hypothesized to arrest tumor growth and hence VEGF is an attractive therapeutic target. AREAS COVERED The purpose of this review is to discuss VEGF pathway inhibitors, their efficacy as monotherapy or in combination with other drugs, the effects on the radiographic response/assessment for GBMs, mechanisms of resistance and associated biomarkers. A short summary of angiogenesis and of the biological characteristics of angiogenesis will also be provided to enhance the understanding of VEGF pathway inhibitors. EXPERT OPINION Therapeutic targeting of VEGF has lead to improvements in progression-free survival in GBM patients without any change in the overall survival. VEGF-targeted therapy remains a promising therapeutic opportunity if improvements in biomarkers, imaging techniques and rational combination therapy are used to help advance the clinical efficacy of this approach.
Collapse
Affiliation(s)
- Lizbeth Robles Irizarry
- Neurological Institute, Cleveland Clinic, The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
54
|
Schüle R, Dictus C, Campos B, Wan F, Felsberg J, Ahmadi R, Centner FS, Grabe N, Reifenberger G, Bermejo JL, Unterberg A, Herold-Mende C. Potential canonical wnt pathway activation in high-grade astrocytomas. ScientificWorldJournal 2012; 2012:697313. [PMID: 22919349 PMCID: PMC3419426 DOI: 10.1100/2012/697313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022] Open
Abstract
Aberrant wnt pathway activation through cytoplasmic stabilization of β-catenin is crucial for the development of various human malignancies. In gliomagenesis, the role of canonical (i.e., β-catenin-dependent) signalling is largely unknown. Here, we studied canonical wnt pathway activation in 15 short-term cultures from high-grade gliomas and potential pathomechanisms leading to cytoplasmic β-catenin accumulation. Furthermore, we assessed the prognostic relevance of β-catenin expression in a tissue microarray comprising 283 astrocytomas. Expression of β-catenin, its transcriptional cofactors TCF-1 and TCF-4 as well as GSK-3β and APC, constituents of the β-catenin degradation complex was confirmed by RT-PCR in all cultures. A cytoplasmic β-catenin pool was detectable in 13/15 cultures leading to some transcriptional activity assessed by luciferase reporter gene assay in 8/13. Unlike other malignancies, characteristic mutations of β-catenin and APC leading to cytoplasmic stabilization of β-catenin were excluded by direct sequencing or protein truncation test. In patient tissues, β-catenin expression was directly and its degradation product's (β-catenin-P654) expression was inversely correlated with WHO grade. Increased β-catenin expression and low β-catenin-P654 expression were associated with shorter survival. Altogether, we report on potential canonical wnt pathway activation in high-grade gliomas and demonstrate that β-catenin expression in astrocytomas is associated with increased malignancy and adverse outcome.
Collapse
Affiliation(s)
- Rebecca Schüle
- Division of Neurosurgical Research, Department of Neurosurgery, University Hospital Heidelberg, INF 400, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Dokic I, Hartmann C, Herold-Mende C, Régnier-Vigouroux A. Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress. Glia 2012; 60:1785-800. [PMID: 22951908 DOI: 10.1002/glia.22397] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/03/2012] [Indexed: 01/02/2023]
Abstract
The high intratumoral and intertumoral heterogeneity of glioblastoma (GBM) leads to resistance to different therapies, and hence, selecting an effective therapy is very challenging. We hypothesized that the antioxidant enzyme status is a significant feature of GBM heterogeneity. The most important reactive oxygen/nitrogen species (ROS/RNS) detoxification mechanisms include superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). Expression and activity of these enzymes and the cellular response to induced oxidative stress were systematically analyzed and compared between GBM cells and nontransformed glial cells of both human and murine origin. Regardless of cell type or species, all tested cells expressed similar amount of catalase and MnSOD. All except one, GBM cell lines exhibited a deficiency in GPx1 expression and activity. Analysis of GBM tissue sections indicated a heterogeneous profile of weak to moderate expression of GPx1 in tumor cells. GPx1 deficiency led to an accumulation of ROS/RNS and subsequent death of GBM cells after induction of oxidative stress. Astrocytes, microglia/macrophages, and glioma stem cell lines expressed active GPx1 and resisted ROS/RNS-mediated cell death. Pharmacological inhibition or siRNA silencing of GPx1 partially reverted this resistance in astrocytes, indicating the contribution of various antioxidant molecules besides GPx1. The GPx1-expressing GBM cell line on the contrary, became extremely sensitive to oxidative stress after GPx1 inhibition. Altogether, these results highlight GPx1 as a crucial element over other antioxidant enzymes for oxidative stress regulation in GBM cells. Mapping the antioxidant enzyme status of GBM may prove to be a useful tool for personalized ROS/RNS inducing therapies.
Collapse
Affiliation(s)
- Ivana Dokic
- INSERM U701, German Cancer Research Centre, Program Infection and Cancer, INF 242, Heidelberg, Germany
| | | | | | | |
Collapse
|
56
|
Naumer M, Popa-Wagner R, Kleinschmidt JA. Impact of capsid modifications by selected peptide ligands on recombinant adeno-associated virus serotype 2-mediated gene transduction. J Gen Virol 2012; 93:2131-2141. [PMID: 22764318 DOI: 10.1099/vir.0.044735-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vectors based on adeno-associated virus serotype 2 (AAV2) belong to today's most promising and most frequently used viral vectors in human gene therapy. Like in many other vector systems, the broad but non-specific tropism limits their use for certain cell types or tissues. One approach to screen for transduction-improved vectors is the selection of random peptide libraries displayed directly on the AAV2 capsid. Although the AAV2 library system has been widely applied for the successful selection of improved gene therapy vectors, it remains unknown which steps of the transduction process are most affected and therefore critical for the selection of targeting peptides. Attachment to the cell surface is the first essential step of AAV-mediated gene transduction; however, our experiments challenge the conventional belief that enhanced gene transfer is equivalent to more efficient cell binding of recombinant AAV2 vectors. A comparison of the various steps of gene transfer by vectors carrying a wild-type AAV2 capsid or displaying two exemplary peptide ligands selected from AAV2 random libraries on different human tumour cell lines demonstrated strong alterations in cell binding, cellular uptake, as well as intracellular processing of these vectors. Combined, our results suggest that entry and post-entry events are decisive for the selection of the peptides NDVRSAN and GPQGKNS rather than their cell binding efficiency.
Collapse
Affiliation(s)
- Matthias Naumer
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ruth Popa-Wagner
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jürgen A Kleinschmidt
- German Cancer Research Center (DKFZ), Department of Tumorvirology, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| |
Collapse
|
57
|
Campos B, Warta R, Chaisaingmongkol J, Geiselhart L, Popanda O, Hartmann C, von Deimling A, Unterberg A, Plass C, Schmezer P, Herold-Mende C. Epigenetically mediated downregulation of the differentiation-promoting chaperon protein CRABP2 in astrocytic gliomas. Int J Cancer 2012; 131:1963-8. [PMID: 22275178 DOI: 10.1002/ijc.27446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 01/03/2012] [Indexed: 12/12/2022]
Abstract
Impairment of endogenous differentiation pathways like retinoic acid (RA) signaling seems to be a central pathogenetic event in astrocytic gliomas. Among others, expression of the differentiation-promoting RA chaperon protein cellular retinoic acid binding protein 2 (CRABP2) is extenuated in high-grade gliomas. Against this background, we aimed at identifying potential pathomechanisms underlying reduced CRABP2 expression in these tumors. Using MassARRAY methylation analysis, we detected extensive CpG methylation upstream of the CRABP2 gene locus in a study sample comprising 100 astrocytic gliomas of WHO Grade II to IV. Compared to nontumorous control samples, tumors revealed increased CpG methylation and methylation levels were inversely correlated to CRABP2 mRNA expression. Substantiating our in situ findings, CRABP2 mRNA levels increased in glioma cell lines after exposure to the demethylating agent 5-aza-2'-deoxycytidine. Finally, a distinct CpG methylation signature distinguished between primary glioblastoma on the one hand and the group of astrocytoma WHO II-III and secondary glioblastoma on the other hand. Altogether, our observations suggest that epigenetic silencing of CRABP2 might contribute to an immature phenotype in glioma cells.
Collapse
Affiliation(s)
- Benito Campos
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Fassl A, Tagscherer KE, Richter J, Berriel Diaz M, Alcantara Llaguno SR, Campos B, Kopitz J, Herold-Mende C, Herzig S, Schmidt MHH, Parada LF, Wiestler OD, Roth W. Notch1 signaling promotes survival of glioblastoma cells via EGFR-mediated induction of anti-apoptotic Mcl-1. Oncogene 2012; 31:4698-708. [PMID: 22249262 DOI: 10.1038/onc.2011.615] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Notch1-mediated signaling pathway has a central role in the maintenance of neural stem cells and contributes to growth and progression of glioblastomas, the most frequent malignant brain tumors in adults. Here, we demonstrate that the Notch1 receptor promotes survival of glioblastoma cells by regulation of the anti-apoptotic Mcl-1 protein. Notch1-dependent regulation of Mcl-1 occurs cell type dependent at a transcriptional or post-translational level and is mediated by the induction of epidermal growth factor receptor (EGFR). Inhibition of the Notch1 pathway overcomes apoptosis resistance and sensitizes glioblastoma cells to apoptosis induced by ionizing radiation, the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) or the Bcl-2/Bcl-XL inhibitor ABT-737. In conclusion, targeting Notch1 might represent a promising novel strategy in the treatment of glioblastomas.
Collapse
Affiliation(s)
- A Fassl
- Molecular Tumor Pathology, DKFZ, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Andrew S Chi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
60
|
Kees T, Lohr J, Noack J, Mora R, Gdynia G, Tödt G, Ernst A, Radlwimmer B, Falk CS, Herold-Mende C, Régnier-Vigouroux A. Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol 2011; 14:64-78. [PMID: 22015597 DOI: 10.1093/neuonc/nor182] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The role of microglia, the brain-resident macrophages, in glioma biology is still a matter of debate. Clinical observations and in vitro studies in the mouse model indicate that microglia and macrophages that infiltrate the brain tumor tissue in high numbers play a tumor-supportive role. Here, we provide evidence that human microglia isolated from brain tumors indeed support tumor cell growth, migration, and invasion. However, after stimulation with the Toll-like receptor 3 agonist poly (I:C), microglia secrete factors that exerted toxic and suppressive effects on different glioblastoma cell lines, as assessed in cytotoxicity, migration, and tumor cell spheroid invasion assays. Remarkably, these effects were tumor-specific because the microglial factors impaired neither growth nor viability of astrocytes and neurons. Culture supernatants of tumor cells inhibited the poly (I:C) induction of this microglial M1-like, oncotoxic profile. Microglia stimulation before coculture with tumor cells circumvented the tumor-mediated suppression, as demonstrated by the ability to kill and phagocytose glioma cells. Our results show, for the first time to our knowledge, that human microglia exert tumor-supporting functions that are overridden by tumor-suppressing activities gained after poly (I:C) stimulation.
Collapse
Affiliation(s)
- Tim Kees
- INSERM U701, German Cancer Research Centre, INF 242, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kaur G, Bloch O, Jian BJ, Kaur R, Sughrue ME, Aghi MK, McDermott MW, Berger MS, Chang SM, Parsa AT. A critical evaluation of cystic features in primary glioblastoma as a prognostic factor for survival. J Neurosurg 2011; 115:754-9. [DOI: 10.3171/2011.5.jns11128] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The presence of cystic features in glioblastoma (GBM) has been described as a favorable prognostic factor. The aim of this study was to determine the survival outcome in patients undergoing surgery for newly diagnosed primary GBM with a large cystic component as compared with a large cohort of patients with noncystic GBM, while controlling for well-characterized prognostic factors.
Methods
A retrospective review of 354 consecutive patients treated with resection of primary GBM was performed using medical records and imaging information obtained at the University of California, San Francisco from 2005 to 2009. Within this cohort, 37 patients with large cysts (≥ 50% of tumor) were identified. Clinical presentations and surgical outcomes were statistically compared between the cystic and noncystic patients.
Results
There were no statistically significant differences in clinical presentation between groups, including differences in age, sex, presenting symptoms, tumor location, or preoperative functional status, with the exception of tumor size, which was marginally larger in the cystic group. Surgical outcomes, including extent of resection and postoperative functional status, were equivalent. The median actuarial survival for the patients with cystic GBM was 17.0 months (95% CI 12.6–21.3 months), and the median survival for patients with noncystic GBM was 15.9 months (95% CI 14.6–17.2 months). There was no significant between-groups difference in survival (p = 0.99, log-rank test). A Cox multivariate regression model was constructed, which identified only age and extent of resection as independent predictors of survival. The presence of a cyst was not a statistically significant prognostic factor.
Conclusions
This study, comprising the largest series of cases of primary cystic GBM reported in the literature to date, demonstrates that the presence of a large cyst in patients with GBM does not significantly affect overall survival as compared with survival in patients without a cyst. Preoperative discussions with patients with GBM should focus on validated prognostic factors. The presence of cystic features does not confer a survival advantage.
Collapse
|
62
|
Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson ARA. Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res 2011; 71:7366-75. [PMID: 21900399 DOI: 10.1158/0008-5472.can-11-1399] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gliomas are uniformly fatal forms of primary brain neoplasms that vary from low- to high-grade (glioblastoma). Whereas low-grade gliomas are weakly angiogenic, glioblastomas are among the most angiogenic tumors. Thus, interactions between glioma cells and their tissue microenvironment may play an important role in aggressive tumor formation and progression. To quantitatively explore how tumor cells interact with their tissue microenvironment, we incorporated the interactions of normoxic glioma cells, hypoxic glioma cells, vascular endothelial cells, diffusible angiogenic factors, and necrosis formation into a first-generation, biologically based mathematical model for glioma growth and invasion. Model simulations quantitatively described the spectrum of in vivo dynamics of gliomas visualized with medical imaging. Furthermore, we investigated how proliferation and dispersal of glioma cells combine to induce increasing degrees of cellularity, mitoses, hypoxia-induced neoangiogenesis and necrosis, features that characterize increasing degrees of "malignancy," and we found that changes in the net rates of proliferation (ρ) and invasion (D) are not always necessary for malignant progression. Thus, although other factors, including the accumulation of genetic mutations, can change cellular phenotype (e.g., proliferation and invasion rates), this study suggests that these are not required for malignant progression. Simulated results are placed in the context of the current clinical World Health Organization grading scheme for studying specific patient examples. This study suggests that through the application of the proposed model for tumor-microenvironment interactions, predictable patterns of dynamic changes in glioma histology distinct from changes in cellular phenotype (e.g., proliferation and invasion rates) may be identified, thus providing a powerful clinical tool.
Collapse
Affiliation(s)
- Kristin R Swanson
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Campos B, Zeng L, Daotrong PH, Eckstein V, Unterberg A, Mairbäurl H, Herold-Mende C. Expression and regulation of AC133 and CD133 in glioblastoma. Glia 2011; 59:1974-86. [PMID: 21901757 DOI: 10.1002/glia.21239] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/02/2011] [Indexed: 12/24/2022]
Abstract
The biological significance of CD133 in glioblastoma is controversial. Above all, there is disagreement concerning the proper approach, the appropriate (cell) model and the suitable microenvironment to study this molecule, often leading to inconsistent experimental results among studies. In consideration of a primary need to dissect and to understand the CD133 phenotype in glioblastoma we performed a comprehensive analysis of CD133 expression and regulation in a large set of glioblastoma cell lines (n = 20) as well as in tumor xenografts. Our analysis considered alternatively spliced mRNA transcripts, different protein epitopes as well as varying sub-cellular localizations of CD133 and explored its regulation under pertinent micro-environmental conditions. CD133 mRNA and CD133 protein could be detected in all relevant types of glioblastoma cell lines. In addition, we detected frequent intracellular CD133 protein accumulations located to the ER and/or Golgi apparatus but seemingly unrelated to particular CD133 splice variants or protein epitopes. In contrast, membrane-bound expression of CD133 was restricted to tumor cells bearing the extracellular CD133 epitope AC133. Only in these cells, differentiation and oxygen levels clearly impacted on AC133 expression and to some extent also influenced CD133 mRNA and protein expression. Most importantly, however, modulation of AC133 levels could occur independently of changes in CD133 mRNA transcription, CD133 protein translation, protein retention or protein shedding. Our results suggest that the AC133 epitope, rather than CD133 mRNA or protein, mirrors malignancy-related tumor traits such as tumor differentiation and local oxygen tension levels, and thus corroborate its role as a biologically relevant cancer marker.
Collapse
Affiliation(s)
- Benito Campos
- Department of Neurosurgery, Division of Neurosurgical Research, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
64
|
Campos B, Centner FS, Bermejo JL, Ali R, Dorsch K, Wan F, Felsberg J, Ahmadi R, Grabe N, Reifenberger G, Unterberg A, Burhenne J, Herold-Mende C. Aberrant expression of retinoic acid signaling molecules influences patient survival in astrocytic gliomas. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1953-64. [PMID: 21514413 DOI: 10.1016/j.ajpath.2011.01.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 11/18/2010] [Accepted: 01/12/2011] [Indexed: 01/16/2023]
Abstract
Undifferentiated cell populations may influence tumor growth in malignant glioma. We investigated potential disruptions in the retinoic acid (RA) differentiation pathway that could lead to a loss of differentiation capacity, influencing patient prognosis. Expression of key molecules belonging to the RA differentiation pathway was analyzed in 283 astrocytic gliomas and was correlated with tumor proliferation, tumor differentiation, and patient survival. In addition, in situ concentrations of retinoids were measured in tumors, and RA signaling events were studied in vitro. Unlike other tumors, in gliomas expression of most RA signaling molecules increased with malignancy and was associated with augmented intratumoral retinoid levels in high-grade gliomas. Aberrantly expressed RA signaling molecules included i) the retinol-binding protein CRBP1, which facilitates cellular retinoid uptake; ii) ALDH1A1, capable of activating RA precursors; iii) the RA-degrading enzyme CYP26B1; and iv) the RA-binding protein FABP5, which can inhibit RA-induced differentiation. In contrast, expression of the RA-binding protein CRABP2, which fosters differentiation, was decreased in high-grade tumors. Moreover, expression of CRBP1 correlated with tumor proliferation, and FABP5 expression correlated with an undifferentiated tumor phenotype. CRBP1 and ALDH1A1 were independent prognostic markers for adverse patient survival. Our data indicate a complex and clinically relevant deregulation of RA signaling, which seems to be a central event in glioma pathogenesis.
Collapse
Affiliation(s)
- Benito Campos
- Division of Neurological Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids. Radiol Oncol 2011; 45:102-15. [PMID: 22933943 PMCID: PMC3423731 DOI: 10.2478/v10019-011-0015-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 04/11/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction CD133 is a marker for a population of glioblastoma (GBM) and normal neural stem cells (NNSC). We aimed to reveal whether the migratory potential and differentiation of these stem cells is associated with CD133 expression and with cathepsin proteases (Cats). Materials and methods. The invasiveness of normal NNSC, GBM/CD133+ cell lines and GBM spheroids was evaluated in 3D collagen, as well as of U87-MG and normal astrocytes (NHA) grown in monolayers in 2D Matrigel. Expression of Cats B, L and S was measured at mRNA and activity levels and their relation to invasiveness, to CD133 mRNA in 26 gliomas, and to the survival of these patients. Results The average yield of CD133+ cells from GBM samples was 9.6 %. Survival of patients with higher CD133 mRNA expression was significantly shorter (p< 0.005). Invasion, associated with proteolytic degradation of matrix, was higher in normal stem cells and GBM spheroids and cells than in isolated GBM CD133+ cells. In glioma samples, there was no correlation between CD133 mRNA expression and Cat mRNAs, but there was an inverse correlation with Cat activities. Conclusions The study confirms CD133 as a prognostic marker for the survival of GBM patients. We demonstrated that NNSC have higher invasion potential and invade the collagen matrix in a mode different from that of GBM, initiating stem cell spheres. This result could have implications for the design of new therapeutics, including protease inhibitors that specifically target invasive tumour stem cells. Increased activity of cathepsins in CD133– cells suggests their role in the invasive behaviour of GBM.
Collapse
|
66
|
Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, Grau S, Hiraoka N, Eckstein V, Ecker RC, Korff T, von Deimling A, Unterberg A, Beckhove P, Herold-Mende C. Effector T-Cell Infiltration Positively Impacts Survival of Glioblastoma Patients and Is Impaired by Tumor-Derived TGF-β. Clin Cancer Res 2011; 17:4296-308. [DOI: 10.1158/1078-0432.ccr-10-2557] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
67
|
Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia 2011; 59:1190-9. [PMID: 21446051 DOI: 10.1002/glia.21165] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/31/2011] [Indexed: 11/08/2022]
Abstract
Diffuse gliomas such as astrocytomas and oligodendrogliomas are the most common form of intrinsic brain tumor in adults. Even within a single pathologic class, these tumors are both histologically and molecularly diverse, although not randomly so. Recent large-scale genomic analyses have revealed patterns of molecular changes within tumor subclasses that harbor distinct underlying biology, clinical prognosis, and pathogenetic routes. Stereotypical mutations in isocitrate dehydrogenase genes (IDH) have been identified in a significant proportion of high-grade gliomas and the large majority of lower-grade astrocytomas and oligodendrogliomas. While the role of IDH mutation in oncogenesis is unclear, it appears to carry a positive prognosis and is also highly associated with other prognostic markers such as MGMT methylation, loss of 1p and 19q chromosome arms, and a newly recognized CpG island methylator phenotype (G-CIMP). This constellation of positive prognostic molecular features is enriched in the transcriptionally defined Proneural glioma subclass and appears to reflect a route of pathogenesis distinct from that taken by other high-grade diffuse gliomas. Another newly discovered and frequent alteration in glioma, deletion or mutation of the NF1 gene, is strongly correlated with the Mesenchymal transcriptomal signature associated with highly aggressive gliomas. Thus, while the unprecedented level of newly available molecular profiling data may seem at first to needlessly balkanize and complicate glioma subclassification, these analyses are in fact providing a more unified picture of key pathogenetic routes and potential avenues for therapeutic intervention. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jason T Huse
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | |
Collapse
|
68
|
Wan F, Herold-Mende C, Campos B, Centner FS, Dictus C, Becker N, Devens F, Mogler C, Felsberg J, Grabe N, Reifenberger G, Lichter P, Unterberg A, Bermejo JL, Ahmadi R. Association of Stem Cell-Related Markers and Survival in Astrocytic Gliomas. Biomarkers 2011; 16:136-43. [DOI: 10.3109/1354750x.2010.536256] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Feng Wan
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
- Department of Neurosurgery, Tongji Hospital, Huazhong University of Science & Technology, 430030 Wuhan, China
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Benito Campos
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Franz-Simon Centner
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Christine Dictus
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Natalia Becker
- Division of Molecular Genetics, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Frauke Devens
- Division of Molecular Genetics, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Carolin Mogler
- Department of General Pathology, University of Heidelberg, INF 220, 69120 Heidelberg, Germany
| | - Jörg Felsberg
- Department of Neuropathology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Niels Grabe
- Institute of Medical Biometry and Informatics, Hamamatsu Tissue Imaging and Analysis (TIGA) Center, University of Heidelberg, INF 305, 69120 Heidelberg, Germany
| | - Guido Reifenberger
- Department of Neuropathology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Andreas Unterberg
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Rezvan Ahmadi
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
69
|
Basanta D, Scott JG, Rockne R, Swanson KR, Anderson ARA. The role of IDH1 mutated tumour cells in secondary glioblastomas: an evolutionary game theoretical view. Phys Biol 2011; 8:015016. [PMID: 21301070 DOI: 10.1088/1478-3975/8/1/015016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in clinical medicine have elucidated two significantly different subtypes of glioblastoma which carry very different prognoses, both defined by mutations in isocitrate dehydrogenase-1 (IDH-1). The mechanistic consequences of this mutation have not yet been fully clarified, with conflicting opinions existing in the literature; however, IDH-1 mutation may be used as a surrogate marker to distinguish between primary and secondary glioblastoma multiforme (sGBM) from malignant progression of a lower grade glioma. We develop a mathematical model of IDH-1 mutated secondary glioblastoma using evolutionary game theory to investigate the interactions between four different phenotypic populations within the tumor: autonomous growth, invasive, glycolytic, and the hybrid invasive/glycolytic cells. Our model recapitulates glioblastoma behavior well and is able to reproduce two recent experimental findings, as well as make novel predictions concerning the rate of invasive growth as a function of vascularity, and fluctuations in the proportions of phenotypic populations that a glioblastoma will experience under different microenvironmental constraints.
Collapse
Affiliation(s)
- David Basanta
- Integrated Mathematical Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
70
|
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 2010; 16:2715-28. [PMID: 20442299 DOI: 10.1158/1078-0432.ccr-09-1800] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Stem-like tumor cells comprise a highly tumorigenic and therapy-resistant tumor subpopulation, which is believed to substantially influence tumor initiation and therapy resistance in glioma. Currently, therapeutic, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population; retinoic acid is well known as a potent modulator of differentiation and proliferation in normal stem cells. In glioma, knowledge about the efficacy of retinoic acid-induced differentiation to target the stem-like tumor cell pool could have therapeutic implications. EXPERIMENTAL DESIGN Stem-like glioma cells (SLGC) were differentiated with all-trans retinoic acid-containing medium to study the effect of differentiation on angiogenesis, invasive growth, as well as radioresistance and chemoresistance of SLGCs. In vivo effects were studied using live microscopy in a cranial window model. RESULTS Our data suggest that in vitro differentiation of SLGCs induces therapy-sensitizing effects, impairs the secretion of angiogenic cytokines, and disrupts SLGCs motility. Further, ex vivo differentiation reduces tumorigenicity of SLGCs. Finally, we show that all-trans retinoic acid treatment alone can induce antitumor effects in vivo. CONCLUSIONS Altogether, these results highlight the potential of differentiation treatment to target the stem-like cell population in glioblastoma.
Collapse
Affiliation(s)
- Benito Campos
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Antiangiogenic therapy and mechanisms of tumor resistance in malignant glioma. JOURNAL OF ONCOLOGY 2010; 2010:251231. [PMID: 20414333 PMCID: PMC2855058 DOI: 10.1155/2010/251231] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/02/2010] [Indexed: 12/30/2022]
Abstract
Despite advances in surgery, radiation therapy, and chemotherapeutics, patients with malignant glioma have a dismal prognosis. The formations of aberrant tumour vasculature and glioma cell invasion are major obstacles for effective treatment. Angiogenesis is a key event in the progression of malignant gliomas, a process involving endothelial cell proliferation, migration, reorganization of extracellular matrix and tube formation. Such processes are regulated by the homeostatic balance between proangiogenic and antiangiogenic factors, most notably vascular endothelial growth factors (VEGFs) produced by glioma cells. Current strategies targeting VEGF-VEGF receptor signal transduction pathways, though effective in normalizing abnormal tumor vasculature, eventually result in tumor resistance whereby a highly infiltrative and invasive phenotype may be adopted. Here we review recent anti-angiogenic therapy for malignant glioma and highlight implantable devices and nano/microparticles as next-generation methods for chemotherapeutic delivery. Intrinsic and adaptive modes of glioma resistance to anti-angiogenic therapy will be discussed with particular focus on the glioma stem cell paradigm.
Collapse
|
72
|
Progress on antiangiogenic therapy for patients with malignant glioma. JOURNAL OF ONCOLOGY 2010; 2010:689018. [PMID: 20379377 PMCID: PMC2850510 DOI: 10.1155/2010/689018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/25/2010] [Accepted: 02/11/2010] [Indexed: 12/27/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor occurring in America. Despite recent advances in therapeutics, the prognosis for patients with newly diagnosed GBM remains dismal. As these tumors characteristically show evidence of angiogenesis (neovascularization) there has been great interest in developing anti-angiogenic therapeutic strategies for the treatment of patients with this disease and some anti-angiogenic agents have now been used for the treatment of patients with malignant glioma tumors. Although the results of these clinical trials are promising in that they indicate an initial therapeutic response, the anti-angiogenic therapies tested to date have not changed the overall survival of patients with malignant glioma tumors. This is due, in large part, to the development of resistance to these therapies. Ongoing research into key features of the neovasculature in malignant glioma tumors, as well as the general angiogenesis process, is suggesting additional molecules that may be targeted and an improved response when both the neovasculature and the tumor cells are targeted. Prevention of the development of resistance may require the development of anti-angiogenic strategies that induce apoptosis or cell death of the neovasculature, as well as an improved understanding of the potential roles of circulating endothelial progenitor cells and vascular co-option by tumor cells, in the development of resistance.
Collapse
|
73
|
Kondyli M, Gatzounis G, Kyritsis A, Varakis J, Assimakopoulou M. Immunohistochemical detection of phosphorylated JAK-2 and STAT-5 proteins and correlation with erythropoietin receptor (EpoR) expression status in human brain tumors. J Neurooncol 2010; 100:157-64. [PMID: 20336349 DOI: 10.1007/s11060-010-0156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
Abstract
Phosphorylated (activated) forms of Janus Kinase 2 (pJAK-2) and STAT-5 transcription factor (pSTAT-5), which are preferentially expressed after binding of erythropoietin (Epo) to its receptor EpoR, are known to be implicated in the molecular mechanisms controlling brain development. The purpose of this study was to investigate the expression of these proteins (pJAK-2, pSTAT-5, and EpoR) in human brain tumors compared with normal brain. Using specific antibodies and immunohistochemistry on formalin-fixed, paraffin-embedded semi-serial tissue sections a total of 87 human brain tumors and samples from normal brain tissue were studied. pJAK-2/pSTAT-5 nuclear co-expression was detected in 39% of astrocytomas, 43% of oligodendrogliomas, 50% of ependymomas, and in all (100%) of the medulloblastomas examined. In contrast, most of the meningiomas showed weak or no immunoreactivity for pJAK-2/pSTAT-5 proteins. A significant percentage of tumors exhibited pSTAT-5 immunoreactivity, being pJAK-2 immunonegative. EpoR/pJAK-2/pSTAT-5 co-expression was detected in a small percentage of astrocytomas (18%) and ependymomas (33%). Oligodendrogliomas and medulloblastomas were EpoR immunonegative. Tumor vessels exhibited EpoR, pJAK-2, and pSTAT-5 immunoreactivity. In normal brain tissue, EpoR immunoreactivity was detected in neurons and vessels whereas pSTAT-5 and pJAK-2 immunoreactivity was limited to some neurons and a few glial cells, respectively. These results indicate the existence of ligand (other than Epo)-dependent or independent JAK-2 activation that leads to constitutive activation of STAT-5 in most human brain tumors. Given the oncogenic potential of the JAK/STAT pathway, detection of different pJAK-2 and pSTAT-5 expression profiles between groups of tumors may reflect differences in the biological behavior of the various human brain tumors.
Collapse
Affiliation(s)
- M Kondyli
- Department of Anatomy, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
74
|
Transgene expression by oncolytic adenoviruses is modulated by E1B19K deletion in a cell type-dependent manner. Virology 2009; 395:243-54. [DOI: 10.1016/j.virol.2009.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/28/2009] [Accepted: 09/29/2009] [Indexed: 12/20/2022]
|
75
|
Abstract
Gliomas are the most common primary brain tumors. They account for more than 70% of all neoplasms of the central nervous system and vary considerably in morphology, location, genetic alterations, and response to therapy. Most frequent and malignant are glioblastomas. The vast majority (>90%) develops rapidly after a short clinical history and without evidence of a less malignant precursor lesion (primary or de novo glioblastoma). Secondary glioblastomas develop more slowly through progression from low-grade or anaplastic astrocytoma. These glioblastoma subtypes constitute distinct disease entities that affect patients of different age, develop through distinct genetic pathways, show different RNA and protein expression profiles, and may differ in their response to radio- and chemotherapy. Recently, isocitrate dehydrogenase 1 (IDH1) mutations have been identified as a very early and frequent genetic alteration in the pathway to secondary glioblastomas as well as that in oligodendroglial tumors, providing the first evidence that low-grade astrocytomas and oligodendrogliomas may share common cells of origin. In contrast, primary glioblastomas very rarely contain IDH1 mutations, suggesting that primary and secondary glioblastomas may originate from different progenitor cells, despite the fact that they are histologically largely indistinguishable. In this review, we summarize the current status of genetic alterations and signaling pathways operative in the evolution of astrocytic and oligodendroglial tumors.
Collapse
Affiliation(s)
- Hiroko Ohgaki
- International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
76
|
Ernst A, Hofmann S, Ahmadi R, Becker N, Korshunov A, Engel F, Hartmann C, Felsberg J, Sabel M, Peterziel H, Durchdewald M, Hess J, Barbus S, Campos B, Starzinski-Powitz A, Unterberg A, Reifenberger G, Lichter P, Herold-Mende C, Radlwimmer B. Genomic and Expression Profiling of Glioblastoma Stem Cell-Like Spheroid Cultures Identifies Novel Tumor-Relevant Genes Associated with Survival. Clin Cancer Res 2009; 15:6541-50. [DOI: 10.1158/1078-0432.ccr-09-0695] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Hepatocyte growth factor in cerebrospinal fluid is associated with mortality and recurrence of glioblastoma, and could be of prognostic value. J Neurooncol 2009; 97:347-51. [PMID: 19856144 DOI: 10.1007/s11060-009-0037-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
Malignant gliomas--glioblastoma multiforme and anaplastic astrocytoma--are among the most fatal forms of cancer in humans. It has been suggested that hepatocyte growth factor (HGF) is a reliable predictor of glioma malignancy; amounts of HGF are directly related to cellular proliferation, angiogenesis, low apoptotic rate, and poor prognosis (WHO III and IV). We measured the HGF content of cerebrospinal fluid (CSF) from patients with malignant glioma glioblastoma multiforme (WHO IV; n = 14), anaplastic astrocytoma (WHO III; n = 4), and meningioma (WHO I; n = 9), and from control subjects (n = 25), and found a high concentration of HGF in patients with malignant glioma. However, CSF concentrations from glioblastoma multiforme and anaplastic astrocytoma patients were not statistically significantly different (893 +/- 157 vs. 728 +/- 61, respectively; P > 0.01). A negative correlation between HGF and survival was found at five years of follow-up (R = -0.922, R (2) = 0.850, P < 0.001). Also, the HGF concentration in CSF was a reliable means of explaining the highly variable survival of patients with malignant glioma. CSF concentrations of HGF higher than 500 pg/ml were associated with increased mortality whereas values higher than 850 pg/ml were associated with a brief tumor-free period after surgery (9 +/- 0.6 vs. 6 +/- 0.6 months, respectively, P < 0.001). Our findings support the idea that measurement of HGF in CSF could be a useful tool for monitoring the biological activity of malignant glioma. The findings will ultimately need to be confirmed in a much larger study.
Collapse
|
78
|
Siegelin M, Gaiser T, Habel A, Siegelin Y. Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by down-regulation of the short isoform of FLIP and bcl-2. Cancer Lett 2009; 283:230-8. [DOI: 10.1016/j.canlet.2009.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/12/2009] [Accepted: 04/01/2009] [Indexed: 01/09/2023]
|
79
|
Abstract
Gliomas are aggressive and almost incurable glial brain tumors which frequently display abnormal platelet-derived growth factor (PDGF) signaling. Evidence gained from studies on several in vivo animal models has firmly established a causal connection between aberrant PDGF signaling and the formation of some gliomas. However, only recently has significant knowledge been gained regarding crucial issues such as the glioma cell of origin and the relationship between the transforming stimulus and the cellular characteristics of the resulting tumor. Based on recent evidence, we propose that PDGF can bias cell-fate decisions, driving the acquisition of cell type-specific features by the progeny of multipotent neural progenitors, thus determining the shape and direction of the transformation path. Furthermore, recent data about the cellular mechanisms of PDGF-driven glioma progression and maintenance indicate that PDGF may be required, unexpectedly, to override cell contact inhibition and promote glioma cell infiltration rather than to stimulate cell proliferation.
Collapse
Affiliation(s)
- Filippo Calzolari
- National Institute for Cancer Research (IST), IRCCS, and Department of Oncology Biology and Genetics (DOBIG), University of Genoa, Genoa, Italy
| | | |
Collapse
|
80
|
Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, Yan H, Adamson DC. Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 2009; 13:701-18. [PMID: 19409033 DOI: 10.1517/14728220902942348] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glioblastoma is the commonest primary brain tumor, as well as the deadliest. Malignant gliomas such as glioblastoma multiforme (GBM) present some of the greatest challenges in the management of cancer patients worldwide, despite notable recent achievements in oncology. Even with aggressive surgical resections using state-of-the-art preoperative and intraoperative neuroimaging, along with recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal: survival after diagnosis is about 1 year. Established prognostic factors are limited, but include age, Karnofsky performance status, mini-mental status examination score, O6-methylguanine methyltransferase promoter methylation and extent of surgery. Standard treatment includes resection of > 95% of the tumor, followed by concurrent chemotherapy and radiotherapy. Nevertheless, GBM research is being conducted worldwide at a remarkable pace, in the laboratory and at the bedside, with some of the more recent promising studies focused on identification of aberrant genetic events and signaling pathways to develop molecular-based targeted therapies, tumor stem cell identification and characterization, modulation of tumor immunological responses and understanding of the rare long-term survivors. With this universally fatal disease, any small breakthrough will have a significant impact on survival and provide hope to the thousands of patients who receive this diagnosis annually. This review describes the epidemiology, clinical presentation, pathology and tumor immunology, with a focus on understanding the molecular biology that underlies the current targeted therapeutics being tested.
Collapse
Affiliation(s)
- Okezie O Kanu
- Duke and Durham VAMC, Neurosurgery, DUMC Box 2624, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Siegelin MD, Siegelin Y, Habel A, Rami A, Gaiser T. KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiol Dis 2009; 34:259-66. [PMID: 19385057 DOI: 10.1016/j.nbd.2009.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic. The main obstacle in TRAIL-based therapy is that many glioma cells are resistant. In this study glioblastoma cell lines, human glioblastoma short-term cultures and human astrocytes were treated with 3-keto-N-aminoethylaminoethylcaproyldihydrocinnamoyl cyclopamine (KAAD-cyclopamine), tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) or the combination of both. Single treatment with KAAD-cyclopamine or TRAIL does not induce cytotoxicity in malignant glioma cells. However, treatment with KAAD-cyclopamine in combination with TRAIL induces rapid apoptosis in TRAIL-resistant glioma cells. Notably, normal human astrocytes were not affected by the combination treatment consisting of KAAD-cyclopamine and TRAIL. KAAD-cyclopamine led to an upregulation of death receptor 4 and 5 and down-regulation of bcl-2 and c-FLIP. Furthermore, overexpression of both bcl-2 and c-FLIP attenuated KAAD-cyclopamine facilitated TRAIL-mediated apoptosis. Taken together,we provided evidence that KAAD-cyclopamine facilitated TRAIL-mediated apoptosis at the level of the intrinsic and extrinsic apoptotic pathways in malignant glioma cells.
Collapse
|
82
|
Tate MC, Aghi MK. Biology of angiogenesis and invasion in glioma. Neurotherapeutics 2009; 6:447-57. [PMID: 19560735 PMCID: PMC5084181 DOI: 10.1016/j.nurt.2009.04.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/30/2009] [Accepted: 04/09/2009] [Indexed: 01/12/2023] Open
Abstract
Treatment of adult brain tumors, in particular glioblastoma, remains a significant clinical challenge, despite modest advances in surgical technique, radiation, and chemotherapeutics. The formation of abnormal, dysfunctional tumor vasculature and glioma cell invasion along white matter tracts are believed to be major components of the inability to treat these tumors effectively. Recent insight into the fundamental processes governing glioma angiogenesis and invasion provide a renewed hope for development of novel strategies aimed at reducing the morbidity of this uniformly fatal disease. In this review, we discuss background biology of the blood brain barrier and its pertinence to blood vessel formation and tumor invasion. We will then focus our attention on the biology of glioma angiogenesis and invasion, and the key mediators of these processes. Last, we will briefly discuss recent and ongoing clinical trials targeting mediators of angiogenesis or invasion in glioma patients. The findings provide a renewed hope for those endeavoring to improve treatment of patients with glioma by providing a novel set of rational targets for translational drug discovery.
Collapse
Affiliation(s)
- Matthew C. Tate
- grid.266102.10000000122976811Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Room M779, 94143-0112 San Francisco, CA
| | - Manish K. Aghi
- grid.266102.10000000122976811Department of Neurological Surgery, University of California, 505 Parnassus Avenue, Room M779, 94143-0112 San Francisco, CA
| |
Collapse
|
83
|
Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009; 18:1061-83. [DOI: 10.1517/13543780903052764] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cory Adamson
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
- Neurosurgery Section, Durham VA Medical Center, Durham, NC, USA
| | | | - Ankit I Mehta
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Chunhui Di
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Ningjing Lin
- Peking University School of Oncology, Beijing Cancer Hospital, Department of Oncology, Beijing, China
| | - Austin K Mattox
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Darell D Bigner
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| |
Collapse
|
84
|
Mora R, Abschuetz A, Kees T, Dokic I, Joschko N, Kleber S, Geibig R, Mosconi E, Zentgraf H, Martin-Villalba A, Régnier-Vigouroux A. TNF-alpha- and TRAIL-resistant glioma cells undergo autophagy-dependent cell death induced by activated microglia. Glia 2009; 57:561-81. [PMID: 18942750 DOI: 10.1002/glia.20785] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of microglia, the brain resident macrophages, in glioma biology is still ill-defined. Despite their cytotoxic potential, these cells that significantly infiltrate the tumor mass seem to support tumor growth rather than tumor eradication. A proper activation of microglia anti-tumor activities within the tumor may provide a valuable additional arm of defense to immunotherapies against brain tumors. We herewith report a detailed characterization of (lipopolysaccharide and interferon-gamma)-induced anti-tumor activities of mouse primary microglia towards two TNF-alpha and TRAIL resistant glioma cell lines, in cell monolayer or spheroid cultures and in collagen-embedded tumor explants. Irrespective of the mouse strain, stimulated microglia secreted proteic factors that decreased proliferation and migration of these glioma cells and efficiently killed them. Death occurred specifically in glioma cells as demonstrated by the lack of toxicity of microglia supernatant towards primary cultures of astrocytes or neurons. Cell death was characterized by the early accumulation of acidic vesicles, phosphatidylserine exposure, appearance of double-membrane cytoplasmic vesicles, extensive zeiosis and a very late loss of DNA in cells that had lost membrane integrity. Inhibition of autophagosome formation efficiently protected glioma cells from death whereas caspase inhibition could only prevent DNA loss but not cytotoxicity. Death however, resulted from a blockade by microglia supernatant of the basal autophagic flux present in the glioma cells. These observations demonstrate that glioma cells resistant to apoptotic death ligands could be successfully and specifically killed through autophagy-dependent death induced by appropriately activated microglia.
Collapse
Affiliation(s)
- Rodrigo Mora
- INSERM U701, German Cancer Research Centre, Program Infection and Cancer, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Daidzein overcomes TRAIL-resistance in malignant glioma cells by modulating the expression of the intrinsic apoptotic inhibitor, bcl-2. Neurosci Lett 2009; 454:223-8. [DOI: 10.1016/j.neulet.2009.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 02/23/2009] [Accepted: 03/11/2009] [Indexed: 12/13/2022]
|
86
|
Abstract
Brain tumors exhibit marked and aberrant blood vessel formation indicating angiogenic endothelial cells as a potential target for brain tumor treatment. The brain tumor blood vessels are used for nutrient delivery, and possibly for cancer cell migration. The process of angiogenesis is complex and involves multiple players. The current angiogenesis inhibitors used in clinical trials mostly target single angiogenic proteins and so far show limited effects on tumor growth. Besides the conventional angiogenesis inhibitors, RNA-based inhibitors such as small-interfering RNAs (siRNAs) are being analyzed for their capacity to silence the message of proteins involved in neovascularization. More recently, a new family of non-coding RNAs, named angiomirs [microRNAs (miRNAs) involved in angiogenesis] has emerged. These small RNAs have the advantage over siRNAs in that they have the potential of silencing multiple messages at the same time and therefore they might become therapeutically relevant in a "one-hit multiple-target" context against brain tumor angiogenesis. In this review we will discuss the emerging technologies in anti-angiogenesis emphasizing on RNA-based therapeutics.
Collapse
Affiliation(s)
- Thomas Würdinger
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | | |
Collapse
|
87
|
Genistein enhances proteasomal degradation of the short isoform of FLIP in malignant glioma cells and thereby augments TRAIL-mediated apoptosis. Neurosci Lett 2009; 453:92-7. [DOI: 10.1016/j.neulet.2009.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/13/2022]
|
88
|
Zhong C, Qu X, Tan M, Meng YG, Ferrara N. Characterization and Regulation of Bv8 in Human Blood Cells. Clin Cancer Res 2009; 15:2675-84. [DOI: 10.1158/1078-0432.ccr-08-1954] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
89
|
Smith KE, Fritzell S, Badn W, Eberstål S, Janelidze S, Visse E, Darabi A, Siesjö P. Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 2008; 124:630-7. [PMID: 18972433 DOI: 10.1002/ijc.23986] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We were the first to demonstrate that combined immunotherapy with GM-CSF producing GL261 cells and recombinant IFNgamma of preestablished GL261 gliomas could cure 90% of immunized mice. To extend these findings and to uncover the underlying mechanisms, the ensuing experiments were undertaken. We hypothesized that immunizations combining both GM-CSF and IFNgamma systemically would increase the number of immature myeloid cells, which then would mature and differentiate into dendritic cells (DCs) and macrophages, thereby augmenting tumor antigen presentation and T-cell activation. Indeed, the combined therapy induced a systemic increase of both immature and mature myeloid cells but also an increase in T regulatory cells (T-regs). Cytotoxic anti-tumor responses, mirrored by an increase in Granzyme B-positive cells as well as IFNgamma-producing T-cells, were augmented after immunizations with GM-CSF and IFNgamma. We also show that the combined therapy induced a long-term memory with rejection of intracerebral (i.c.) rechallenges. Depletion of T-cells showed that both CD4+ and CD8+ T-cells were essential for the combined GM-CSF and IFNgamma effect. Finally, when immunizations were delayed until day 5 after tumor inoculation, only mice receiving immunotherapy with both GM-CSF and IFNgamma survived. We conclude that the addition of recombinant IFNgamma to immunizations with GM-CSF producing tumor cells increased the number of activated tumoricidal T-cells, which could eradicate established intracerebral tumors. These results clearly demonstrate that the combination of cytokines in immunotherapy of brain tumors have synergistic effects that have implications for clinical immunotherapy of human malignant brain tumors.
Collapse
Affiliation(s)
- Karin Enell Smith
- Department of Clinical Sciences, Glioma Immunotherapy Group, The Rausing Laboratory, Division of Neurosurgery, BMC D14, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Siegelin MD, Reuss DE, Habel A, Herold-Mende C, von Deimling A. The flavonoid kaempferol sensitizes human glioma cells to TRAIL-mediated apoptosis by proteasomal degradation of survivin. Mol Cancer Ther 2008; 7:3566-74. [PMID: 19001439 DOI: 10.1158/1535-7163.mct-08-0236] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) limits its potential as a drug for cancer therapy. Here, we report that kaempferol, a bioactive plant flavonoid, sensitizes U251 and U87 glioma cells to TRAIL-mediated apoptosis. In contrast, U373 cells are not affected by kaempferol treatment. Treatment of kaempferol alone for 24 h did not induce apoptosis in the cell lines. We provide evidence that TRAIL-induced apoptosis is partially driven by kaempferol-mediated reduction of survivin protein levels. On kaempferol treatment, proteasomal degradation of survivin was observed. Inhibition of proteasomal degradation with MG132 in kaempferol-treated cells restored survivin protein levels in both glial cell lines. Consequently, overexpression of survivin attenuated TRAIL-kaempferol-induced apoptosis. In addition, we show that kaempferol mediates down-regulation of phosphorylated Akt, thereby further reducing survivin protein level. Furthermore, the blockage of the serine/threonine kinase Akt activity by kaempferol is important for inhibition of survivin because active phosphorylated Akt enhances the stability of survivin. However, we also show that the combined treatment of TRAIL and kaempferol induces cleavage (activation) of caspase-8, thereby exerting a proapoptotic effect independent of survivin known not to inhibit caspase-8 activation. Other effects induced by kaempferol were suppression of X-linked inhibitor of apoptosis proteins as the antiapoptotic members of the Bcl-2 family, Bcl-2, Bcl-xL, and Mcl-1 in a concentration-dependent manner. In summary, we showed that suppression of survivin is an essential mechanism in TRAIL-kaempferol-mediated apoptosis.
Collapse
Affiliation(s)
- Markus D Siegelin
- Department of Neuropathology, University Hospital Heidelberg, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
91
|
Pope WB, Chen JH, Dong J, Carlson MRJ, Perlina A, Cloughesy TF, Liau LM, Mischel PS, Nghiemphu P, Lai A, Nelson SF. Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory DNA microarray analysis. Radiology 2008; 249:268-77. [PMID: 18796682 DOI: 10.1148/radiol.2491072000] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine the difference in gene expression between completely versus incompletely enhancing glioblastoma multiforme (GBM). MATERIALS AND METHODS Gene expression was determined for 52 newly diagnosed GBMs by using DNA microarrays, and the relationship to enhancement pattern and survival was analyzed. This study was approved by the institutional review board and was HIPAA compliant; informed consent was obtained. RESULTS Thirty-eight percent (20 of 52) of GBMs were incompletely enhancing (IE). The expression of eight genes was increased more than twofold in IE GBM when compared with completely enhancing (CE) GBM. Among these were tight junction protein-2 (2.2-fold increase, P = .019), and the oligodendroglioma markers oligodendrocyte lineage transcription factor 2 (2.4-fold increase, P = .029) and Achaete-scute complex-like 1 (ASCL1; 2.7-fold increase, P = .023). The expression of 71 genes showed relative overexpression in CE when compared with IE GBM. These included several proangiogenic and edema-related genes, including vascular endothelial growth factor (2.1-fold, P = .005) and neuronal pentraxin-2 (3.0-fold, P = .029). Several genes associated with primary GBM were overexpressed in CE tumors, whereas ASCL1, which is associated with secondary GBM, was overexpressed in IE tumors. Many genes overexpressed in IE GBM were associated with longer survival, whereas several genes overexpressed in CE GBM correlated with shortened survival. CONCLUSION The enhancement pattern divides GBM in two groups with differing prognoses. By comparing gene expression between IE and CE GBMs, it was possible to identify genes that may affect magnetic resonance imaging features of edema and enhancement, and genes whose expression levels are predictive of both improved and shortened survival.
Collapse
Affiliation(s)
- Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine at University of California-Los Angeles (UCLA) Medical Center, 10833 Le Conte Ave, BL-428/CHS, Los Angeles, CA 90095-1721, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Strelau J, Schmeer C, Peterziel H, Sackmann T, Herold-Mende C, Steiner H, Weller M, Unsicker K. Expression and putative functions of GDF-15, a member of the TGF-β superfamily, in human glioma and glioblastoma cell lines. Cancer Lett 2008; 270:30-9. [DOI: 10.1016/j.canlet.2008.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 02/01/2023]
|
93
|
Abstract
Antiangiogenesis approaches have the potential to be particularly effective in the treatment of glioblastoma tumours. These tumours exhibit extremely high levels of neovascularisation, which may contribute to their extremely aggressive behaviour, not only by providing oxygenation and nutrition, but also by establishing a leaky vasculature that lacks a blood-brain barrier. This leaky vasculature enables migration of tumour cells, as well as the build up of fluid, which exacerbates tissue damage due to increased intracranial pressure. Here, we discuss the considerable progress that has been made in the identification of the pro- and antiangiogenic factors produced by glioblastoma tumours and the effects of these molecules in animal models of the disease. The safety and efficacy of some of these approaches have now been demonstrated in clinical trials. However, the ability of tumours to overcome these therapies and to re-establish angiogenesis requires further clinical research regarding potential multimodality therapies, as well as basic research into the regulation of angiogenesis by as yet unidentified factors. Optimisation of noninvasive procedures for monitoring of angiogenesis would greatly facilitate such research.
Collapse
|
94
|
Arrieta O, Pineda-Olvera B, Guevara-Salazar P, Hernández-Pedro N, Morales-Espinosa D, Cerón-Lizarraga TL, González-De la Rosa CH, Rembao D, Segura-Pacheco B, Sotelo J. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer 2008; 99:160-6. [PMID: 18594540 PMCID: PMC2453037 DOI: 10.1038/sj.bjc.6604431] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Astrocytomas develop intense vascular proliferation, essential for tumour growth and invasiveness. Angiotensin II (ANGII) was initially described as a vasoconstrictor; recent studies have shown its participation in cellular proliferation, vascularisation, and apoptosis. We conducted a prospective study to evaluate the expression of ANGII receptors – AT1 and AT2 – and their relationship with prognosis. We studied 133 tumours from patients with diagnosis of astrocytoma who underwent surgery from 1997 to 2002. AT1 and AT2 were expressed in 52 and 44% of the tumours, respectively, when determined by both reverse transcriptase–polymerase chain reaction and immunohistochemistry. Ten per cent of low-grade astrocytomas were positive for AT1, whereas grade III and IV astrocytomas were positive in 67% (P<0.001). AT2 receptors were positive in 17% of low-grade astrocytomas and in 53% of high-grade astrocytomas (P=0.01). AT1-positive tumours showed higher cellular proliferation and vascular density. Patients with AT1-positive tumours had a lower survival rate than those with AT1-negative (P<0.001). No association to survival was found for AT2 in the multivariate analysis. Expression of AT1 and AT2 is associated with high grade of malignancy, increased cellular proliferation, and angiogenesis, and is thus related to poor prognosis. These findings suggest that ANGII receptors might be potential therapeutic targets for high-grade astrocytomas.
Collapse
Affiliation(s)
- O Arrieta
- Experimental Oncology Laboratory and Medical Oncology Department, Instituto Nacional de Cancerología (INCan), Tlalpan 14080, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wager M, Fontaine D, Karayan-Tapon L. Biologie moléculaire des gliomes de l’adulte : quelques repères pour le neurochirurgien. Neurochirurgie 2008; 54:529-44. [DOI: 10.1016/j.neuchi.2008.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
|
96
|
Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Böck BC, Macher-Goeppinger S, Radlwimmer B, Wiestler OD, Herold-Mende C, Roth W. Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 2008; 27:6646-56. [DOI: 10.1038/onc.2008.259] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
97
|
Gdynia G, Lehmann-Koch J, Sieber S, Tagscherer KE, Fassl A, Zentgraf H, Matsuzawa SI, Reed JC, Roth W. BLOC1S2 interacts with the HIPPI protein and sensitizes NCH89 glioblastoma cells to apoptosis. Apoptosis 2008; 13:437-47. [PMID: 18188704 DOI: 10.1007/s10495-007-0176-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The HIPPI (HIP-1 protein interactor) protein is a multifunctional protein that is involved in the regulation of apoptosis. The interaction partners of HIPPI include HIP-1 (Huntingtin-interacting protein-1), Apoptin, Homer1c, Rybp/DEDAF, and BAR (bifunctional apoptosis regulator). In search for other binding partners of HIPPI, we performed a yeast two hybrid screen and identified BLOC1S2 (Biogenesis of lysosome-related organelles complex-1 subunit 2) as a novel HIPPI-interacting protein. In co-immunoprecipitation assays, BLOC1S2 specifically associates with HIPPI, but not with HIP-1. To study the expression of BLOC1S2 on the protein level, we generated a mouse monoclonal antibody specific for BLOC1S2 and a multiple tissue array comprising 70 normal and cancer tissue samples of diverse origin. BLOC1S2 protein is widely expressed in normal tissue as well as in malignant tumors with a tendency towards lower expression levels in certain subtypes of tumors. On the subcellular level, BLOC1S2 is expressed in an organellar-like pattern and co-localizes with mitochondria. Over-expression of BLOC1S2 in the presence or absence of HIPPI does not induce apoptosis. However, BLOC1S2 and HIPPI sensitize NCH89 glioblastoma cells to the pro-apoptotic actions of staurosporine and the death ligand TRAIL by enhancing caspase activation, cytochrome c release, and disruption of the mitochondrial membrane potential. Given its interaction with HIPPI and its pro-apoptotic activity, BLOC1S2 might play an important functional role in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georg Gdynia
- Molecular Neuro-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Jouanneau E. Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery 2008; 62:31-50; discussion 50-2. [PMID: 18300890 DOI: 10.1227/01.neu.0000311060.65002.4e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite significant improvements, current therapies have yet to cure infiltrative gliomas. Glioma progression is strongly dependent on the development of a new vascular network that occurs primarily by angiogenesis. Hypoxia and genetic anomalies within a glioma trigger the angiogenic switch, thus upregulating angiogenic factors and downregulating antiangiogenic factors. The main factors indicative of angiogenesis are now well known, and more recently, differences based on grade and subtype have been reported. New data also indicate a potential role for postnatal vasculogenesis with bone marrow endothelial progenitors in addition to angiogenesis in tumor vascular development. All of these factors may have therapeutic implications. Antiangiogenic therapies are presently being developed; more than 80 trials are ongoing. Initial results indicate that epidermal growth factor receptor inhibitors, anti-metalloproteases, and thalidomide do not demonstrate strong anti-tumor activity. Thus, antiangiogenic agents combined with conventional therapies and second-generation antiangiogenic drugs for targeting multiple molecular pathways are presently being tested. Clinical experience also demonstrates the failure of conventional imaging to monitor these new approaches accurately. New advances in the design of surrogate markers for angiogenesis have been reported for both magnetic resonance and molecular imaging techniques. This article summarizes the mechanisms of the angiogenic switch based on tumor grade and subtype, reviews completed and ongoing clinical trials, and details the present and the future of surrogate markers for angiogenesis in gliomas.
Collapse
Affiliation(s)
- Emmanuel Jouanneau
- Neurosurgical Department, Neurological Hospital Pierre Wertheimer, University Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
99
|
Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC. Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 2008; 14:123-9. [PMID: 18172261 DOI: 10.1158/1078-0432.ccr-07-0932] [Citation(s) in RCA: 461] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The CD133 antigen has been identified as a putative stem cell marker in normal and malignant brain tissues. In gliomas, it is used to enrich a subpopulation of highly tumorigenic cancer cells. According to the cancer stem cell hypothesis, CD133-positive cells determine long-term tumor growth and, therefore, are suspected to influence clinical outcome. To date, a correlation between CD133 expression in primary tumor tissues and patients' prognosis has not been reported. EXPERIMENTAL DESIGN To address this question, we analyzed the expression of the CD133 stem cell antigen in a series of 95 gliomas of various grade and histology by immunohistochemistry on cryostat sections. Staining data were correlated with patient outcome. RESULTS By multivariate survival analysis, we found that both the proportion of CD133-positive cells and their topological organization in clusters were significant (P < 0.001) prognostic factors for adverse progression-free survival and overall survival independent of tumor grade, extent of resection, or patient age. Furthermore, proportion of CD133-positive cells was an independent risk factor for tumor regrowth and time to malignant progression in WHO grade 2 and 3 tumors. CONCLUSIONS These findings constitute the first conclusive evidence that CD133 stem cell antigen expression correlates with patient survival in gliomas, lending support to the current cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Felix Zeppernick
- Division of Neurosurgical Research, Department of Neurosurgery, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chi A, Norden AD, Wen PY. Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 2008; 7:1537-60. [PMID: 18020923 DOI: 10.1586/14737140.7.11.1537] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malignant gliomas confer a dismal prognosis. As the molecular events that underlie tumor angiogenesis are elucidated, angiogenesis inhibition is emerging as a promising therapy for recurrent and newly diagnosed tumors. Data from animal studies suggest that angiogenesis inhibition may promote an invasive phenotype in tumor cells. This may represent an important mechanism of resistance to antiangiogenic therapies. Recent studies have begun to clarify the mechanisms by which glioma cells detach from the tumor mass, remodel the extracellular matrix and infiltrate normal brain. An array of potential therapeutic targets exists. Combination therapy with antiangiogenic and novel anti-invasion agents is a promising approach that may produce a synergistic antitumor effect and a survival benefit for patients with these devastating tumors.
Collapse
Affiliation(s)
- Andrew Chi
- Center for Neuro-Oncology, Dana-Farber/Brigham & Women's Cancer Center, Division of Neuro-Oncology, Department of Neurology, Brigham & Women's Hospital, SW430D, 44 Binney Street, Boston, MA 02115, USA.
| | | | | |
Collapse
|